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Connecting a Set of Circles with Minimum Sum of Radii
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Abstract

We consider the problem of assigning radii to given
points in the plane, such that the resulting set of cir-
cles is connected, and the sum of radii is minimized.
We show that the problem is polynomially solvable
if a connectivity tree is given, but NP-hard if there
are upper bounds on the radii; the case of unbounded
radii is an open problem. We also give approximation
guarantees for a variety of heuristics, describe upper
and lower bounds (which are matching in some of the
cases), and conclude with experimental results.

1 Introduction

We consider a natural geometric connectivity prob-
lem, arising from the context of assigning ranges to
a set of center points. More formally, given a set of
points P = {p1, . . . , pn} in the plane and their respec-
tive radii ri, in the connectivity graph G = {V,E}, V
corresponds to P , and edges eij ∈ E to intersecting
circles, i.e., ri+rj ≥ dist(pi, pj) for the Euclidean dis-
tance dist(pi, pj) between pi and pj . (A natural gen-
eralization arises from considering distances in a given
weighted graph, instead of geometric distances.) The
Connected Range Assignment Problem (CRA)
requires assignment of radii r to P , such that the ob-
jective function Q =

∑
n
i=1r

α
i , α = 1 is minimized,

subject to the constraint that G is connected.

Problems of this type have been considered before
and have natural motivations from fields including
networks, robotics, and data analysis. Common to
most is an objective function that considers the sum
of the radii of circles to some exponent α.

Alt et al. [1] consider the closely related problem
of selecting circle centers and radii such that a given
set of points in the plane are covered by the circles.
Like our work, they focus on minimizing an objective
function based on

∑
ir
α
i and produce results specific

to various values of α. The minimum sum of radii
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circle coverage problem (with α = 1) is also consid-
ered by Lev-Tov and Peleg [6] in the context of radio
networks. Related work has also been done in the
area of data clustering. Gibson et al. [5], consider
partitioning data into k clusters to minimize the sum
of the cluster radii, and authors consider the problem
for specific numbers of dimensions. Since we are given
the circle centers, the problem can be also considered
a range assignment problem [3]; see [4] for hardness
results of different (typically directed) communication
graphs.

In this paper we present a variety of algorithmic
aspects of the problem. In Section 2 we show that
for a given connectivity tree, an optimal solution can
be computed efficiently. Section 3 sketches a proof of
NP-hardness for the problem when there is an upper
bound on the radii. Section 4 provides a number of
approximation results for the case of unbounded radii,
complemented by experiments in Section 5.

2 CRA for a Given Connectivity Tree

For a given connectivity tree, our problem is polyno-
mially solvable, based on the following observation.

Lemma 1 Given a connectivity tree T with at least
three nodes. There exists an optimal range assign-
ment for T with ri = 0 for all leaves pi of T .

Proof. Assume an optimal range assignment for T
has a leaf pi ∈ P with radius ri > 0. The circle Ci
around pi intersects circle Cj around pi’s parent pj
with radius rj . Extending Cj to rj := dist(pi, pj)
while setting ri := 0 does not increase

∑
pi∈P

ri. �

Direct consequences of Lemma 1 are the following.

Corollary 2 There is an optimal range assignment
satisfying Lemma 1 and further rj > 0 for all pj ∈ P
of height 1 in T (i.e., each pj is parent of leaves only).

Corollary 3 Consider an optimal range assignment
for T satisfying Lemma 1. Further let pj ∈ P be of
height 1 in T . Then rj ≥ max

pi is child of pj
{dist(pi, pj)}.

These observations allow us to solve the problem via
dynamic programming; details are omitted.
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Figure 1: Two variable gadgets connected to the same
clause gadget. “True” and “False” vertices marked in
bold white or black; auxiliary vertices are indicated by
small dots; the clause vertex is indicated by a triangle.
Connectivity edges are not shown.

...

Figure 2: A class of CRA instances that need k + 1
circles in an optimal solution.

Theorem 4 For a given connectivity tree, CRA can
be solved in polynomial time.

3 Range Assignment for Bounded Radii

Without a connectivity tree, and assuming an upper
bound of ρ on the radii, the problem becomes NP-
hard; in this short abstract, we focus on the graph
version of the problem.

Theorem 5 With radii bounded by some constant ρ,
the problem CRA is NP-hard in weighted graphs.

See Figure 1 for the basic construction. The proof
uses a reduction from 3Sat. Variable are represented
by closed “loops” at distance ρ that have two feasible
connected solutions: auxiliary points ensure that ei-
ther the odd or the even points in a loop get radius ρ.
Additional “connectivity” edges ensure that all vari-
able gadgets are connected. Each clause is represented
by a star-shaped set of four points that is covered by
one circle of radius ρ from the center point. This cir-
cle is connected to the rest of the circles, if and only
if one of the variable loop circles intersects it, which
is the case if and only if there is a satisfying variable.

4 Solutions with a Bounded Number of Circles

In this section we show that using only a small number
of circles already yields good approximations; we start
by a class of lower bounds.

Theorem 6 Even for a set of collinear points, a best
k-circle solution may be off by a factor of (1 + 1

2k+1 ).

Figure 3: A lower bound of 3
2 for 1-circle solutions.

Proof. Consider the example in Fig. 2. The provided

solution is optimal, as
∑
ri = dist(p0,pn)

2 . Further, for

any integer k ≥ 2 we have d1 = 2
∑k−2
i=0 2i+2k−1 < 2 ·

2k+2k−1 = d2. So the radius rk+1 cannot be changed
in an optimal solution. Inductively, we conclude that
exactly k + 1 circles are needed. Because we only
consider integer distances, a best k-circle solution has
cost Rk ≥ R+ 1, i.e., Rk

R ≥ 1 + 1
2k+1 . �

In the following we give some good approximation
guarantees for CRA using one or two circles.

Lemma 7 Let P a longest path in an optimal con-
nectivity graph, and let em be an edge in P containing
the midpoint of P. Then

∑
ri ≥ max{ 1

2 |P|, |em|}.

Theorem 8 A best 1-circle solution for CRA is a 3
2 -

approximation.

Proof. Consider a longest path P = (p0, . . . , pk) of
length |P| in an optimal connectivity graph. Let
R =

∑
ri be the cost of the optimal solution, and

em = pipi+1 as in Lemma 7. Let d̄i := dist(pi, pk)
and d̄i+1 := dist(p0, pi+1). Then min{d̄i, d̄i+1} ≤
d̄i+d̄i+1

2 = dist(p0,pi)+2|em|+dist(pi+1,k)
2 = |P|

2 + |em|
2 ≤

R+ R
2 = 3

2R. So one circle with radius 3
2R around the

point in P that is nearest to the middle of path P cov-
ers P , as otherwise there would be a longer path. �

Fig. 3 shows that this bound is tight. Using two
circles yields an even better approximation factor.

Theorem 9 A best 2-circle solution for CRA is a 4
3 -

approximation.

Proof. Let P = (p0, . . . , pk) be a longest path in an
optimal connectivity graph. Then

∑
ri ≥ 1

2 |P|. We
distinguish two cases; see Fig. 4.

Case 1. There is a point x on P at a distance
of at least 1

3 |P| from both endpoints. Then there is
a 1-circle solution that is a 4

3 -approximation, and no
2-circle solution of such quality is needed.

Case 2. There is no such point x. Let em =
pipi+1 be defined as in Lemma 7. Further, let
di := dist(p0, pi) and di+1 := dist(pi+1, pk). Then
|em| = |P| − di − di+1 and di, di+1 <

1
3 |P|.

Case 2a. If |em| < 1
2 |P| then di + di+1 = |P| −

|em| > 1
2 |P| > |em|. Set ri := di and ri+1 = di+1,
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... ...

... ...

Figure 4: A best 2-circle solution is a 4
3 -approximate

solution: Case 2a (Top); Case 2b (Bottom).

Figure 5: A non-overlapping optimal solution.

then the path is covered. Since di, di+1 < 1
3 |P| we

have ri + ri+1 = di + di+1 <
2
3 |P| ≤

4
3

∑
ri and the

claim holds.
Case 2b. Otherwise, if |em| ≥ 1

2 |P| then di +
di+1 ≤ 1

2 |P| ≤ |em|. Assume di ≥ di+1. Choose
ri := di and ri+1 := |em| − di. Then P is covered and
ri + ri+1 = di + (|em| − di) = |em|, which is the lower
bound and thus the range assignment is optimal. �

If all points of P lie on a straight line, the approxi-
mation ratio for two circles can further be improved.

Lemma 10 Let P be a subset of a straight line.
Then there is a non-overlapping optimal solution, i.e.,
one in which all circles have disjoint interior.

Proof. An arbitrary optimal solution is modified as
follows. For every two overlapping circles Ci and Ci+1

with centers pi and pi+1, we decrease ri+1, such that
ri + ri+1 = dist(pi, pi+1), and increase the radius of
Ci+2 by the same amount. This can be iterated, until
there is at most one overlap at the outermost circle Cj
(with Cj−1). Then there must be a point pj+1 on the
boundary of Cj : otherwise we could shrink Cj contra-
dicting optimality. Decreasing Cj ’s radius rj by the
overlap l and adding a new circle with radius l around
pj+1 creates an optimal solution without overlap. �

Theorem 11 Let P a subset of a straight line
g. Then a best 2-circle solution for CRA is a 5

4 -
approximation.

Proof. According to Lemma 10 we are, w.l.o.g., given
an optimal solution with non-overlapping circles. Let

Figure 6: A 5
4 -approximate solution with di <

3
4R.

The cross marks the position of the optimal counter-
part p∗i to pi and the grey area sketches Ai.

p0 and pn be the outermost intersection points of the
optimal solution circles and g. W.l.o.g., we may fur-

ther assume p0, pn ∈ P,R =
∑
ri = dist(p0,pn)

2 (oth-
erwise, we can add the outermost intersection point
of the outermost circle and g to P , which may only
improve the approximation ratio). Let pi denote the
rightmost point in P left to the middle of p0pn and
let pi+1 its neighbor on the other half. Further, let
di := dist(p0, pi), di+1 := dist(pi+1, pn) (See Fig. 5).
Assume, di ≥ di+1. We now give 5

4 -approximate so-
lutions using one or two circles that cover p0pn.
Case 1. If 3

4R ≤ di then 5
4R ≥ 2R − di =

dist(pi, pn). Thus, a one-circle solution around pi is
sufficient.

Case 2. If 3
4R > di ≥ di+1 we need two circles to

cover p0pn with 5
4R.

Case 2a. The point pi could be a center point of
an optimal two-circle solution if there was a point p∗i
with dist(Ci, p

∗
i ) = dist(p∗i , pn) = R − di. So in case

there is a p′i ∈ P that lies in a 1
4R-neighborhood of

such an optimal p∗i we get dist(Ci, p
′
i), dist(p′i, pn) ≤

R − di + 1
4R (see Fig. 6). Thus, r(pi) := di, r(p

′
i) :=

R− di + 1
4R provides a 5

4 -approximate solution.
Case 2b. Analogously to Case 2a, there is a point

p′i+1 ∈ P within a 1
4R-range of an optimal counterpart

to pi+1. Then we can take r(pi+1) := di+1, r(p′i+1) :=
R− di+1 + 1

4R as a 5
4 -approximate solution.

Case 2c. Assume that there is neither such a p′i
nor such a p′i+1. Because di, di+1 are in ( 1

4R,
3
4R),

we have 1
4R < R − dj < 3

4R for j = i, i + 1, which
implies that there are two disjoint areasAi, Ai+1, each
with diameter equal to 1

2R and excluding all points
of P . Because pi, the rightmost point on the left half
of p0pn, has a greater distance to Ai than to p0, any
circle around a point on the left could only cover parts
of both Ai and Ai+1 if it has a greater radius than
its distance to p0. This contradicts the assumption
that p0 is a leftmost point of a circle in an optimal
solution. The same applies to the right-hand side.
Thus, Ai ∪ Ai+1 must contain at least one point of
P , and therefore one of the previous cases leads to a
5
4 -approximation. �

Fig. 7 shows that the bound is tight. We believe
that this is also the worst case when points are not on
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Figure 7: A lower bound of 5
4 for 2-circle solutions.

Figure 8: Ratios of the average over all enumerated
trees and of the best 1-circle tree to the optimal

∑
ri.

Results were averaged over 100 trials for each number.

a line. Indeed, the solutions constructed in the proof
of Theorem 11 cover a longest path P in an optimal
solution for a general P . If this longest path consists
of at most three edges, pi(=: p′i+1) and pi+1(=: p′i) can
be chosen as circle centers, covering all of P . How-
ever, if P consists of at least four edges, a solution for
the diameter may produce two internal non-adjacent
center points that do not necessarily cover all of P .

5 Experimental Results

It is curious that even in the worst case, a one-circle
solution is close to being optimal. This is supported
by experimental evidence. For different numbers of
uniformly distributed points, we enumerated all pos-
sible spanning trees using the method described in [2],
and recorded the optimal value with the algorithm
mentioned in Section 2. This we compared with the
best one-circle solution; as shown in Fig. 8, the latter
seems to be an excellent heuristic choice.

6 Conclusion

A number of open problems remain. One of the most
puzzling is the issue of complexity in the absence of
upper bounds on the radii. The strong performance
of the one-circle solution (and even better of solutions
with higher, but limited numbers of circles), and the
difficulty of constructing solutions for which the one-
circle solution is not optimal strongly hint at the pos-
sibility of the problem being polynomially solvable.
One possible way may be to use methods from linear
programming: modeling the objective function and

the variables by linear methods is straightforward;
describing the connectivity of a spanning tree by lin-
ear cut constraints is also well know. However, even
though separating over the exponentially many cut
constraints is polynomially solvable (and hence opti-
mizing over the resulting polytope), the overall poly-
tope is not necessarily integral. On the other hand, we
have been unable to prove NP-hardness without up-
per bounds on the radii, even in the more controlled
context of graph-induced distances.

Other open problems are concerned with the worst-
case performance of heuristics using a bounded num-
ber of circles. We showed that two circles suffice for
a 4

3 -approximation in general, and a 5
4 -approximation

on a line; we conjecture that the general performance
guarantee can be improved to 5

4 , matching the exist-
ing lower bound. Obviously, the same can be studied
for k circles, for any fixed k; at this point, the best
lower bounds we have are 7

6 for k = 3 and 1 + 1
2k+1

for general k. We also conjecture that the worst-
case ratio f(k) of a best k-circle solution approxi-
mates the optimal value arbitrarily well for large k,
i.e., lim

k→∞
f(k) = 1.
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