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Abstract. We consider the following online allocation problem: Given a
unit square S, and a sequence of numbers ni ∈ {0, 1} with

∑i
j=0 nj ≤ 1;

at each step i, select a region Ci of previously unassigned area ni in
S. The objective is to make these regions compact in a distance-aware
sense: minimize the maximum (normalized) average Manhattan distance
between points from the same set Ci. Related location problems have
received a considerable amount of attention; in particular, the problem
of determining the “optimal shape of a city”, i.e., allocating a single
ni has been studied, both in a continuous and a discrete setting. We
present an online strategy, based on an analysis of space-filling curves;
for continuous shapes, we prove a factor of 1.8092, and 1.7848 for discrete
point sets.

Keywords: Clustering, average distance, online problems, optimal shape
of a city, space-filling curves, competitive analysis.

1 Introduction

Many optimization problems deal with allocating point sets to a given envi-
ronment. Frequently, the problem is to find compact allocations, placing points
from the same set closely together. One well-established measure is the average
L1 distance between points. A practical example occurs in the context of grid
computing, where one needs to assign a sequence of jobs i, each requiring an
(appropriately normalized) number ni of processors, to a subset Ci of nodes of
a large square grid, such that the average communication delay between nodes
of the same job is minimized; this delay corresponds to the number of grid hops
[10], so the task amounts to finding subsets with a small average L1, i.e., Manhat-
tan distance. Karp et al. [7] studied the same problem in the context of memory
allocation.

Even in an offline setting without occupied nodes, finding an optimal alloca-
tion for one set of size ni is not an easy task; as shown in Fig. 1, the results are
typically “round” shapes. If a whole sequence of sets has to be allocated, packing
such shapes onto the grid will produce gaps, causing later sets to become discon-
nected, and thus leads to extremely bad average distances. Even restricting the
shapes to be rectangular is not a remedy, as the resulting problem of deciding
whether a set of squares (which are minimal with respect to L1 average distance
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among all rectangles) can be packed into a given square container is NP-hard [9];
moreover, disconnected allocations may still occur.

In this paper, we give a first algorithmic analysis for the online problem. Using
an allocation scheme based on a space-filling curve, we establish competitive
factors of 1.8092 and 1.7848 for minimizing the maximum average Manhattan
distance within an allocated set, and non-trivial lower bounds for these factors.

Related Work
Compact location problems have received a considerable amount of attention.
Krumke et al. [8] have considered the offline problem of choosing a set of n
vertices in a weighted graph, such that the average distance is minimized. They
showed that the problem is NP-hard (even to approximate); for the scenario in
which distances satisfy the triangle inequality, they gave algorithms that achieve
asymptotic approximation factors of 2. For points in two-dimensional space and
Manhattan distances, Bender et al. [2] gave a simple 1.75-approximation algo-
rithm, and a polynomial-time approximation scheme for any fixed dimension.

The problem of finding the “optimal shape of a city”, i.e., a shape of given area
that minimizes the average Manhattan distance, was first considered by Karp,
McKellar, and Wong [7]; independently, Bender, Bender, Demaine, and Fekete
[1] showed that this shape can be characterized by a differential equation for
which no closed form is known. For the case of a finite set of n points that needs
to be allocated to a grid, Demaine et al. [5] showed that there is an O(n7.5)
dynamic-programming algorithm, which allowed them to compute all optimal
shapes up to n = 80. Note that all these results are strictly offline, even though
the original motivation (register or processor allocation) is online.
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Fig. 1. Finding optimal individual shapes. (Left) An optimal shape composed of n=72
grid cells, according to [5]. (Right) The optimal limit curve w(x), according to [2].

Space-filling curves for processor allocation with our objective function have
been used before, see Leung et al. [10]; however, no algorithmic results and no
competitive factor was proven. Wattenberg [15] proposed an allocation scheme
for purposes of minimizing the maximum Euclidean diameter of an allocated
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shape; this is a different measure than the one established by [10]. Like other
authors before (in particular, Niedermeier et al. [11] and Gotsman and Linden-
baum [6]), he considered c-locality: for a sequence 1, . . . , i, . . . , j, . . . of points on
a line, a space-filling mapping h(.) will guarantee L2(h(i), h(j)) < c

√|j − i|, for
a constant c that is

√
6 ≈ 2.449 for the Hilbert curve, and 2 for the so-called

H-curve. One can use c-locality for establishing a constant competitive factor
for our problems; however, given that their focus is on bounding the worst-case
distance ratio for an embedding instead of the average distance, it should come
as no surprise that the resulting values are significantly worse than ours. On a
different note, de Berg, Speckmann, and van der Weele [4] consider treemaps
with bounded aspect ratio. Other related work includes Dai and Su [3].

Our Results
We give a first competitive analysis for the online shape allocation problem
within a given bounding box, with the objective of minimizing the maximum
average Manhattan distance. In particular, we give the following results.

– We show that for the case of continuous shapes (in which numbers ni corre-
spond to area), a strategy based on a space-filling Hilbert curve achieves a
competitive ratio of 1.8092.

– For the case of discrete point sets (in which numbers indicate the number of
points that have to be chosen from an appropriate N ×N orthogonal grid),
we prove a competitive factor of 1.7848.

– We sketch how these factors may be further improved, but point out that a
Hilbert-based strategy is no better than a competitive factor of 1.3504, even
with an improved analysis.

– We establish a lower bound of 1.144866 for any online strategy in the case
of discrete point sets, and argue the existence of a lower bound for the
continuous case.

The rest of this paper is organized as follows. In Section 2, we give some basic
definitions and fundamental facts. In Section 3, we provide a brief description of
an allocation scheme based on a space-filling curve. Section 4 gives a mathemat-
ical study for the case of continuous allocations, proving that the analysis can be
reduced to a limited number of shapes, and establishes a competitive factor of
1.8092. Section 5 sketches a similar analysis for the case of discrete allocations;
as a result, we prove a competitive factor of 1.7848. Section 6 discusses lower
bounds for online strategies. Final conclusions are presented in Section 7.

2 Preliminaries

We examine the problem of selecting shapes from a square, such that the max-
imum average L1-distance of the shapes is minimized. We first formulate the
problem more precisely. This covers both the continuous and the discrete case;
the former arises as the limiting case of the latter, while the latter needs to be
considered for allocations within a grid of limited size.
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Definition 1. A city is a (continuous) shape in the plane with fixed area. For
a city C of area n, we call

c(C) =
1

2

∫∫∫∫

(x,y),(u,v)∈C

(|x− u|+ |y − v|) dv du dy dx (1)

the total Manhattan distance between all pairs of points in C and

φ(C) =
2 c(C)

n5/2
(2)

the φ-value or average distance of C. An n-town T is a subset of n points in
the integer grid. Its normalized average Manhattan distance is

φ(T ) =
2c(T )

n5/2
=

∑
s∈T

∑
t∈T ‖s− t‖1
n5/2

(3)

The normalization with n2.5 yields a dimensionless measure that remains un-
changed under scaling (so it depends only on the shape, not on the size), and
makes the continuous and the discrete case comparable; see [1].

Problem 2. In the continuous setting, we are given a sequence n1, n2, . . . , nk ∈
R

+ with
∑k

i=1 ni ≤ 1. Cities C1, C2, . . . , Ck of size n1, n2, . . . , nk are to be chosen
from the unit square, such that max1≤i≤k φ(Ci) is minimized.

In the discrete setting, we are given a sequence n1, n2, . . . , nk ∈ N
+ with∑k

i=1 ni ≤ N2. Towns C1, C2, . . . , Ck of size n1, n2, . . . , nk are to be chosen
from the N ×N grid, such that max1≤i≤k φ(Ci) is minimized.

Although it has not been formally proven, the offline problem is conjectured
to be NP-hard, see [13]; if we restrict city shapes to be rectangles, there is
an immediate reduction from deciding whether a set of squares can be packed
into a larger square [9]. (A special case arises from considering integers, which
corresponds to choosing grid locations.) Our approximation works online, i.e., we
choose the cities in a specified order, and no changes can be made to previously
allocated cities; clearly, this implies approximation factors for the corresponding
offline problems.

There are lower bounds for max1≤i≤k φ(Ci) that generally cannot be achieved
by any algorithm. One important result is the following theorem.

Theorem 3. Let C be any city. Then φ(C) ≥ 0.650245.

A proof can be found in [1]. For n1 = 1 any algorithm must select the whole unit
square, thus 2/3, the φ-value of a square, is a lower bound for the achievable
φ-value. We will discuss better lower bounds in the conclusions.

3 An Allocation Strategy

While long and narrow shapes tend to have large φ-values, shapes that fill large
parts of an enclosing rectangle with similar width and height usually have better
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average distances; however, one has to make sure that early choices with small
average distance do not leave narrow pieces with high average distance, or even
disconnected pieces, making the normalized φ-values potentially unbounded.

Our approach uses the recursive Hilbert family of curves in order to yield a
provably constant competitive factor. That family is based on a recursive con-
struction scheme and becomes space filling for infinite repetition of said scheme
[12]. For a finite number r of repetitions, the curve traverses all points of the
used grid. For 1 ≤ r ≤ 3, the curve is shown in Fig. 2. Thus, the Hilbert curve
provides an order for the cells of the grid, which is then used for allocation, as
illustrated in Fig. 3. More formal details of the recursive definition of the Hilbert
family (e.g. with text-rewriting rules, such as the ones in [14]) go beyond the
scope of this extended abstract.

Fig. 2. Hilbert curve with 1 ≤ r ≤ 3

Fig. 3. A sample allocation according to our strategy

More technically, the unit square is recursively subdivided into a grid consist-
ing of 2r × 2r grid cells, for an appropriate refinement level r > 0, as shown in
Fig. 2. For the sake of concise presentation within this short abstract, we as-
sume that every input ni is an integral multiple of c = 4−R, for an appropriately
large R > 0. (We will mention in the Conclusions how this assumption can be
removed, based on Lemma 6.) Similar to the recursive structure of quad-trees,
the actual subdivision can be performed in a self-refining manner, whenever a
grid cell is not completely filled. This means that during the course of the online
allocation, we may use different refinement levels in different parts of the layout;
however, this will not affect the overall analysis, as further refinement of the grid
does not change the quality of existing shapes.

Definition 4. For a given refinement level r, an r-pixel P is a grid square of
size 2−r × 2−r. For a given allocated shape Ci, a pixel is full if P ⊆ Ci; it is
fractional, if P ∩ Ci 
= ∅ and P 
⊂ Ci.
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Now the description of the algorithm is simple: for every input ni, choose the
next set of ni/2

R R-pixels traversed by the Hilbert curve as the city Ci, starting
in the upper left corner of the grid. For an illustration, see Fig. 3.

The following lemma is a consequence of the recursive structure of the Hilbert
family. We use it in the following section for deriving upper bounds.

Lemma 5. Let C be a city generated by our strategy with area at most n ≤
l 4j 4−R for j ∈ {0, 1, . . . , R}, l ∈ N. Then at any refinement level r, C contains
at most two fractional r-pixels.

4 Analysis

For the analysis of our allocation scheme we will first make use of Lemma 5. As
noted in the following Lemma 6, filling in the two fractional pixels of an allocated
shape yields an estimate for the total distance at a coarser refinement level. In a
second step, this will be used to derive global bounds by computing the worst-
case bounds for shapes of at most refinement level 3. This reduces the task of
providing a general upper bound on the competitive factor to considering a finite
number of shapes of limited size. (As discussed in the Conclusions, carrying out
the computations on a lower or higher refinement level gives looser or tighter
results.)

In the following, Wn denotes the worst case among all cities of n pixels that
can be produced by our Hilbert strategy; because of the normalized nature of φ,
this is independent on the size of the pixels, and only the shape matters.

Lemma 6. Let C be a city generated by our strategy with area at most n ≤
l 4r 4−R for r ∈ {0, 1, . . . , R}, l ∈ N. Then we have c(C) ≤ c(Wl+1), where Wl+1

is a worst case among all cities produced by our allocation scheme that consists
of (l + 1) r-pixels.

Proof. By Lemma 5, we know that only the first and the last pixel of C may be
fractional. Therefore C cannot intersect more than l + 1 r-pixels. By replacing
the two fractional pixels by full pixels, we get a city W that consists of l + 1
full r-pixels, and c(C) ≤ c(W ). By definition, c(W ) ≤ c(Wl+1), and the claim
holds. 
�
Therefore, we can give upper bounds for the worst case by considering the values
ofWn at some moderate refinement level. TheWn can be found by enumeration;
as described in the full version of the paper, a speed-up can be achieved by
making use of the recursive construction of the Wn. We determined the shapes
and φ-values of the Wn for n ≤ 65; by Lemma 6, this suffices to provide upper
bounds for all cities with area up to 64 ∗ 2−r, i.e., these computational results
give an estimate for the round-up error using refinement level 3. The full table of
average distances can be found in the full version of the paper; the worst cases
among the examined ones are W56 and W14, which have the same shape, shown
in Fig. 4.
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Fig. 4. Worst cases Wn for 12 ≤ n ≤ 17

Theorem 7. A Hilbert strategy guarantees max1≤n≤k φ(Cn) ≤ 1.1764.

Proof. Consider a city C of size n generated by our strategy. If n is sufficiently
small, i.e., smaller than an R − r-pixel, r ≥ 0, C consists of at most 4r cells
and its average distance can be bounded by the worst case for that particular
number of cells. In the case that C has a larger, more refined shape, an analysis
of a finite number of shapes is still sufficient:

We know that n > 4rc and we can assume that n ≤ 4r+1c (or else we use
the analysis on the less refined (R − (r + 1))-pixels). Thus, there must be an l
such that l4rc < n ≤ (l + 1)4rc with l = 1, . . . , 3. Yet, we can get closer to
n, as we know that an (R − r)-pixel consists of 4r cells. We get the inequality
l4r−k < n ≤ (l + 1)4r−kc, k ≤ r, l = 4k, . . . , 4k+1 − 1.

Hence, a city of arbitrary size n corresponds to at most (l+1) sub-squares of
a certain size (depending on the precision of the analysis), i.e., a city of size at
most (l + 1)4r−kc. Now we can use Lemma 5 to bound the average distance of
the city, yielding

φ(C) ≤ 2 c(W )

(l 4r−kc)5/2
=
φ(Wl+2)((l + 2) 4r−kc)5/2

(l 4r−kc)5/2
(4)

= φ(Wl+2)

(
1 +

2

l

)5/2

=: Φ(Wl). (5)

The resulting bound is max({φ(Wi) : 1 ≤ i ≤ 4r}∪{Φ(Wl) : 4
k ≤ l ≤ 4k+1−1}).

Note that the number of shapes considered is at most 4k+1.
We conducted the calculations for k = 2; as it turns out, the maximum is

attained for Φ(W16) = 1.1764. See the full version of the paper for details. 
�
Corollary 8. Our strategy achieves a competitive factor of 1.8092.

Proof. According to Theorem 3, no algorithm can guarantee a better φ-value
than 0.650245. Our strategy yields an upper bound of 1.1764. This results in a
factor of 1.1764/0.650245≈ 1.8092. 
�

5 Discrete Point Sets

Our above analysis relies on continuous weight distributions, which imply the
lower bound on φ-values stated in Theorem 1. This does not include the discrete
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scenario, in which each value ni indicates the number of integer grid points that
have to be chosen from an appropriate N×N -grid. As discussed in the paper [5],
considering discrete weight distributions may allow lower average distances; e.g.,
a single point yields a φ-value of 0. As a consequence, towns (subsets of the
integer grid) have lower average distances than cities of the equivalent total
weight. However, we still get a competitive ratio for the case of online towns.

Theorem 9. For n-towns, a Hilbert-curve strategy guarantees a competitive fac-
tor of at most 1.7848 for the φ-value.

Proof. Lemma 5 still holds, so analogously to Theorem 7, we consider the values
up to n = 64, and show that the worst case is attained for n = 16, which yields
an upper bound of 1.123. See the full version for detailed numbers.

For a lower bound, the general value of 0.650245 for φ-values cannot be ap-
plied, as discrete point sets may have lower average distance. Instead, we verify
that the ratio ρ(n) of achieved φ to optimal φ, is less than 1.7848. This is the same
as c(Tn)/ctown(n) for n ≤ 64; see the full version of the paper. For 65 ≤ n ≤ 80,
the optimal values in [5] allow us to verify that φ ≥ 0.6292; see the full version
of the paper.

Thus, we have to establish a lower bound for φ for n ≥ 81. We make use
of equation (5), p. 89 of [5]; see Fig. 5: for a given number n of grid points,
the difference between the optimal total Manhattan distance ccity(n) for a city
consisting of n unit squares and the optimal total distance ctown(n) for a town

consisting of n grid points is equal to Λ(n) := 1
6

(∑
i c

2
i +

∑
j r

2
j

)
, where ci is

the number of grid points in column i, and rj is the number of grid points in

row j. Because
2ccity(n)

n2.5 is bounded from below by ψ = 0.650245, we get a lower

bound of ψ − 2Λ(n)
n2.5 ≤ 2ctown(n)

n2.5 for the φ-value of an n-town.

c1 = 5 c2 = 3 c3 = 2 c4 = 1 c5 = 0

2
√

n + 5

n
2
√

n+5

r5 = 1

r4 = 1

r3 = 2

r2 = 3

r1 = 4

Fig. 5. Establishing a lower bound for φ: Defining Λ(n); an arrangement that maxi-
mizes Λ(n)
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This leaves the task of providing an upper bound for 2Λ(n)/n2.5. According
to Lemma 5 of [5], the bounding box of an optimal n-town does not exceed
2
√
n+5. Therefore, we have ci ≤ 2

√
n+5; as

∑
i ci = n and the function

∑
i c

2
i

is superlinear in the ci, we conclude that
∑

i c
2
i is maximized by subdividing n

into n
2
√
n+5

columns of 2
√
n+5 points each, so

∑
i c

2
i ≤ n(2

√
n+5). Analogously,

we have
∑

j r
2
j ≤ n(2

√
n + 5), so 2Λ(n)/n2.5 ≤ 2

3 (
2
n + 5

n1.5 ). For n ≥ 81, this

implies 2Λ(n)/n2.5 ≤ 4
243 + 10

2187 = 0.0210333... or φ(n) ≥ 0.6292. This yields an
overall competitive ratio of not more than 1.123/0.6292, i.e., 1.7848. 
�
A more refined analysis of Λ(n) considers maximizing

∑
i c

2
i +

∑
j r

2
j all at once,

instead of
∑

i c
2
i and

∑
j r

2
j separately, for a maximum value of n(2

√
n + 5) +

n2

2
√
n+5

. For n ≥ 81, this yields 2Λ(n)/n2.5 ≤ 2
243 + 5

2187 + 2
621 = 0.0137373...

As the resulting competitive ratio of 1.7643 is only very slightly better, we omit
further details from this extended abstract. If instead we rely on the unproven
conjecture in [5] that 2ctown

n2.5 ≈ ψ − 0.410
n , we get φ ≥ 0.6451, which corresponds

to experimental evidence; the resulting competitive factor is 1.7406.

6 Lower Bounds

We demonstrate that there are non-trivial lower bounds for a competitive factor.
We start by considering the discrete online scenario for towns.

Theorem 10. No online strategy can guarantee a competitive factor below 64√
5
5 =

1.144866....

Proof. Consider a 3 × 3 square, and let n1 = 4; see Fig. 6. If (a) the strategy
allocates a 2×2 square (for a total distance of 8), then n2 = 5, and the resulting L-
shape has a total distance of 20 and a φ-value of 40/52.5 = 0.715541... Allocating
(b) the first town with an L-shape of total distance 10 results in φ = 20/32 =
0.625, and the second with a total distance of 16, or φ = 32/52.5 = 0.572433...

If instead, (c) the first town is allocated different from a square, the total
distance is at least 10, and φ ≥ 20/32; then (d) n2 = n3 = n4 = n5 = n6 = 1,
and an optimal strategy can allocate the first town as a 2x2 square, with φ = 0.5.
This bounds the competitive ratio, as claimed. 
�
For the case of continuous allocations, we claim the following.

Theorem 11. There is δ > 0, such that no online strategy can guarantee a
competitive factor 1 + δ.

Proof. Consider n1 = 1/2, in combination with the two possible scenarios

(a) n2 = 1/2;
(b) n2 = n3 = . . . = ε.

In scenario (a), an adversary can assign two (1 × 1/2)-rectangles, for a φ-value
of 0.707...; in scenario (b), an adversary can assign all shapes as squares, for a
φ-value of 0.666... If the player chooses a square of size

√
2/2 first, the adversary
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(a) (b)

(c) (d)

Fig. 6. The four cases considered in Theorem 10; the left column shows the choices by
an algorithm, the right the corresponding optimal choices for the ensung sequence

(c)(a) (b)

Fig. 7. The scenarios considered in Theorem 11, and a possible choice for the player

can choose scenario (a), causing the second allocation to be in L-shape with
φ-value 2

3 (7 − 4
√
2) = 0.895431..., as opposed to the optimal value of 0.707... If

the player chooses a (1×1/2)-rectangle first, the adversary chooses scenario (b),
for a ratio of 1.06066... The existence of the claimed lower bound follows from
continuity, as the φ-value changes continuously with continuous deformation of
the involved shapes. 
�
The precise value arising from the scenarios in Theorem 11 is complicated. It
can be obtained by computing the optimal intermediate value for the player that
allows him to protect against both scenarios at once. For example, optimizing
over the family of allocations shown in Figure 7 (c) yields a competitive ratio
that is better than 1.06; however, the player may do even better by using curved
boundaries. The involved computational effort for the resulting optimization
problem promises to be at least as complicated as computing the “optimal shapes
of a city”, for which no closed-form solution is known, see [7,1].

7 Conclusions

We have established a number of results for the online shape allocation problem.
In principle, further improvement could be achieved by replacing the computa-
tional results for level 3 (i.e., n = 16, . . . , 64) by level 4 (i.e., n = 65, . . . , 256).
(Conversely, a simplified analysis with level 2, i.e., n = 4, . . . , 16; yields a worse
factor of 3.6525.) However, the highest known optimal φ-values are for n = 80,
obtained by using the O(n7.5) algorithm of [5]. In any case, there is a threshold
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of 1.3504 for Hilbert-based strategies, which we believe to be tight: this is the
ratio between the upper bound of 0.8768 for n = 14 (and for n = 56, 224, . . .)
and the asymptotic lower bound of 0.650245; because asymptotically, continu-
ous and discrete case converge, this also applies to the discrete case. Other open
problems are to raise the lower bound of 1.144866 for the discrete case, and
establish definitive values for the continuous case.

As noted in Section 3, we can eliminate the assumption of all ni being multi-
ples of some 2−R, by making use of Lemma 6, and allocating a small round-off
fraction to a fractional pixel maintains the same bounds. However, the formal
aspects of describing the resulting allocation scheme become somewhat tedious
and would require more space than provided for this short abstract.

The offline problem is interesting in itself: for given ni, i = 0, . . . ,m, allocate
disjoint regions of area ni in a square, such that the maximum average Manhat-
tan distance for each shape is minimized. As mentioned, there is some indication
that this is an NP-hard problem; however, even relatively simple instances are
prohibitively tricky to solve to optimality, making it hard to give a formal proof.
Clearly, our online strategy provides a simple approximation algorithm; how-
ever, better factors should be possible by exploiting the a-priori information of
knowing all ni, e.g., by sorting them appropriately.

a=0.390629

b=0.057296

Fig. 8. A possible worst-case scenario for the offline problem

Another interesting open question for the offline scenario is the maximum
optimal φ-value for any set n1, . . . , nm. A simple lower bound is 2/3 = 0.666...,
as that is the average distance of the whole square. A better lower bound is
provided by dividing the square into two or three equal-sized parts. For the case
n1 = n2 = 1/2, we can use symmetry and convexity to argue that an optimum
can be obtained by a vertical split, yielding φ =

√
2/2 = 0.707. We believe the

global worst case is attained for n1 = n2 = n3 = 1/3. Unfortunately, it is no
longer possible to exploit only symmetry for arguing global optimality. Figure 8
shows an allocation with φ = 0.718736... for all three regions1. We conjecture
that this is the best solution for n1 = n2 = n3 = 1/3, as well as the worst case
for any optimal partition of the unit square.

1 More precisely, the involved values can be expressed as a = 1
108

(
55− 791

θ
+ θ

)

and φ =
(9602477−13416

√
585705)θ+(202679+204

√
585705)ψ2+82133θ3

77760
√

3θ
with θ :=

(−16253 + 36
√
585705

)1/3
.
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