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Facets for Art Gallery Problems
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Abstract We discuss polyhedral methods for com-
puting optimal solutions for large instances of the Art

Gallery Problem (AGP). We extend our previous
work [7], which uses a primal-dual linear program-
ming approach to solve the fractional AGP to opti-
mality, using cutting planes that eliminate fractional
solutions.

We identify two classes of facets of the associ-
ated polytopes, based on Edge Cover (EC) and
Set Cover (SC) inequalities. Solving the separation
problem for these facets is NP-complete, but exploit-
ing the underlying geometric structure of the AGP, we
show that large subclasses of fractional SC solutions
cannot occur for the AGP. This allows us to sepa-
rate the relevant subset of facets in polynomial time.
Finally, we characterize all facets for finite AGP re-
laxations with coefficients in {0, 1, 2}.

1 Introduction

The Art Gallery Problem (AGP) asks for the
minimum number of points that can guard a given
polygonal region P with n vertices. Chvátal [3] (and
Fisk [6]) showed that bn

3 c guards are sometimes nec-
essary and always sufficient for a simple polygon P .
See O’Rourke [9] for a classical survey.

Algorithmically, the AGP is closely related to the
Set Cover (SC) problem; it is NP-hard, even for
simple polygons [8]. However, there are two differ-
ences to a discrete SC problem. On the one hand,
geometric variants of problems may be easier to solve
or approximate than their discrete, graph-theoretic
counterparts; on the other hand, the AGP is far from
being discrete: both the set that is to be covered (all
points in P ) and the covering family (all visibility
polygons within P ) usually are uncountably infinite.

Amit, Mitchell and Packer [1] have considered
purely combinatorial primal and dual heuristics for
general AGP instances. Only very recently have re-
searchers begun to combine methods from integer lin-
ear programming with non-discrete geometry in order
to obtain optimal solutions. As we showed in [7], it
is possible to combine an iterative primal-dual relax-
ation approach with structures from computational
geometry in order to solve AGP instances with unre-
stricted guard positions. Couto et al. [5] used a similar
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Figure 1: (Top) An optimal fractional solution of
an AGP instance. The half-filled circles indicate 1

2 -
guards. (Bottom) Cutting planes from Sections 3
and 4 force 2 guards in the left and 5 in the right
part of the polygon respectively, thus yielding an in-
teger optimum.

approach for the AGP with vertex guards. Closely
related to this paper, Balas and Ng [2] describe all
facets with coefficients in {0, 1, 2} of the discrete SC
polytope.

Formal Description We consider a polygonal region
P , possibly with holes, with n vertices. For a point
p 2 P , we denote by V(p) the visibility polygon of p
in P . P is star-shaped if P = V(p) for some p 2 P .
The set of all such points is the kernel of P . For a set
S ✓ P , V(S) := [p2SV(p). A set C ✓ P is a guard

cover, if V(C) = P . The AGP asks for a guard cover
of minimum cardinality.

Our Results In this paper, we extend and deepen
our previous work on iterative primal-dual relax-
ations, by proving a number of polyhedral properties
of the resulting AGP polytopes.

• We show how to employ cutting planes for an
iterative primal-dual framework for solving the
AGP. This is interesting in itself, as it provides an
approach to tackling optimization problems with
infinitely many constraints and variables. The
particular challenge is to identify constraints that
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remain valid for any choice of infinitely many pos-
sible primal and dual variables, as we are solving
an iteratively refined sequence of LPs.

• Based on a geometric study of the involved SC
constraints, we characterize all facets of involved
AGP polytopes that have coefficients in {0, 1, 2}.
We also provide an additional class based on
Edge Cover (EC) constraints.

• One class of discussed facets originates from the
SC polytope. In that setting, the separation
problem is NP-complete. We exploit the geome-
try to prove that the majority of these facets can-
not cut off fractional solutions in an AGP setting
(under reasonable assumptions), allowing us to
avoid the NP-complete separation problem.

• We demonstrate the practical usefulness of our
results with experiments.

2 Mathematical Programming Formulation and
LP-Based Solution Procedure

Let G ✓ P be a set of possible guard locations, and
W ✓ P a set of witnesses, i. e., points to be guarded.
We assume W ✓ V(G). In previous work [7], we
have presented an LP-based procedure for the orig-
inal AGP. It can be formulated as an integer linear
program AGP(G,W ):

min
X

g2G

xg (1)

s. t.
X

g2G\V(w)

xg � 1 8w 2 W (2)

xg 2 {0, 1} 8g 2 G (3)

The original problem, AGP(P, P ), has uncountably
many variables and constraints and thus cannot be
solved directly, especially, because a finite witness set
generally cannot ensure coverage of P [4]. So we con-
sider finite G,W ⇢ P . For dual separation and to
generate lower bounds, we require the LP relaxation
AGR(G,W ) obtained by relaxing the integrality con-
straint (3):

0  xg  1 8g 2 G . (4)

We have shown that AGR(P, P ) can be solved op-
timally for many problem instances by using finite G

and W and solving the primal and dual separation
problems, see [7]:

1. Given a solution (xg)g2P , decide if it is feasible
for AGR(G,P ), i. e., completely covers the poly-
gon, or prove infeasibility by presenting an in-
sufficiently covered point w. In the latter case
a new witness w is added to W , and the LP
is re-solved. Otherwise, (xg)g2P is optimal for
AGR(G,P ), and its objective value is an upper
bound for AGR(P, P ).

2. Given a solution (yw)w2P for the dual LP of
AGR(G,W ), decide whether it is feasible for the
dual of AGR(P,W ), or prove infeasibility by pre-
senting a violated dual constraint. This coincides
with presenting an additional guard point g that
will improve the solution. If such a g does not
exist, (yw)w2P is an optimal dual solution for
AGR(P,W ) and the objective value is a lower
bound for AGR(P, P ).

If the upper and the lower bound meet, we have an
optimal solution of the fractional AGP, AGR(P, P ).

Both separation problems can be solved efficiently
using the overlay of the visibility polygons of all points
g 2 G with xg > 0 (for the primal case) and all w 2 W

with yw > 0 (for the dual case), which decomposes P

into a planar arrangement of bounded complexity.
Our approach may produce fractional solutions as

in Fig. 1. In this paper, we use cutting planes to
eliminate such fractional solutions. The cuts must
remain feasible in all iterations of our algorithm, so
feasibility for AGP(G,W ) is insufficient; we require
them not to cut off integer solutions of AGP(G0

, P )
for any G

0 � G.

3 Set Cover Facets

We transfer known facets [2] of the SC polytope to
the AGP polytope, and show that the underlying ge-
ometry greatly reduces their impact on the involved
AGP polytopes.

3.1 A Family of Facets

Consider a finite non-empty subset ; ⇢ S ✓ W of
witness positions. Every feasible cover of P is a cover
of S. Analogous to what Balas and Ng [2] did for
the SC polytope, we partition P = J0 [̇ J1 [̇ J2, as
follows, see Fig. 2: J2 := {g 2 P | S ✓ V(g)}, the
set of positions that cover all of S; J0 := {g 2 P |
V(g) \ S = ;}, the set of positions that see none of
S; J1 := P \ (J2 [ J0) the set of positions that cover
a non-trivial subset of S. Thus, it takes one guard in
J2, or at least two guards in J1 to cover S. This can
be captured in the following inequality:

X

g2J2\G

2xg +
X

g2J1\G

xg � 2 . (5)

Sufficient coverage of S is necessary for sufficient
coverage of P , so (5) is valid for any feasible solution
of AGP(G,P ). However, covering S may require more
than two guards in J1, so (5) does not always provide
a supporting hyperplane of conv(AGP(G,W )). For
|S|  2, the inequality never cuts off any point of
AGR(G,W ); hence, we only consider the case |S| � 3.

In order to show when Inequality (5) defines a facet
of conv(AGP(G,W )), we apply a result of [2] to the
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Figure 2: Witness selection S = {w1, w2, w3, w4} and
resulting partition P = J0 [̇ J1 [̇ J2.

AGP setting. All proofs in this paper are omitted due
to space limitations.

Lemma 1 Let P be a polygon and G,W ⇢ P

finite sets of guard and witness positions. Then

conv(AGP(G,W )) is full-dimensional, if and only if

|V(w) \G| � 2 8w 2 W .

We require some terminology adapted from [2].
Two guards g1, g2 2 J1 form a 2-cover of S, if
S ✓ V({g1, g2}). The 2-cover graph is the graph with
nodes in J1 \ G and an edge between g1 and g2 iff
g1, g2 are a 2-cover. Finally, we define T (g) := {w 2
V(g) \W | V(w) \G \ (J0 \ {g}) = ;}.

Theorem 2 Given a polygon P and finite G,W ⇢ P ,

let conv(AGP(G,W )) be full-dimensional, and let

S be maximal, i. e., there is no w 2 W \ S with

V(w) ✓ V(S). Then Inequality (5) is facet-defining

for conv(AGP(G,W )), if and only if:

1. Every 2-cover graph component has an odd cycle.

2. 8g 2 J0 \G with T (g) 6= ; there exists either

(a) some g

0 2 J2 \G such that T (g) ✓ V(g0), or

(b) g

0
, g

00 2 J1\G with T (g)[S ✓ V(g0)[V(g00).

3.2 Geometric Properties.

For any size |S|, there are SC instances where the gen-
eral, abstract variant of Inequality (5) actually cuts off
fractional solutions [2]. In this section, we show that
for the AGP, only a very reduced number of these
actually occur.

Lemma 3 Let P be a polygon and G,W ⇢ P be

finite. Assume ; ⇢ S ✓ W is minimal for G, i. e.,

there is no proper subset R ( S inducing the same

Inequality (5) as S. Then the LP coefficient matrix

of AGP(G,S) contains a permutation of the full cir-

culant of order k = |S|, which is defined as

C

k�1
k :=

0

BBBB@

0 1 · · · 1

1 0
.

.

.
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Figure 3: P

2
3 (left) and two attempts for P

3
4 (middle

and right). In the left case, Ineq. (5) enforces using
two guards instead of three 1

2 -guards. The attempts
for P

3
4 are star-shaped (middle) or invalid, as xg1 =

. . . = xg4 = 1
3 is infeasible (right, at w

⇤).

This motivates a formal definition of polygons that
correspond to C

k�1
k .

Definition 1 (Full Circulant Polygon) A poly-

gon P = P

k�1
k along with G = {g1, . . . , gk} ⇢ P

and W = {w1, . . . , wk} ⇢ P for k � 3 is called Full
Circulant Polygon, if

V(gi) \W = W \ {wi} 81  i  k, and (7)
|V(w) \G| � k � 1 8w 2 P . (8)

Note that P

k�1
k is defined such that C

k�1
k com-

pletely describes the visibility relations between G

and W . This implies that the optimal solution of
AGR(G,W ) is 1

k�11 (i.e., assigns a value of 1
k�1 to

each g 2 G), with total cost k
k�1 . It is feasible for

AGR(G,P

k�1
k ) by Property (8).

Figure 3 captures construction attempts for mod-
els of C

k�1
k . P

2
3 exists, but for k � 4, the polygons

are either star-shaped or not full circulant. If they
are star-shaped, the optimal solution is to place one
guard within the kernel. If they are not full circulant
polygons, the optimal solution of AGR(G,W ) is in-
feasible for AGR(G,P

k�1
k ). In this case, the current

fractional solution is intermittent, i.e., it will be cut off
by the algorithm by introducing new witnesses. Both
cases eliminate the need for a cutting plane. In the
following we argue that P

k�1
k is indeed star-shaped

for k � 4, allowing us to avoid the NP-complete sep-
aration problem of finding all permutations of all full
circulants in the matrix of AGP(G,W ) by reducing
our search to k = 3.

The first step is Lemma 4, which restricts the pos-
sible structure of P k�1

k . It provides the basis for our
main theorem.

Lemma 4 For k � 4, every full circulant polygon is

simple, i.e., it has no holes. This is not true for k < 4.

Theorem 5 For k � 4, every full circulant polygon

is star-shaped.

By Theorem 5, no cuts of type (5) are necessary
to cut off fractional solutions for a full circulant poly-
gon P

k�1
k with k � 4. It is still possible to embed
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P

k�1
k in larger polygons, where these cuts play a role.

However, our experiments, see Section 5, suggest that
these cases rarely occur in practice.

3.3 All Facets with Coe�cients in {0, 1, 2}

Balas and Ng [2] identified all SC facets with coef-
ficients in {0, 1, 2}. The only nontrivial facet class
corresponds to Ineq. (5). As for finite G,W ⇢ P ,
AGP(G,W ) is an SC instance, we have identified all
nontrivial AGP facets with coefficients in {0, 1, 2}.

4 Edge Cover Facets

Solving AGR(G,W ) for finite G,W ⇢ P in which no
guard sees more than two witnesses is equivalent to
solving a fractional edge cover instance on the follow-
ing graph: The nodes correspond to the witnesses,
each guard is represented by an edge or a loop. This
is the case in the 5-gonal corridor in the right part of
Fig. 1. As outlined in [7], the inequality

X

g2V(W )\G

xg �
⇠
k

2

⇡
(9)

can cut off such fractional solutions, provided |W | is
odd. It is a valid constraint if no guard exists that sees
more than two witnesses in W . Inequality (9) is facet-
defining for conv(AGP(G,W )) under some conditions
that we leave out due to space restrictions.

5 Computational Experience

A variety of experiments on benchmark polygons show
the usefulness of our cutting planes. We employed
the same four classes of test polygons as in [7] with
approximately 60, 200, 500 and 1000 vertices.

The experiments keep track of the gap between
the smallest (integer) upper bound and largest (frac-
tional) lower bound. They were conducted on 3.0GHz
Intel dual core PCs with 2GB of memory. Our algo-
rithms used CGAL 4.0 and CPLEX 12.1.

Due to space restrictions, we only present the rel-
ative gap over time for so-called von Koch polygons
with 1000 vertices. Fig. 4 shows the distribution of
relative gaps over time for different combinations of
cutting planes in the third quartile.

Clearly, using no separation yields the largest gaps.
The EC cuts are successful in reducing the gap and
the SC cuts for k = 3 close the gaps faster than all
other cut separators. The SC cuts for k 2 {3, 4} are
weaker than those limited to k = 3, supporting the
practical relevance of our arguments from Section 3:
The separation for k = 4 takes time, but has no ben-
efits for the gap. Combining SC cuts for k = 3 and
EC cuts is slightly slower than SC cuts for k = 3 only
due to an overlap of the facet classes.
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Figure 4: Separator performance.

6 Conclusion

In this paper, we have shown how we can exploit
both geometric properties and polyhedral methods of
mathematical programming to solve a classical and
natural, but highly challenging problem from com-
putational geometry. We have shown that an NP-
complete separation problem for the SC case can
mostly be avoided in the AGP scenario by considering
its underlying geometric structure.
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