
8

Dynamic Defragmentation of Reconfigurable Devices

SÁNDOR P. FEKETE, TOM KAMPHANS, NILS SCHWEER, CHRISTOPHER TESSARS,
and JAN C. VAN DER VEEN, Braunschweig University of Technology
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We propose a new method for defragmenting the module layout of a reconfigurable device, enabled by a novel
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with only very little reconfiguration overhead; the objective is to maximize the length of contiguous free
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1. INTRODUCTION

1.1. Reconfiguration and Communication

FPGAs combine the performance of an ASIC implementation with the flexibility of
software realizations. Partial runtime reconfiguration is an applicable technique to
overcome significant area overhead, monetary cost, higher power consumption, or
speed penalties as compared to ASICs (see, e.g., Kuon and Rose [2007]). By loading

A preliminary, considerably shorter extended abstract version of this article appeared in Fekete et al. [2008].
T. Kamphans was supported by DFG grant FE 407/8-2, 8-3, project “ReCoNodes” as part of the Priority
Programme 1148, “Reconfigurable Computing”. C. Tessars was supported by BMBF grant 03FE-PAI2,
project “Advest”. J. Angermeier was supported by DFG grant TE 163/14-2, 14-3, project “ReCoNodes”
as part of the Priority Programme 1148, “Reconfigurable Computing”. D. Koch was supported by DFG
grant TE 163/13-2, 13-3, project “ReCoNets”, as part of the Priority Programme 1148, “Reconfigurable
Computing”.
Authors’ addresses: S. P. Fekete, T. Kamphans (corresponding author), N. Schweer, C. Tessars, and
J. C. van der Veen, Department of Computer Science, Braunschweig University of Technology, Braun-
schweig, Germany; email: tom@kamphans.de; J. Angermeier, D. Koch, and J. Teich, Department of
Computer Science 12, University of Erlangen-Nuremberg, Erlangen, Germany.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1936-7406/2012/06-ART8 $10.00

DOI 10.1145/2209285.2209287 http://doi.acm.org/10.1145/2209285.2209287

ACM Transactions on Reconfigurable Technology and Systems, Vol. 5, No. 2, Article 8, Publication date: June 2012.



8:2 S. P. Fekete et al.

Fig. 1. Dynamically reconfigurable, tile-oriented system. The system shares some logic tiles l and memory
tiles m among a set of modules within the dynamic part of the system. Some modules require a memory
tile at a fixed offset with respect to the start position within the modules (e.g., the third tile of module1 is a
memory tile).

just the required modules to an FPGA at runtime, it is possible to build smaller
systems and less power-hungry devices. For instance, an embedded system may start
up with some boot-loader and test modules. These modules may be exchanged by a
crypto-accelerator to speed up the authentication process of the user. Later, different
modules will be loaded to the FPGA by partial runtime reconfiguration with respect to
the user demand or the state of the system. Note that many systems provide mutually
exclusive functionality (e.g., the record or the play mode of a multimedia device) that
is suitable to share some FPGA resources at runtime. Furthermore, modules need
to communicate with other modules to accomplish their tasks. Therefore, a suitable
communication infrastructure must be applied and the implied costs in terms of
time and area resources must be respected. This challenge and possible solutions are
discussed in Section 2.

When using such systems, an efficient resource management becomes necessary.
One problem that has to be solved at runtime is the fragmentation of the tiles due
to the time-dependent execution of some modules on the same resource area. It is as-
sumed that for dynamically partially reconfigurable systems, modules are to be verti-
cally aligned column by column, as shown in Figure 1. Accordingly, a module requiring
multiple tiles to implement its logic will demand a consecutive adjacent set of tiles
without any gaps. This problem is discussed in this article.

1.2. Dynamic Storage Allocation on Reconfigurable Devices

The ever-increasing capabilities of modern reconfigurable devices give rise to a large
number of new challenges; solving one of them in turn gives rise to new possibilities
and challenges. As described before, there are new solutions for dealing with the com-
munication of relocated devices; this opens up new possibilities for dynamic relocation
of modules. The resulting challenge is the dynamic allocation of module requests to a
reconfigurable device: given an array-shaped reconfigurable device and a sequence of
module requests of varying resource requirements (e.g., logic tiles or memory blocks),
assign each module to a contiguous set of slots on the device; see Figure 2(a).

At first glance, this problem has a striking resemblance to one of the classical
problems of computing: Dynamic storage allocation considers a memory array and a
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Fig. 2. Dynamic storage allocation: (a) Each module occupies a contiguous block of array positions. (b)
Moving a module to a new position in order to increase maximum free interval size.

sequence of storage requests of varying size, looking for an assignment of each request
to a contiguous1 block of memory cells, such that the length of each block corresponds
to the size of the request. Once this allocation has been performed, it is static in space:
after a block has been occupied, it will remain fixed until the corresponding data is no
longer needed and the block is released. As a consequence, a sequence of allocations
and releases can result in fragmentation of the memory array, making it hard or even
impossible to store new data.

Over the years, a large variety of methods and results for allocating storage have
been proposed. The classical sequential fit algorithms, First Fit, Best Fit, Next Fit,
and Worst Fit can be found in Knuth [1997] and Wilson et al. [1995].

Buddy systems partition the storage into a number of standard block sizes and al-
locate a block in a free interval of the smallest standard size sufficient to contain the
block. Differing only in the choice of the standard size, various buddy systems have
been proposed [Bromley 1980; Hinds 1975; Hirschberg 1973; Knowlton 1965; Knuth
1997; Shen and Peterson 1974]. Newer approaches that use cache-oblivious structures
for allocating space in memory hierarchies include the works by Bender et al. [2005a,
2005b].

There are notable differences between the dynamic allocation of modules to a re-
configurable device and dynamic storage allocation. First of all, all modules on a re-
configurable device may execute in parallel, while on a standalone processor, large
blocks in memory are not used simultaneously. Reconfigurable devices do not provide
techniques such as paging and virtual memory mapping that allow arranging memory
blocks next to each other in a virtual way, while they are physically stored at nonad-
jacent positions. The reconfiguration of a module on a reconfigurable device implies
delays, and an inter-module communication infrastructure is required, because the
functionality of a reconfigurable device may depend on other modules and external
periphery.

Modules on a reconfigurable device can be relocated to a different location on the re-
configurable device, this can even be done at runtime. However, today’s synthesis tools
still lack support for placing a module implementation at different positions: these
tools often allow placing a module at only one specific position; thus, we cannot use
the same implementation binary for different positions on the reconfigurable device.
Different techniques have been conceived to tackle this problem. One solution is to
equip the reconfigurable device with a special reconfiguration management unit that
handles the modification of the module implementations at runtime such that they
can be placed at the desired position. Moreover, in order to relocate a running module,

1Note that this part of the comparison refers to classical research; of course, modern storage devices place
virtual memory blocks on discontiguous physical space, at the expense of extra overhead for the pointer
structures. This approach for allocating discontiguous space is not possible for placing the modules on a
reconfigurable device, which is the challenge faced by this article.
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the module must be paused, the state must be temporarily saved, the module must be
reconfigured at the new position, the state must be restored, and the module must get
a signal to continue its work. Different techniques have been developed for this task,
one of them is presented by Koch et al. [2007]. In the future, reconfigurable devices
may have additional support for task preemption.

In contrast to memory and storage devices, reconfigurable devices often contain
heterogeneities such as dedicated memories, DSPs, or CPUs. These units enable or
increase performance in important application fields. But heterogeneities increase
the complexity of defragmentation considerably: a module implementation possibly
depends on a specific pattern of heterogeneous resources at the placement location
in order to complete its task. The number of feasible positions of a module on an
FPGA can be increased by creating different implementations of the same module (i.e.,
with different positions for the heterogeneities), but this approach also requires addi-
tional storage space for module implementations. Having different implementations of
a module also increases the number of possibilities when defragmenting the module
placements. Thus, the complexity of the defragmentation problem increases.

There is a huge amount of related work also from within the FPGA community:
Becker et al. [2007] present a method for enhancing the relocatability of partial recon-
figurability of partial bitstreams for FPGA runtime configuration, with a special focus
on heterogeneities. They study the underlying prerequisites and technical conditions
for dynamic relocation. In the process, a method that circumvents the problem of hav-
ing to find fully identical regions for the modules is solved by the creation of compati-
ble subsets of resources, enabling a flexible placement of relocatable modules. Gericota
et al. [2005] present a relocation procedure for Configurable Logic Blocks (CLBs) that is
able to carry out online rearrangements, defragmenting the available FPGA resources
without disturbing functions currently running. Another relevant approach was given
by Compton et al. [2002], who present a new reconfigurable architecture design exten-
sion based on the ideas of relocation and defragmentation. It is shown that with little
runtime effort on the part of the CPU and little additional area-increase over a basic
partially reconfigurable FPGA, the reconfiguration overhead can be reduced tremen-
dously. Koch et al. [2004] introduce efficient hardware extensions to typical FPGA
architectures in order to allow hardware task preemption. Furthermore, the technical
aspects of applying hardware task preemption to avoid defragmentation are discussed.
These papers do not consider the algorithmic implications and how the relocation ca-
pabilities can be exploited to optimize module layout in a fast, practical fashion, which
is what we consider in this article. Koester et al. [2007] also address the problem of
defragmentation. Different defragmentation algorithms that minimize different types
of costs are analyzed. With the help of a simulation model and a benchmark, simula-
tion results and algorithm comparisons are presented. However, the problem descrip-
tion differs in some major points; for example, no heterogeneities in the reconfigurable
area are considered.

The general concept of defragmentation is well known, and has been applied to
many fields, for example, it is typically employed for memory management. Our ap-
proach is significantly different from defragmentation techniques which have been
conceived so far: these require a freeze of the system, followed by a computation of
the new layout and a complete reconfiguration of all modules at once. Instead, we just
copy one module at a time, and simply switch the execution to the new module as soon
as the move is complete. This leads to a seamless, dynamic defragmentation of the
module layout, resulting in much better utilization of the available space for modules.

The rest of this work is organized as follows. In the following Section 2 we give a
description of the underlying model and assumptions of the reconfigurable device and
application, giving rise to the problem description in Section 3. As it turns out, solving
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the corresponding optimization problem is NP-hard, as shown in Section 4. However,
for moderate module density, it is still possible to compute optimal results, as shown
in Section 5. In Section 6, we show that there are instances for which �(n2) moves are
necessary. This leads to a heuristic optimization method for higher densities, based
on tabu search and described in Section 7. Detailed experimental results are pre-
sented and discussed in Section 8 showing an increase in the maximal free space in
average by 25% when applying our defragmentation techniques for FPGAs with het-
erogeneities. On some inputs an increase up to 200% is observed. Concluding thoughts
are presented in Section 9.

2. PROBLEM SCENARIO AND TECHNICAL CHALLENGES

Each partial reconfiguration of a module on a reconfigurable device incurs a certain
amount of reconfiguration overhead. The ratio between the reconfiguration time and
the actual running time of the corresponding modules is highly application specific. We
assume in our scenario that the reconfiguration time is sufficiently small compared to
the execution times of modules used. Of course, there are applications in which the
reconfiguration overheads must be taken into account, because many different mod-
ules are loaded on the reconfigurable device and their execution times are not much
higher than their reconfiguration times. However, the possibility of reconfiguring only
a part of the reconfigurable device as well as techniques such as prefetching, latency
hiding, and bitstream compression can significantly reduce the reconfiguration over-
heads. Furthermore, even today, for many applications a module’s reconfiguration time
is much less than its execution time. So far, it is not known whether reconfiguration
overheads will still play an important role for the performance of many applications in
the future or not. In this article, we assume that there will be also many applications
in the future for which the reconfiguration overheads are no big issue.

In order to take more benefit from runtime reconfiguration, systems should be able
to provide the reconfigurable resources in a very flexible way to the modules. Therefore,
a communication infrastructure is required, such that modules can communicate with
each other and to peripheral input/output devices. Most related work for reconfigurable
communication systems is still based on the assumption that the locations allowed for
modules in a partially reconfigurable system are all fixed in size (e.g., Lysaght et al.
[2006]). Consequently, such approaches do not allow for exchanging a large module
with multiple smaller ones. This originates from a lack of adequate communication
techniques suitable to connect multiple partially reconfigurable modules within the
same resource area to the rest of the system. However, there are notable exceptions:
Koch et al. [2008a, 2008b] present a system with a reconfigurable area partitioned into
60 tiles, each capable of connecting a tiny 8-bit module to the system using the so-called
ReCoBus. This allows it to implement larger interfaces or modules by combining mul-
tiple adjacent tiles, for example, 4 tiles are required for building a 32-bit interface. In
addition, the ReCoBus can link I/O pins to the partially reconfigurable modules.
Furthermore, this approach of a reconfigurable bus demonstrates that high placement
flexibility, low resource overhead, and high throughput can be achieved at the same
time.

In some partially reconfigurable computing systems, module communication in a
neighbor-to-neighbor-based manner is preferred to using a reconfigurable bus system:
for example, FPGAs are also used in streaming applications, such as video processing
and packet processing, where each module communicates concurrently with the next
module in the pipeline such that the communication costs are kept low. Whether these
systems will also benefit from defragmentation techniques highly depends on the com-
munication constraints of the modules and on the individual reconfigurable computing
system. In general, one option is to change the communication infrastructure of the
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modules to a more flexible system, such as a reconfigurable bus system. This may lead
to increased communication costs, but at the same time, defragmentation techniques
can place modules more freely, and thus yield better results. If the increase in commu-
nication costs is clearly amortized by the improvements due to better defragmentation
results, then the reconfigurable system will benefit from this option. In a setting in
which some modules in a reconfigurable computing system must be placed closely to
each other (e.g., they may strongly rely on a fast neighbor-to-neighbor communica-
tion for performance reasons), these modules can be grouped together such that they
are considered by the defragmentation strategy as a single module. Therefore, either
all these modules are moved to another position for defragmentation, or no module
is touched. Thus, defragmentation techniques for reconfigurable devices are flexible
enough to accommodate all important technical aspects concerning module communi-
cation on FPGAs.

So far, there already exists an enormous and ever-growing number of different
reconfigurable devices. Most of their reconfigurable area consists of heterogeneities,
special-purpose units such as DSPs, CPUs, or RAMs, which offer a considerable per-
formance improvement for target applications. See, for example, Figure 1: this FPGA
has two different column types, logic tiles (l) and memory tiles (m). The important
challenge with heterogeneities are placement limitations: modules applying special-
purpose units may not be freely relocated, but can be placed only at positions offering
the same geometry of special-purpose units; the placement of a module within the
reconfigurable resource area on the FPGA must fit exactly to the particular module.
Thus, the number of free tiles is not sufficient to determine whether a module can be
placed. For instance, module1 in Figure 1 has the resource requirement l l ml l and can
be placed only at the positions A, H, and O, which are currently occupied by module2
and module3. In the example, the system has 12 free logic tiles and 2 free memory
tiles, but we are currently not able to place module1 on the FPGA, which requires just
4 logic tiles and 1 memory tile. Note that our approach does not depend on a specific
type of heterogeneity, it can also be applied to future reconfigurable devices with new
kinds of heterogeneities.

Our approach is targeted at currently available FPGAs and future reconfigurable
devices. In our problem formulation, we assume a device that is capable of column-
wise partial reconfiguration, that is, only whole columns of the reconfigurable area are
exchanged. Modern reconfigurable devices offer also the flexibility to reconfigure single
cells in the reconfigurable area, but this kind of higher flexibility is not assumed in
our problem formulation, because the column-wise reconfiguration is considered as an
important case for these studies. Therefore, one reason may be that the applied device
cannot provide that kind of higher flexibility, for example, in order to save unnecessary
costs. Many applications for reconfigurable devices work in a pipeline-based manner
and employ modules that span over the whole column. They use only modules with the
same heights, because allowing a greater level of flexibility concerning the placement
would also imply higher resource overheads, for example, in terms of communication
resources. Furthermore, as long as the heights of all modules are equal, our approach
can also be applied to cell-based reconfigurable devices using a new abstraction layer:
we introduce a new type of heterogeneity (the “’separating heterogeneity”) that is not
used by any module. Then we simply connect the horizontal lines of cells of the device
to form a single row, separated by this new heterogeneity; see Figure 3. Thus, any
placement of a module on the abstract device can be mapped to a placement on the
original device.

Our studies of the important case of column-based reconfiguration can also be ap-
plied to scenarios in which a cell-based reconfiguration and modules with differing
heights are needed: the local search techniques applied in our approaches can also be
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Fig. 3. Defragmenting a two-dimensional device. Left: A two-dimensional device. Right: The corresponding
one-dimensional device with separating heterogeneities.

used for finding another suitable place for a module in the two-dimensional space. The
decision which steps to choose can also be extended from one to two dimensions. Thus,
the proposed approach is not strictly limited to the important case of column-wise
reconfiguration.

When modules are relocated for defragmentation, we have to distinguish between
moving only the module configuration and the configuration together with the inter-
nal state. In the first case, we just make a copy of the reconfiguration data to the new
position and start the next computation on the module at the new position (e.g., a dis-
crete cosine transformation on the next frame in a video system). In the second case,
both modules have to be interrupted and the state (represented by all internal flip-
flop and memory values) will be copied to the target module. It may not be enough to
copy the configuration data to a new position, because the configuration bit files often
imply a certain position. Therefore, it is either necessary to alter dynamically the bit
files, or to generate statically bit files for all possible positions. Relocation of modules
and related problems were already addressed in other works. Furthermore, the com-
munication between modules must be stalled during the relocation of the respective
modules. Thus, the communication infrastructure should be flexible enough to meet
these requirements. As compared to the reconfiguration process, copying the state can
be performed with short interruption when using hardware checkpointing (for more
details see Koch et al. [2007]).

If we allow overlapping regions for the defragmentation, for example, the source and
the target module may overlap, then the interruption time can be dominated by the
relocation process: an overlap prevents the possibility to copy the routing information
and logic settings to the destination, while the original module is still running. In this
case, the module must be stopped, the reconfiguration data and the state of the module
must be copied to some (external) memory, and be restored at the destination. This
procedure takes longer if the regions overlap. As a consequence, we will prevent our
defragmentation algorithms from using overlapping regions to place modules. Thus,
switching from the original module to the new one can be optimized in such a way
that no input data is lost, and the downtime of the module is minimized. Thus, a
copy of module—without the state—can be reconfigured at the destination while the
module is still running. Therefore, switching between the two modules is very fast
for modules that have only few state data to be copied. Furthermore, our proposed
defragmentation strategies move at most one module at a time to another position on
the reconfigurable area. Thus, only a single module is affected at a moment by the
defragmentation process, while the remaining set of modules remains untouched.

3. PROBLEM FORMULATION

In this article, we consider a reconfigurable device that allows allocating modules in a
contiguous manner on an array L of length �; modules will be denoted by M1, . . . , Mn.
A module Mi placed in the array occupies a contiguous interval on the reconfigurable
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device, denoted by LMi. Modules are always placed such that LMi ∩ LM j = ∅ for i �= j;
that is, two different modules do not overlap.

Modules placed in the array divide L into sections that are occupied by a mod-
ule and sections that are not occupied; the latter are called free intervals, denoted by
F1, . . . , Fk. Partially reconfigurable devices allow us to relocate a module Mi of size mi
from interval LMi to a new position L′

Mi
within a free interval Fj of size f j, provided

that the following two conditions are fulfilled.

— No occupied section is chosen (i.e., L′
Mi

∩ ⋃n
k=1 LMk = ∅).

— The size of the free interval is at least as big as the size of the module: (i.e., f j ≥ mi).

The Maximum Defragmentation Problem (MDP) asks for a sequence of relocation
moves that maximizes the size of the largest free interval on the reconfigurable de-
vice. We distinguish between the homogeneous MDP, in which every cell in the array
is equivalent, and the heterogeneous MDP, which accounts for heterogeneities in the
given FPGA. Clearly, the heterogeneous MDP is more difficult. Thus, we focus on the
homogeneous MDP for our complexity results, as their harndess implies hardness of
the more complicated, restricted versions.

The larger free interval after the defragmentation can allow to place and execute a
module that could not be placed before. Moreover, defragmentation helps to place mod-
ules at an earlier time. Altogether, the makespan is reduced, that is, the total time that
is needed to satisfy a sequence of requests (i.e., a sequence of modules M1, . . . , Mn),
considering that every module Mi needs a certain time, the duration Ti, to run on the
FPGA before it can be removed.

4. PROBLEM COMPLEXITY

In this section, we state two complexity results for defragmenting modules on a re-
configurable device: one for deciding whether one contiguous free block can be formed,
and one for the maximization version of the (homogeneous) defragmentation problem.
We show that the decision version is strongly NP-complete and that no approxima-
tion algorithm with a useful approximation factor exists for the maximization version,
unless P = NP.

We use a proof technique know as proof by reduction. That is, we take a problem that
is known to be hard and show how to transform an instance of the known problem to an
instance of our problem. Thus, if we had an efficient method for solving our problem,
it could also be used for solving the other, hard problem. The problem 3-Partition is
the main ingredient of the reduction. It belongs to the class of strongly NP-complete
and can be stated as follows [Garey and Johnson 1979]:

Given: A finite set of 3·k elements C1, . . . , C3k with sizes c1, . . . , c3k, a bound B ∈ N
such that ci satisfies B

4 < ci < B
2 for i = 1, . . . , 3k and

∑3k
i=1 ci = k · B.

Question: Can the elements be partitioned into k disjoint sets S1, S2 . . . , Sk, such
that for 1 ≤ � ≤ k,

∑
C j∈S�

c j = B?

Because the ci have a lower bound of B
4 and an upper bound of B

2 , each set Sj contains
exactly three elements. We state our complexity result.

THEOREM 1. The Maximum Defragmentation Problem with free intervals F1, . . . , Fk
is strongly NP-complete.

PROOF. Given an instance of the problem 3-Partition with input c1, . . . , c3k and
bound B, we construct an instance of the MDP in the following way: We place 3k
modules M1, . . . , M3k with mi = ci, 1 ≤ i ≤ 3k, side by side, starting at the left end of L.
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Fig. 4. Reducing 3-partition to the MDP.

Fig. 5. The basic idea for the proof of Theorem 2. Modules are not drawn to scale; in particular, modules of
size N = kB + 1 + rB/2 (gray) for an appropriately large integer r are very large, so they can never be moved.
The modules M1, . . . , M3k encode an instance of 3-Partition. Module M4k+2 of size k · B can be moved if and
only if these first 3k modules (dark-gray) can be moved to the first k free spaces of size B. Only in this case,
for i = 2, . . . , r, the modules M4k+2i (light-gray) fit exactly between M4k+2i−3 and M4k+2i−1, increasing the size
of the largest free interval by B/2 with every move.

Then starting at the right boundary of M3k, we place k+1 modules of size kB+1, alter-
nating with k free intervals of size B. We denote these modules by M3k+1 to M4k+1 and
the free intervals by F1 to Fk. Figure 4 shows the overall structure of the constructed
instance. Now we ask for the construction of a free interval of size K = k · B. Because
the size of the total free space is equal to kB, none of the modules M3k+1, . . . , M4k can
ever be moved. Hence, the only way to connect the total space is to move the modules
M1 to M3k to the free intervals. But any solution of this kind implies a solution to the
given instance of 3-Partition, concluding the proof of NP-completeness.

Proving NP-completeness for the decision version of a problem makes it interesting
to consider approximating the size of the maximal constructable free intervals: instead
of finding the best possible value fopt, we may be content with an approximate value
falg, as long as it can be found in polynomial time and is within a constant factor
of fopt. The next theorem shows that the existence of any algorithm with a useful
approximation factor is unlikely, even if we only require an asymptotic factor.

THEOREM 2. Let ALG be a polynomial-time algorithm with fopt ≤ α · falg +β. Unless
P = NP, α must be big, that is, α ∈ �((n · max{log fmax, log bmax})1−ε), for any ε > 0,
where n denotes the number of modules, fmax denotes the size of the largest free interval
in the input, and bmax the size of the largest module.

PROOF. Refer to Figure 5. We will show that if ALG is an α-approximation algorithm
for α ∈ O((n·max{log fmax, log bmax})1−ε), it can be used to decide whether a 3-Partition
instance is solvable. For a given instance with numbers c1, . . . , c3k and a bound B ∈ N
(recall that B

4 < ci < B
2 ), we construct an allocation of modules inside an array, as

shown in the Figure Starting at the left end of the array we place 3k modules side by
side with bi = ci, for i = 1, . . . , 3k. Then, starting at the right boundary of M3k, we place
k + 1 modules of size N = kB + 1 + rB/2 (where r is an arbitrary number of sufficient
polynomially bounded size; more details will follow), alternating with k free spaces of
size B. Now, for i = 1, . . . , r, we proceed with a free space of size B/4, a module of size
b4k+2i = kB + (i − 1)B/2, a free space of size B/4, and a module of size b4k+2i+1 = N.
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Note that the number of modules is n = 5k + 4r + 1 and max{log fmax, log bmax} =
log bmax. We claim that falg ≥ kB if and only if the answer to the 3-Partition instance
is “yes”.

If falg ≥ kB, consider the situation in which the first free space of size kB occurs.
Because none of the modules M3k+1, . . . , M4k+2r+1 could be moved so far, and because
the modules M1, . . . , M3k are larger than B/4, the only way to create a free space of
size kB is to place the first 3k modules in the k free spaces of size B. This implies a
solution to the 3-Partition instance.

If falg < kB, we show that the instance of 3-Partition cannot be solved. If falg < kB,
then

fopt ≤ α · falg + β < kB · C · (n log bmax)1−ε + β ,

for some constant C. The total free space has size f = kB + rB/2. Because n = 5k +
4r + 1, bmax = N = kB + 1 + rB/2 and k, B, C, and β are constant a straightforward
computation shows that

fopt < kB · C ·
[
(5k + 4r + 1) log

(
kB + 1 +

rB
2

)]1−ε

+ β ≤ kB +
rB
2

= f ,

for large r (i.e., we choose r such that the second inequality holds). Hence, a free space
of size kB + rB/2 cannot be constructed.

Conversely, a solution to the 3-Partition instance allows the construction of a free
space of size kB + rB/2 as follows. The first 3k modules are moved to the k free spaces
of size B. Now, M4k+2 is moved to the free space of size kB and then, one after the
other, M4k+2i is moved between the modules M4k+2i−3 and M4k+2i−1, for i = 2, . . . , r.

Thus, we can conclude that the existence of a polynomial-time approximation
method for the MDP can be used to decide the feasibility of 3-Partition instances, that
is, implies P = NP.

5. MODERATE DENSITY

The number of modules, n, their sizes, and the amount of free space on the reconfig-
urable area are highly dependent on the application to be executed and, furthermore,
may also vary enormously during the execution of the application on a reconfigurable
device. Initially or at some later point in time, only a portion of the reconfigurable
device may be used. For a rather moderate density, we conceived an efficient defrag-
mentation routine. We consider a special case in which the homogeneous MDP can be
solved with linear computing time in at most 2n moves. We define the density of an
array, L, of length � to be δ := 1

�

∑n
i=1 mi. We show that if the density is bound by 1

2 (1−
the fraction of the total area occupied by the largest module), that is,

δ ≤ 1
2

− 1
2

· maxi=1,...,n{mi}
�

(1)

the total free space can always be connected with 2n steps by Algorithm 1. The idea
of the Algorithm 1 is to start with the leftmost module, and shift all modules as far
as possible to the left, one after the other. In the second loop, we start with the
rightmost module and shift modules as far as possible to the right, one after the
other. As it turns out, this results in one connected free space. (Note that in some
cases, a single round of shifts is sufficient, which can easily be detected; however,
two rounds may be necessary if the initial configuration has small free intervals on
the left.)
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ALGORITHM 1: LeftRightShift
Input: A array L with n modules M1, . . . , Mn such that (1) is fulfilled.
Output: A placement of M1, . . . , Mn such that there is only one free interval at the left end

of L.
1 for i = 1 to n do
2 Shift Mi to the left as far as possible.
3 end
4 for i = n to 1 do
5 Shift Mi to the right as far as possible.
6 end

For proving correctness of Algorithm 1, we need the following two observations.
Both follow immediately from the definition of density and from (1); in the following,
fi denotes the size of free intervals Fi.

k∑
i=1

fi ≥ l
2

+
1
2

· max
i=1,...,n

{mi} (2)

δ <
1
2

and therefore
n∑

i=1

mi <

k∑
j=1

f j (3)

THEOREM 3. Algorithm 1 connects the total free space with at most 2n moves and
uses O(n) computing time.

PROOF. The number of shifts and the computing time are obvious. We will show
that at the end of the first loop, the rightmost free interval is greater than any module
and therefore all modules can be shifted to the right in the second loop.

Let F1, . . . , Fk denote the free intervals in L at the end of the first loop. Then every
Fi, i ∈ {1, . . . , k − 1} is bounded to the right by a module Mj with mj > fi (otherwise mj

could be shifted). If this holds for Fk as well, we can conclude that
∑k

i=1 fi <
∑n

i=1 mi,
which contradicts (3). Hence, there is no module to the right of Fk, and we get with
m� = max1,...,n{mi}

l
2

+
1
2

m�
(2)≤

k∑
i=1

fi <

n∑
i=1

mi + fk
(1)≤ l

2
− 1

2
m� + fk

implying m� < fk.

6. A QUADRATIC LOWER BOUND

As a consequence of the hardness and inapproximability results we focus on develop-
ing heuristic approaches for the MDP. In this section, we bound the number of steps
needed by any algorithm that constructs a maximum free interval, even in the ho-
mogeneous version. In the next sections, we state a heuristic and give experimental
results.

THEOREM 4. There is an instance of the maximum defragmentation problem such
that any algorithm needs at least �(n2) steps to solve it.
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Fig. 6. The instance for n = 8.

Fig. 7. The situation when M j and Mn+1− j can be moved for the first time.

PROOF. We construct the instance in the following way. For an even number n, we
place n modules, indexed from left to right by 1, . . . , n. The sizes of the modules are
mj = mn+1− j = n + 2 − 2 j for 1 ≤ j ≤ n

2 . M1 has a free interval of size 1 to its left
and Mn has a free interval of size 1 to its right. In addition, every pair of consecutive
modules is separated by a free interval of size one, except for the pair M n

2
and M n

2 +1,
which is separated by a distance of two. In this initial configuration we denote the free
intervals by F1, . . . , Fn+1, and their sizes by f1, . . . , fn+1. Figure 6 shows an example
for n = 8.

The following properties of this instance are essential for the rest of the proof.

(i) The module sizes mj = mn+1− j = n + 2 − 2 j, 1 ≤ j ≤ n
2 , are even.

(ii) mj = mn+1− j =
∑n+1− j

i= j+1 fi holds for any pair Mj, Mn+1− j (i.e., the total free interval
between two modules of equal size is equal to the modules’ sizes).

(iii) Every module has to be moved at least once (because of the small free intervals
at the left and right end of L).

(iv) For i < j ≤ n
2 , we have mi = mn+1−i ≥ mn+1− j = mj; in particular, this means that

the pair Mi, Mn+1−i can be moved only if Mj, Mn+1− j can be moved.

In the beginning, only the modules M n
2

and M n
2 +1 with mn

2
= mn

2 +1 = 2 can be moved.
Using three moves, a free interval of size four can be constructed. Note that both
modules have to be moved and that there can be a free interval of size four only if
there is exactly one free interval between M n

2 −1 and M n
2 +2. Now we show by induction

for j from n
2 to 1 that

(a) at least n − 2 j + 2 steps are necessary to make a pair Mj−1, Mn+1−( j−1) movable
after the pair Mj, Mn+1− j became movable and

(b) in the situation in which Mj−1, Mn+1−( j−1) become movable, there is exactly one
free interval between these two modules.

Both properties clearly hold for j = n
2 and we assume that Mj and Mn+1− j for 1 ≤ j <

n
2 became movable (for the first time) by the last step.

By part (b) of the induction hypothesis, the modules and free intervals in the area
between Mj−1 and Mn+1− j are currently arranged in the following order, described from
left to right: a free interval of size one, a sequence of modules, a free interval of size
mj, a sequence of modules, and a free interval of size one (see Figure 7). The modules
in the rest of L are still in their initial position (otherwise Mj and Mn+1− j could have
been moved earlier because of (iv)).

Property (b) is a straightforward implication of (ii) and we show that (a) holds as
well. Suppose for a contradiction that Mj−1 and Mn+2− j can be made movable without
shifting or “jumping” a module Mk with j ≤ k ≤ n + 1 − j, that is, without moving a
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modules that lies between Mj−1 and Mn+2− j). We assume w.l.o.g. that Mk is in the same
sequence as Mj. Thus, the distance from Mk’s left boundary to the right boundary of
Mj−1 can be calculated as the sum of the sizes of modules lying on the left side of Mk
plus one. By (i), this is an odd number. The same holds for the distance from Mk’s
right boundary to the left boundary of Mn+2− j. Again using (i), this implies that none
of these intervals can completely be filled with other modules. Hence, by (ii), Mj−1
and Mn+2− j can never be moved without moving Mk. There are n − j + 2 − j − 1 + 1 =
n − 2 j + 2 modules initially placed between Mj−1 and Mn+2− j and each of them has to
be moved.

Altogether, this implies a lower bound of
∑ n

2
j=1(n − 2 j + 2) = n2

4 + 3n
2 on the total

number of steps.

7. A HEURISTIC METHOD

For runtime defragmentation, we propose a tabu search with a tabu list of length n
2 ,

see Algorithm 2. In every iteration, all homogeneous modules Mi are moved to the left
end and to the right end of the free intervals that are greater than or equal to mi. All
inhomogeneous modules are moved to any feasible position. Each move is evaluated
by a fitness function that divides the size of the maximal free interval by the number
of free slots. The move yielding the configuration with the highest fitness is chosen.
Ties are broken by choosing the first one. The resulting configuration is added to the
tabu list.

If the current solution is the best one found so far, it is stored. The heuristic ends
if either a fitness of 1.0 (i.e., optimality) is achieved or 2n2 iterations have been
performed. As seen before, there are instances for which �(n2) moves are necessary.
Moreover, we conjecture that the number of necessary moves is in 	(n2).

8. EXPERIMENTAL RESULTS

8.1. Compacting an FPGA

We performed a series of experiments for defragmentation based on scenarios of FP-
GAs with and without heterogeneities and different densities (i.e., different ratios of
occupied space compared to unoccupied space). Figure 8 shows the results for two
FPGAs, both having 94 slots. The first FPGA does not contain any heterogeneities,
while the second one is an FPGA with heterogeneities at positions 3, 24, 45, 50, 71,
and 82. Moreover, we compared our heuristic to a simple greedy approach that moves
every module to the most promising position (i.e., to the position for which the ra-
tio of the size of the maximal free interval and the size of the total free space is
maximal).

Generating the input was done in two steps, depending on the size of the maximal
free interval F�. In the first step the module size is chosen with equal probability from
the set {1, . . . , f �}. This ensures that the modules can be inserted. The exact position
is chosen again with equal probability among all feasible positions. If the interval
occupied by the module contains an heterogeneity, this heterogeneity is assigned to
the corresponding position of the module. The size of the first module is shrunk by a
factor of 0.6 in order to ensure that it can be moved.

For the density ranging from 0.3 to 0.9 with steps of size 0.05, we performed 100
runs of the tabu search and the greedy strategy for each value and took the average
value of the number of free intervals and the size of the maximal free interval. The
results are shown in Figure 8. The diagrams show the size of the maximal free interval
(top row) of the array and the number of free spaces (bottom row) before and after
the defragmentation. In the array with no heterogeneities (left column), there is an
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ALGORITHM 2: Tabu Search
counter := 0;
tabulist := {};
maxfitness := 0.0;
while (counter ≤ 2n2) and (maxfitness < 1.0) do

foreach module Mi in the array do
storedfitness := 0.0
if Mi is homogeneous then

foreach free interval Fj do
move Mi to the left end of Fj

evaluate move
move Mi to the right end of Fj

evaluate move
move Mi back to its original position

end foreach
else

foreach position P for Mi that is feasible and
not blocked by another module do

move Mi to P
evaluate move
move Mi back to its original position

end foreach
end if
if storedfitness > maxfitness then

apply storedmove
store storedmove in tabulist
maxfitness := storedfitness

end if
end foreach
counter++

end while

Procedure evaluate move:
if move is not stored in tabulist

thisfitness := size of the maximal free interval / number of free slots
if thisfitness > storedfitness then

store move in storedmove
storedfitness := thisfitness

end if
end if

improvement of up to 40%. On the FPGA (right column) the size of any maximal
free interval is limited to 20 slots due to the heterogeneities. For a density of less
than 1

2 , the tabu search achieves this upper bound for almost all instances. For larger
densities, it achieves an improvement of approximately 35%.

The change in the number of free intervals before and after defragmentation is
displayed in the right charts of Figure 8. In the array with no heterogeneities there
is an increase of 50%. For the FPGA there is almost no improvement for low densities
(less than 1

2 ) and an improvement of approximately 25% for larger ones.
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Fig. 8. Averages over 100 runs. (Top left) Size of the maximal free interval before and after defragmenta-
tion, using our heuristic and a simple greedy approach in an array with no heterogeneities. (Top right) Size
of the maximal free interval before and after defragmentation of the FPGA. (Bottom left) Number of free
intervals before and after defragmentation in an array with no heterogeneities. (Bottom right) Number of
free intervals before and after defragmentation of the FPGA.
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Fig. 9. Initial state in example scenario. The reconfigurable device consists of 94 partially reconfigurable,
empty slots. Those containing a heterogeneity, such as BlockRAMs, are marked below with an “m”.

Fig. 10. (Top) Fragmented state in example scenario. Free space is scattered over the whole reconfigurable
area. (Bottom) Free space after defragmentation with greedy approach.

8.2. Case Study

In this section, a case study is given that demonstrates the efficiency of the proposed
techniques and how they can be applied to a real-world scenario. We assume a dy-
namically partially reconfigurable device, whose reconfigurable area is separated into
94 columns, also called slots. Modeling typical FPGAs, some of these slots contain no
logic resources, but a heterogeneities such as BlockRAMs. This setting is illustrated
in Figure 9.

Furthermore, assume that one or multiple applications with a collection of modules
are executed on this device, for example, these could be a video processing and a num-
ber cruncher application whose current state can rather easily be saved and restored
at a different position on the reconfigurable device with moderate costs. During the
execution of the applications, different modules finish and are removed, while new
modules need to be placed. Thus, the free space on the reconfigurable device can be
scattered over the whole reconfigurable area. This situation is illustrated in the upper
part of Figure 10.

The fragmented free space on the reconfigurable area is a common, unavoidable
scenario, for which our proposed defragmentation techniques represent an applicable
and efficient solution. Our first approach, the greedy algorithm, selects in each setting
a step that optimizes the resulting maximal contiguous free space. Based on the state
of the example in the upper part of Figure 10, the greedy algorithm moves the module
“G” to position 59. Thus, a biggest free space is achieved within a single move. The
heterogeneity requirements of module “G” are fulfilled at the time at this position: at
position 60, BlockRAMs are provided for the right part of the module. Afterwards,
no single move that provides an improvement on the maximum free contiguous space
is possible. Thus, the greedy algorithm terminates. Note that the evaluation of each
possible step in the algorithm checks the maximal free space by taking into account
all contiguous free slots, no matter if they contain heterogeneities or not.

In our second approach, the maximum free contiguous space is optimized using
tabu search, see Figure 11. Based on the state of the same example, module “H” is
relocated to slot position 88. This step yields a maximal, contiguous free space of four
slots including a single BlockRAM heterogeneity slot. In a second step, module “D”
is moved to slot 91, where module “H” was located before. Thus, a new maximal free
space is created starting at slot 6 up to 10. All other steps would have created a free
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Fig. 11. Tabu search algorithm: defragmentation in four move steps (shown from top to bottom).

contiguous space with a size less than 5 slots. Further, this is also the only position to
which module “D” can be moved, due to its heterogeneity constraints. In a third step,
module “F” is moved to the single empty slot without BlockRAMs between module “B”
and module “C”. In a next step, module “G” can be either moved to slot position 6
or to slot position 59; both satisfy its heterogeneity demands. Finally, it is moved to
the latter position, because this results in a maximal free space of 10 slots. It is also
possible that multiple single steps offer the same increase in contiguous free space; in
our current implementation, one single move is selected randomly.

When the greedy algorithm is applied to the example input, a contiguous free space
of four slots is achieved. In contrast, the tabu search merges all free space and yields
one single contiguous block of free space of size 10. This shows the usefulness of
defragmentation techniques, and the importance of the corresponding strategy. Simi-
lar scenarios of scattered empty space and heterogeneities on the reconfigurable device
are common when executing modules. New modules with big area requirements must
unnecessarily be delayed without defragmentation steps, which can be avoided with
appropriate defragmentation strategies. How far different strategies can deviate is
shown by comparing the results of the greedy and the tabu search approach for this
example.

8.3. Makespan

We also simulated the impact on the total makespan (i.e., the total execution time)
by randomly generating sequences of modules. A sequence consists of 200 modules,
for each module we chose size and duration randomly using different distributions.
Figure 12 and Figure 13 show examples in which the size was chosen by normal distri-
bution and duration according to an exponential distribution. We used the exponential
distribution for the duration time, because this distribution models typical lifetimes
[Behnen and Neuhaus 1995]. We normalized the duration times, that is, we define the
time to write a single FPGA column to be 1 time unit.
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Fig. 12. Comparison of makespans for schedules using tabu search, greedy, and no fragmentation for an
array of size � = 200. The average module size is fixed to 10, 50, and 150 columns, the average duration time
ranges from 1 to 400 time units. The y-axis shows the total makespan in time units.

Fig. 13. Comparison of makespans for schedules using tabu search, greedy, and no fragmentation for an
array of size � = 200. The average module size is fixed to 10, 50, and 100 columns, the average duration time
ranges from 600 to 3000 time units. The y-axis shows the total makespan in time units.

For each pair of size and duration values, we shuffled 100 sequences and calculated
their makespan by simulating the processing of a sequence using tabu search, greedy,
and no defragmentation. More precisely, we successively place the modules into an
array that represents the FPGA. If we cannot place a module, because there is no suf-
ficient free space, either the module has to wait (no defragmentation) or we perform the
tabu search or the greedy strategy to compact the FPGA. After the duration time for a
module elapsed, it is removed from the array. Our simulation takes the times needed
to place or move a module into account; the duration time is prolonged accordingly.
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It turned out that it pays off to use defragmentation for larger modules or larger
duration times. Small modules with small duration time enter and leave the system so
quickly that there is no need for defragmentation, see Figure 12(left) up to an average
duration of 50 time units. At smaller module sizes and execution times, greedy’s
shorter running time beats the effectiveness of the tabu search (Figure 12(left) from
75 to 350). However, as the average module size (as a fraction of the total area) or
execution length increases, the more compact solution provided by the tabu search
provides a better overall execution time, even with increased overhead (Figure 12(left)
from 350 and Figure 13(left)). For modules of medium size (compared to the size of
the FPGA), the tabu search decreases the total makespan (Figure 12(middle) and
Figure 13(middle)). If the average size of a module approaches or even exceeds half
the size of the FPGA, the benefit of compaction disappears (Figure 12(right) and
Figure 13(right)). Note that in this case, compaction is often not even possible because
the modules are too large to be moved.

9. CONCLUSION

In this article, we presented a new approach for defragmenting the module layout on
a dynamically reconfigurable device, for example, an FPGA, in a seamless fashion. As
the reconfiguration costs continuously decrease with each new generation of reconfig-
urable devices and a number of techniques for task preemption and relocation at a dif-
ferent positions are conceived (see Koch et al. [2007] for a comparison), task relocation
at runtime becomes a new opportunity for improving the performance and efficiency
of reconfigurable devices. However, this also poses new challenges, because defrag-
mentation methods developed so far cannot be applied to reconfigurable devices, as
they do not take into account their special characteristics. For example, many recon-
figurable devices have heterogeneities on their reconfigurable area, such as memory
blocks, DSPs, and CPUs. We presented different defragmentation strategies to relo-
cate running modules and achieve a contiguous free space of maximum size.

The presented experiments show in average an increase in the maximal free space
by 30% when applying our defragmentation techniques to FPGAs with heterogeneities;
on some inputs an increase up to 200% is observed. This additional free space al-
lows earlier execution of later modules, so the total execution time is reduced. This
shows that it pays off to prefer a sophisticated heuristic for defragmentation (e.g.,
tabu search) over a simple heuristic (i.e., greedy), or over no defragmentation at all,
provided that the execution times and module sizes are not too extreme (i.e., too large
or too small compared to the size of the FPGA).

Obviously, improved algorithmic results can lead to further improvements. One of
the possible extensions considers a more controlled overall placement of modules, in-
stead of simply fixing fragmentation. As the necessary algorithmic methods are more
involved, we leave this to future work.
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