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Abstract. We demonstrate how polyhedral methods of mathematical
programming can be developed for and applied to computing optimal
solutions for large instances of a classical geometric optimization problem
with an uncountable number of constraints and variables.

The ART GALLERY PROBLEM (AGP) asks for placing a minimum
number of stationary guards in a polygonal region P, such that all points
in P are guarded. The AGP is NP-hard, even to approximate. Due to
the infinite number of points to be guarded as well as possible guard
positions, applying mathematical programming methods for computing
provably optimal solutions is far from straightforward.

In this paper, we use an iterative primal-dual relaxation approach for
solving AGP instances to optimality. At each stage, a pair of LP relax-
ations for a finite candidate subset of primal covering and dual pack-
ing constraints and variables is considered; these correspond to possible
guard positions and points that are to be guarded.

Of particular interest are additional cutting planes for eliminating
fractional solutions. We identify two classes of facets, based on EDGE
CovER and SET COVER (SC) inequalities. Solving the separation prob-
lem for the latter is NP-complete, but exploiting the underlying geo-
metric structure of the AGP, we show that large subclasses of fractional
SC solutions cannot occur for the AGP. This allows us to separate the
relevant subset of facets in polynomial time.

Finally, we characterize all facets for finite AGP relaxations with co-
efficients in {0, 1,2}. We demonstrate the practical usefulness of our ap-
proach with improved solution quality and speed for a wide array of large
benchmark instances.

Keywords: Art Gallery Problem, geometric optimization, algorithm
engineering, set cover polytope, solving NP-hard problem instances to
optimality.

1 Introduction

The ART GALLERY PROBLEM (AGP) is one of the classical problems of geo-
metric optimization: given a polygonal region P with n vertices, find as few
stationary guards as possible, such that any point of the region is visible by
one of the guards. As first proven by Chvatal [I] and then shown by Fisk [2]
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in a beautiful and concise proof (which is highlighted in the shortest chapter in
“Proofs from THE BOOK?” [3]), | | guards are sometimes necessary and always
sufficient when P is a simple polygon. Worst-case bounds of this type are summa-
rized under the name “Art-Gallery-type theorems”, and used as a metaphor even
for unrelated problems; see O’Rourke [4] for an early overview, and Urrutia [5]
for a more recent survey.

Algorithmically, the AGP is closely related to the SET COVER (SC) problem;
it is NP-hard, even for a simply connected polygonal region P [6]. There are,
however, two differences to a discrete SC problem. On the one hand, it is well
known that geometric variants of problems may be easier to solve or approximate
than their discrete, graph-theoretic counterparts, so it is natural to explore ways
to exploit the geometric nature of the AGP; on the other hand, the AGP is far
from being discrete, as both the set to be covered (all points in P) as well as the
covering family (all star-shaped subregions around some point of P) usually are
uncountably infinite.

It is natural to consider more discrete versions of the AGP. Ghosh [7] showed
that restricting possible guard positions to the n vertices, i.e., the AGP with
vertex guards, allows an O(log n)-approximation algorithm of complexity O(n®);
conversely, Eidenbenz et al. [§] showed that for a region with holes, finding an
optimal set of vertex guards is at least as hard as SC, so there is little hope of
achieving a better approximation guarantee than 2(logn). While these results
provide tight bounds in terms of approximation, they do by no means close the
book on the arguably most important aspect of mathematical optimization: com-
bining structural insights with powerful mathematical tools in order to achieve
provably optimal solutions for instances of interesting size. Moreover, even a star-
shaped polygon may require a large number of vertex guards, so general AGP
instances may have significantly better solutions than the considerably simpler
discretized version with vertex guards.

Computing optimal solutions for general AGP instances is not only relevant
from a theoretical point of view, but has also gained in practical importance in
the context of modeling, mapping and surveying complex environments, such as
in the fields of architecture or robotics and even medicine, which are seeking to
exploit the ever-improving capabilities of computer vision and laser scanning.
Amit, Mitchell and Packer [J] have considered purely combinatorial primal and
dual heuristics for general AGP instances. Only very recently have researchers
begun to combine methods from integer linear programming with non-discrete
geometry in order to obtain optimal solutions. As we showed in [10], it is possible
to combine an iterative primal-dual relaxation approach with structures from
computational geometry in order to solve AGP instances with unrestricted guard
positions; this approach is based on considering a sequence of primal and dual
subproblems, each with a finite number of primal variables (corresponding to
guard positions) and a finite number of dual variables (corresponding to “witness”
positions). Couto et al. [TIT2/T3] used a similar approach for the AGP with
vertex guards. Due to space limitations, we omit a detailed discussion of the
abundant work on the AGP. Highly relevant is the paper by Balas and Ng [14]
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Fig.1. An optimal fractional solution of value 5 without (left) and an optimal integer
solution of value 6 with cutting planes (right). Circles show guards, fill-in indicates
fractional amount. Cutting planes enforce at least two guards in the left and three in
the right area, both marked in grey.

on the discrete SC polytope, which describes all its facets with coefficients in
{0,1,2}.

Formal Description. We consider a polygonal region P with n vertices that
may have holes, i.e., that does not have to be simply connected. For a point
p € P, we denote by V(p) the wvisibility polygon of p in P, i.e., the set of all
q € P, such that the straight-line connection pq lies completely in P. P is star-
shaped if P = V(p) for some p € P. The set of all such points is the kernel of P.
For a set S C P, V(S) := UpesV(p). A set C C P is a guard cover, if V(C') = P.
The AGP asks for a guard cover of minimum cardinality ¢; this is the same as
covering P by a minimum number of star-shaped sub-regions of P. Note that
Chvatal’s Watchman Theorem [I5] guarantees ¢ < |7 ].

Our Results. In this paper, we extend and deepen our recent work on it-
erative primal-dual relaxations, by proving a number of polyhedral properties
of the resulting AGP polytopes. We provide the first study of this type, and
give a full characterization of all facets with coefficients 0, 1, and 2. Remarkably,
we are able to exploit geometry to prove that only a very restricted family of
facets of the general SC polytope will typically have to be used as cutting planes
for removing fractional variables. Instead, we are able to prove that many frac-
tional solutions only occur in intermittent SC subproblems; thus, they simply
vanish when new guards or witnesses are introduced. This saves us the trouble
of solving an NP-complete separation problem. Computational results illustrate
greatly reduced integrality gaps for a wide variety of benchmark instances, as
well as reduced solution times. Details are as follows; due to space restrictions,
proofs are omitted. Related SC results are described by Balas et al. [14].

— We show how to employ cutting planes for an iterative primal-dual frame-
work for solving the AGP. This is interesting in itself, as it provides an
approach to tackling optimization problems with infinitely many constraints
and variables. The particular challenge is to identify constraints that remain
valid for any choice of infinitely many possible primal and dual variables, as
we are not solving one particular IP, but an iteratively refined sequence.
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— Based on a geometric study of the involved SC constraints, we characterize
all facets of involved AGP polytopes that have coefficients in {0, 1,2}. In the
SC setting, these facets are capable of cutting off fractional solutions, but
the separation problem is NP-complete. We use geometry to prove that only
some of these facets are able to cut off fractional solutions in an AGP setting
under reasonable assumptions, allowing us to solve the separation problem
in polynomial time.

— We provide a class of facets based on EDGE COVER (EC) constraints.

— We demonstrate the practical usefulness of our results by showing greatly
improved solution speed and quality for a wide array of large benchmarks.

2 Mathematical Programming Formulation and
LP-Based Solution Procedure

Let P be a polygon and G, W C P sets of points for possible guard locations
and witnesses, i.e., points to be guarded, respectively. We assume W C V(G).
The AGP can be formulated as an IP denoted by AGP(G, W):

min Z Tg (1)

geG

s. t. Z zg>1 YweW (2)
geGNV(w)
zg €{0,1} Vg e G (3)

where Chvétal’s Watchman Theorem [I5] guarantees that only a finite number
of variables are non-zero. The original AGP, AGP(P, P), has uncountably many
variables and constraints, so it cannot be solved directly. Thus we consider finite
G,W C P and solve AGP(G,W). For dual separation and to generate lower
bounds, we require the LP relaxation AGR(G, W) obtained by relaxing the in-
tegrality constraint (B]):

0<z,<1 Vged@& (4)

The relation between a solution of AGR(G, W) and AGR(P, P) is not obvious,
see Figure 2l In [I0], we show that AGR(P, P) can be solved optimally for many
problem instances by using finite G and W. The procedure uses primal/dual
separation (i.e., cutting planes and column generation) to connect AGR(G, W)
to AGR(P, P). For some finite sets G and W, we solve AGR(G, W) using the
simplex method. This produces an optimal primal solution z* and dual solution
y* with objective value z*. The primal is a minimum covering by guards, the
dual a maximum packing of witnesses. We analyze x* and y* as follows:

1. If there exists a point w € P\ W with 2*(GNV(w)) < 1, then w corresponds
to an inequality of AGR(P, P) that is violated by z*. The new witness w is
added to W, and the LP is re-solved. If such a w cannot be found, then x*
is optimal for AGR(G, P), and z* is an upper bound for AGR(P, P).
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primal separation: find violated w € P\ W dual separation: find violated g € P\ G

Fig.2. The AGP and its relaxations for G,W C P. Dotted arrows represent which
conclusions may be drawn from the primal and dual solutions x* and y*.

2. If there exists a point g € P\ G with y*(W NV(g)) > 1, then it corresponds
to a violated dual inequality of AGR(P, P). We create the LP column for ¢
and re-solve the LP. If such a g does not exist, y* is an optimal dual solution
for AGR(P, W) and z* is a lower bound for AGR(P, P).

Both separation problems can be solved efficiently using the overlay of the vis-
ibility polygons of all points g € G' with x; > 0 (for the primal case) and all
w € W with y! > 0 (for the dual case), which decomposes P into a planar
arrangement of bounded complexity.

Should the upper and the lower bound meet, we have an optimal solution of
AGR(P, P) [10].

In this paper, we use cutting planes a that must remain feasible in all itera-
tions of our algorithm, so feasibility for AGP(G, W) is insufficient; we require «
not to cut off any z € {0, 1}Gl for an arbitrary P 2 G’ D G, such that z is feasi-
ble for AGP(G’, P). An LP with a set A of such additional constraints is denoted
by AGR(G, W, A), its IP counterpart by AGP(G, W, A). Note that AGP(G, P)
and AGP(G, P, A) are equivalent. By AGP(G, W), we sometimes denote the set
of its feasible solutions rather than the IP itself, as in conv(AGP(G, W)).

3 Set Cover Facets

In this section, we discuss a family of SC facets, and show that the underlying
geometry greatly reduces their impact on the involved AGP polytopes.

3.1 A Family of Facets

Let P be a polygon and G, W C P finite sets of guard and witness positions.
Consider a finite non-empty subset ) C S C W of witness positions; the overlay
of visibility regions of S is called ag. It contains the following partition P =
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Jo U Jy U Ja, cf. Fig. B this is analogous to what Balas and Ng [14] did for the
SC polytope.

1. Jo:={g€ P|SCV(g)}, the set of positions that cover all of S.
2. Jo:={g€ P|V(9)NS =0}, the set of positions that see none of S.
3. J1:= P\ (J2 U Jp) the set of positions that cover a non-trivial subset of S.

Every feasible solution of the AGP has to cover S. Thus, it takes one guard in
Jo, or at least two guards in J; to cover S. For any G, this induces the following
constraint (Bl); for the sake of simplicity, we will also refer to this by «ag.

Z 2z, + Z Tg =2 (5)

geJ2NG geJ1iNG
In the context of our iterative algorithm, ag is represented by Jy, J; and Ja,
independent of a specific set G; any guard g € J; in current or future iterations
simply gets the coefficient ag(g) = i.

Fig. 3. Polygon and witness selection S = {w1, w2, ws, ws}. Guards located in Jo can
cover all of S, and those in J; some part of it, while those in Jy cover none of S.

Sufficient coverage of S is necessary for sufficient coverage of P, so ([fl) is valid
for any x € {0,1}¢ that is feasible for AGP(G, P). However, covering S may
require more than two guards in Ji, so (B)) does not always provide a supporting
hyperplane of conv(AGP(G, W)).

It is easy to see that for |S| < 2, (@) only yields constraints that are fulfilled
by all feasible solutions of AGR(G,W). Thus, we consider |S| > 3.

In order to show when (Bl defines a facet of conv(AGP(G,W)), we need to
apply a result of [I4] to the AGP setting.

Lemma 1. Let P be a polygon and G,W C P finite sets of guard and witness
positions. Then conv(AGP (G, W)) is full-dimensional, if and only if

VoeW: V(w)nG|>2 (6)

We require more terminology adapted from [14]. Two guards g1,g2 € Ji are a
2-cover of ag, if S C V({g1,92}). The 2-cover graph of G and «ag is the graph
with nodes in J; NG and an edge between ¢, and gs iff g1, g2 are a 2-cover of
as. In addition, we have T'(g) = {w € V(g) N W | V(w) NG N (Jo \ {g}) = 0}.

Theorem 1. Given a polygon P and finite G,W C P, let conv(AGP(G,W)) be
full-dimensional and let as be as defined in ([Hl), such that S is mazimal, i.e.,
there is no w € W\ S with V(w) C V(S). Then the constraint induced by ag
defines a facet of conv(AGP(G, W), if and only if:
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2gJ3 . - P ~ g4a;

Fig. 4. P (left) and two attempts for P§ (middle and right). In the left case, Ineq. (&)
enforces using two guards instead of three ;—guards. The attempts for P are star-

shaped (middle) or invalid (right, at w*, as xg, = -+ = zg, = 1).

1. Every component of the 2-cover graph of as and G has an odd cycle.
2. For every g € JoN G such that T'(g) # 0 there exists either

(a) some g’ € Jo NG such that T'(g) C V(g');

(b) some pair ¢',¢" € J1 NG such that T(g) US C V(g") UV(g").

3.2 Geometric Properties of ag

It is easy to construct SC instances for any choice of |S| > 3, such that the SC
version of ag cuts off a fractional solution, cf. [I4]. In general, finding ag is NP-
complete. But in the following, we show that in an AGP setting, only ag with
|S| = 3 actually plays a role in cutting off fractional solutions under reasonable
assumptions, allowing us to separate it in polynomial time.

Lemma 2. Let P be a polygon, G,W C P finite sets of guard and witness
positions and ) € S C W. If every guard in J; N G belongs to some 2-cover of
as and S is minimal for G, i. e., there is no proper subset T C S such that ar
and ag induce the same constraint for G, the matriz of AGP(G,S) contains a
permutation of the full circulant of order k = |S|, which is

ot =Y T ey ()
I |

Lemma [2] holds, because the 2-cover property holds iff no guard’s coefficient in
ag can be reduced without turning Inequality (B]) invalid [I4]. As S is minimal,
removing w from S must increase coefficients, i.e., relocate a guard g € J1 NG
to Jz2. So V(g) NS =S\ {w}. Such a guard exists for every w € S.

This motivates a formal definition of a polygon corresponding to C’,}j -1

Definition 1 (Full Circulant Polygon). A polygon P along with G(P) =
{g1,.-y9x} C P and W(P) = {w1,...,wx} C P for 3 <k € N is called Full
Circulant Polygon or P,f_l, if
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Vi<i<k: V(g)NW(P)=W(P)\{w} (8)
VweP: VW) NGP) >k—1 (9)

We may refer to G(P) and W (P) by just G and W respectively.

Note that P,ffl is defined such that the full circulant C’,}jfl completely describes
the visibility relations between G and W. This implies that the optimal solution
of AGR(G,W) is kil -1, with cost kfl. It is feasible for AGR(G, P,f_l) by
Property (@), as any point w € P,f_l is covered by at least (k — 1) - kil =1.
Figure @ captures construction attempts for models of C,’jfl. P# exists, but
for k > 4, the polygons are either star-shaped or not full circulant. If they are
star-shaped, the optimal solution is to place one guard within the kernel. If they
are not full circulant polygons, the optimal solution of AGR(G, W) is infeasible
for AGR(G, P) and the current fractional solution is intermittent, i.e., cut off in
the next iteration. Both cases eliminate the need for a cutting plane, and we may
avoid the NP-complete separation problem by restricting separation to k£ = 3.
In the following we prove that P,ffl is star-shaped for £ > 4. We start with

Lemma [3, which shows that any pair of guards in G is sufficient to cover P,f_l‘

Lemma 3. Let P,ffl be a full circulant polygon. Then P,ffl is the union of the
visibility polygons of any pair of guards in G (P,f_l) ={g1,--,9K}:

Vi<i<j<k: PF'=V(g)uUV(g) (10)
The next step is Lemma H] which restricts the possible structure of P,ffl.

Lemma 4. Let P,f_l be a full circulant polygon with G (P,f_l) ={g1,--., 9k}
Suppose k > 4. Then P,ffl has no holes.

k > 4 is tight: a triangle with a concentric triangular hole is an example of PZ,
with guards in the outside corners, and witnesses on the inside edges.
We require one final lemma before proceeding to the main Theorem

Lemma 5. Consider two disjoint non-empty convex polygons, described as the
intersection of half-spaces: Py = ﬂi:l,m,n H; and P» =) Hi. Then
some H;, 1 <i<n+m separates P; and Ps.

i=n+1,....n+m

Theorem 2. A full circulant polygon P,f_l with k > 4 is star-shaped.

Note that Theorem[Pldoes not rule out situations in which P,ffl is part of a larger
polygon, as shown in Figure Bl This example has no integrality gap; placing at
least five copies of P} around an appropriate central subpolygon with a hole can
actually create one. However, such cases are much harder to come by, making
these facets a lot less useful for cutting off fractional solutions; we demonstrate
this in our experimental section.
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Fig. 5. Three instances of P; embedded into a larger polygon. Setting all guards to 3

is feasible and optimal, even though no guard is placed in any of the P} kernels.

3.3 All Art Gallery Facets with Coefficients 0, 1, 2

Balas and Ng [I4] identified all SC facets with coefficients in {0, 1,2}; for finite
G,W C P, AGP(G,W) is also an SC instance. Thus, all AGP facets with these
coefficients must be among those facets. This includes three trivial facet classes,
the constraints and the conditions under which they are facet-defining are easily
translated into AGP terms; however, they are all satisfied by any feasible solution
of AGR(G, W), so they do not play a role in cutting off fractional solutions. The
only non-trivial AGP facet class with coefficients in {0, 1,2} is the one of type
ag, as discussed above.

4 Edge Cover Facets

Solving AGR(G, W) for finite G, W C P such that no guard can see more than
two witnesses is equivalent to solving fractional EC on the graph with nodes W,
an edge between v # w € W for each g € G with V(g) N W = {v,w}, and a
loop for each g € G with V(g) NW = {w}. The fractional EC polytope is known
to be half-integral [16], which can be exploited to show that fractional solutions
always form odd-length cycles of ;—guards.

In the conclusions of [10], we proposed a class of valid inequalities motivated
by this.

A fractional optimal solution has all guard values on the cycle at ; For an

odd k,
k k+1
> frg
> az[t]-* a
geV(W)

separates these fractional solutions from feasible, integral solutions.

Obviously, for any choice of G C P, (1) does not cut off any feasible solution
x € {0,1}¢ of AGP(G, P), as long as no point exists that sees more than two
of these witnesses. So, analogously to the SC cuts, a cut can be kept in future
iterations once it has been identified.

It is not hard to show that these are facet defining under relatively mild
conditions.
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Theorem 3. Let P be a polygon with finite sets of guard and witness posi-
tions G,W C P, such that conv(AGP(G,W)) is full-dimensional. Let W =
{w1,...,w} CW be an odd subset of k > 3 witnesses, such that

1. No guard sees more than two witnesses in W :
Vgea: |vignw|<2 (12)

2. If a guard sees two witnesses w; # w; € W, they are a successive pair, 1. e.,
i+1=jori=1andj=Ek.

3. Each of the k successive pairs is seen by some g € G.

4. No guard inside of V (W) sees a witness outside of W :

YgeGnv(W): VgnWcw (13)

Then the constraint

> Pvm (1)
NG

gev(w

is a facet of conv(AGP(G, W)).

5 Computational Experience

A variety of experiments on benchmark polygons demonstrates the usefulness of
our cutting planes. The test algorithm is a variation of the one introduced in [10].
In each test, the sets G and W are initialized with the vertices of P, while A = ().
In the primal phase, we solve AGP(G, W, A). Should the solution be feasible for
AGP(G, P, A), we have identified an upper bound. Otherwise, there are witnesses
W’ C P\ W whose constraint is violated. In this case, the primal phase is
continued and AGP(G, WUW’, A) is solved. After an upper bound is found, the
dual phase is entered. A lower bound is generated by iteratively solving the dual
of AGR(G, W, A). If the solution is feasible for the dual of AGR(P, W, A) and the
cut separators do not find a violated constraint either, we have a lower bound.
Otherwise, guards with violated dual constraints are added to G, violated cut
conditions are added to A, and the dual phase continues. This process is repeated
until the upper and the lower bound meet, or a timeout occurs.
Just as in [10], we employed four different classes of benchmark polygons.

1. Random won Koch polygons are inspired by Koch curves, see Fig. [0, left.
2. Random floorplan-like Orthogonal polygons as in Fig. 6 second polygon.
3. Random Spike polygons (mostly with holes) as in Fig.[6 third polygon.
4. Random non-orthogonal Simple polygons as in Fig. [f fourth polygon.

Each polygon class was evaluated for different sizes n € {60, 200,500, 1000},
where n is the approximate number of vertices in a polygon.

Different combinations of cut separators were also employed. The EC-related
cuts from Section [ are referred to as EC cuts, while the SC-related cuts of
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oS3

Fig. 6. Small von Koch, Orthogonal, Spike and Simple test polygons

Section [3] that rely on separating a maximum of 3 < k witnesses are denoted by
SCk cuts. Note that for k < m, SCm cuts also include all SCk cuts.

Whenever the above algorithm separates cuts, it applies all configured cut
separators and we test the following combinations: no cut separation at all, SC3
cuts only, SC4 cuts only, EC cuts only, and SC3 and EC cuts at the same time.

In total, we have five combinations of separators, four classes of polygons
and four polygon sizes; for each combination, we tested 10 different polygons.
The experiments were run on 3.0 GHz Intel dual core PCs with 2 GB of memory,
running 32 bit Debian 6.0.5 with Linux 2.6.32-686. Our algorithms were not par-
allelized, used version 4.0 of the “Computational Geometry Algorithms Library”
(CGAL) and CPLEX 12.1. Each test run had a time limit of 600s.

Below we present the relative gap over time for the five tested cut separator
selections for the von Koch-type polygons with 1000 vertices. Fig. [1l shows the
distribution of relative gaps over time for the different combination of cutting
planes. Qq, ..., Q4 indicate the different quartiles; in particular, Qg is the best
case, Q2 the median, and Q4 the worst case. The graphs for the other test
polygon types have been omitted due to space restrictions. Their analysis allows
the same interpretation as ours of Fig. [l

(%]

20 60 100 140 180 220 260 300 340 380 420 460 500 540 580 20 60 100 140 180 220 260 300 340 380 420 460 500 540 580 20 60 100 140 180 220 260 300 340 380 420 460 500 540 580
0 40 8 120 160 200 240 280 320 360 400 440 480 520 560 600 0 40 B0 120 160 200 240 280 20 3 400 440 480 520 560 600 O 4D B0 120 160 200 240 280 30 60 400 440 480 520 560 600

(a) No Cuts (b) EC (c) SC3

@l

20 60 100 140 180 220 260 300 340 30 420 460 500 50 580 20 60 100 140 180 220 260 300 340 380 420 460 500 540 580
0 40 8 120 160 200 240 280 320 360 400 440 480 520 560 600 O 40 B0 120 160 200 240 280 320 360 400 440 480 520 560 600

tinels] imels]

(d) SC3 and EC (e) SC4

Fig. 7. Relative gap over time in IP mode for 1000-vertex von Koch-type polygons
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Fig.|7(a)|shows the relative gap over time without cut separation. After about
400s, gaps are fixed between 0% and 6%, the median gap being 2%. When
applying the EC separator (Fig. , 75% of the gaps drop to zero and the
largest gap is 2%. Using the SC3 separator (Fig. yields an even better
result in terms of both speed and relative gap. All gaps are closed, many of
them earlier than with the EC separator. Combining both, see Fig. yields
a result comparable to using only SC3. Moving to the SC4 separator (Fig.[7(e))
yields a weaker performance: computation times go up, and not all gaps reach
0% within the allotted time, because separation takes longer without improving
the gap. This illustrates the practical consequences of Theorem

6 Conclusion

In this paper, we have shown how we can exploit both geometric properties and
polyhedral methods of mathematical programming to solve a classical and natu-
ral, but highly challenging problem from computational geometry. This promises
to pave the way for a range of practical AGP applications that have to deal with
additional real-life aspects. We are optimistic that our basic approach can also be
used for other geometric optimization problems related to packing and covering.
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