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1 Introduction

Over the past 20 years, the world of origami has been changed by the
introduction of design algorithms that bear a close relationship to, if not
outright ancestry from, computational geometry. One of the first robust al-
gorithms for origami design was the circle/river method (also called the tree
method) developed independently by Lang [Lang 94,Lang 97,Lang 96] and
Meguro [Meguro 92,Meguro 94]. This algorithm and its variants provide
a systematic method for folding any structure that topologically resembles
a graph theoretic weighted tree. Other algorithms followed, notably one
by Tachi [Tachi 09] that gives the crease pattern to fold an arbitrary 3D
surface.

Hopes of a general approach for efficiently solving all origami design
problems were dashed early on, however, when Bern and Hayes showed in
1996 that the general problem of crease assignment—given an arbitrary
crease pattern, determine whether each fold is mountain or valley—was
NP-complete [Bern and Hayes 96]. In fact, they showed more: given a
complete crease assignment, simply determining the stacking order of the
layers of paper was also NP-complete. Fortunately, even though crease
assignment in the general case is hard, the crease patterns generated by
the various design algorithms carry with them significant extra information
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associated with each crease—enough extra information that the problem of
crease assignment is typically only polynomial in difficulty. This is certainly
the case for the tree method of design [Demaine and Lang 09].

Designing a model using the tree method (or one of its variants) is a
two-step process: the first step involves solving an optimization problem in
which one solves for certain key vertices of the crease pattern, and the sec-
ond step constructs creases following a geometric prescription and assigns
their status as mountain, valley, or unfolded. The process of constructing
the creases and assigning them is definitely polynomial in complexity; but,
up to now, the computational complexity of the optimization has not been
established.

There were reasons for believing that the optimization was, in principle,
computationally intractable. The conditions on the vertex coordinates in
the optimization can be expressed as a packing problem, in which the pack-
ing objects are circles and “rivers,” (which are curves of constant width)
of varying size. It is known that many packing problems are, in fact, NP-
hard, and our intuition suggested that this might be the case for the tree
method optimization problem.

In this paper, we show that this is, in fact, the case. The general tree
method optimization problem is NP-hard. In the usual way with such
problems, we show that any example of a 3-Partition can be expressed as a
tree method problem. At the same time, we show that deciding whether a
given set of circles can be packed into a rectangle, an equilateral triangle,
or a unit square are NP-hard problems, settling the complexity of these
natural packing problems. On the positive side, we show that any set of
circles of total area 1 can be packed into a square of edge length 4/

√
π =

2.2567 . . ..

2 Circle-River Design
The basic circle-river method of origami has been described elsewhere
[Lang 96,Demaine and Lang 09]; we briefly recapitulate it here. As shown
in Figure 1, we are presented with a polygon P ′, which represents the paper
to be folded, and an edge-weighted tree, T , which describes the topology
of the desired folded shape. The design problem is to find the crease pat-
tern that folds P ′ (or some convex subset) into an origami figure whose
perpendicular projection has the topology of the desired tree T and whose
edge lengths are proportional to the edge weights of T . The coefficient of
proportionality m between the dimensions of the resulting folded form and
the specified edge weights is called the scale of the crease pattern. The
optimization form of the problem is to find the crease pattern that has the
desired topology and that maximizes the scale m.
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Figure 1. Schematic of the problem. (a) P ′ is the paper to be folded. (b) T is
an edge-weighted tree that describes the desired shape. (c) A solution to the
optimization problem, showing creases and the ordering graph on the facets.
(d) An x-ray view of the folded form. (e) A visual representation of the folded
form.

Formally, the problem can be expressed as follows. There is a one-to-
one correspondence between leaf nodes {ni} of the tree T and leaf vertices
{vi} of the crease pattern whose projections map to the leaf nodes. We
denote the edges of T by {ej} with edge weights w(ej). For any two leaf
nodes ni, nj ∈ T , there is a unique path pi,j between them; this allows us
to define the path length li,j between them as

li,j ≡
∑

ek∈pi,j

w(ek). (1)
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Figure 2. A star tree (left) and two possible solutions for the leaf vertices (middle
and right). Each solution corresponds to a packing of the circles centered on the
leaf vertices.

We showed previously [Lang 96] that a necessary condition for the ex-
istence of a crease pattern with scale m was that, for all leaf vertices,

|vi − vj | ≥ mli,j , (2)

and subsequently, that with a few extra conditions, Equation (2) was suffi-
cient for the existence of a full crease pattern (and we gave an algorithm for
its construction). The largest possible crease pattern for a given polygon
P ′, then, can be found by solving the following problem:

optimize m subject to

{ |vi − vj | ≥ mli,j for all i, j,
vi ∈ P ′ for all i. (3)

There is a simple physical picture of these conditions: if we surround
each vertex by a circle whose radius is the scaled length of the edge incident
to its corresponding leaf node and, for each branch edge of the tree, we
insert into the crease pattern a curve of constant width (called a river)
whose width is the scale length of the corresponding edge, then Equation (3)
corresponds exactly to the problem of packing the circles and rivers in a
non-overlapping way so that the centers of the circles are confined to the
polygon P ′ and the incidences between touching circles and rivers match
the incidences of their corresponding edges in the tree T .

A special case arises when there are no rivers, such as in the case of
a star tree with only a single branch node, as illustrated in Figure 2. In
this case there are no rivers, and the optimization problem reduces to a
single packing of circles, one for each leaf node, whose radius is given by
the length of the edge incident to the corresponding node.

Thus, several problems in origami design can be reduced to finding
an optimum packing of some number of circles of specified radii within a
square (or other convex polygon). Several examples of such problems (and
their solutions) are described by Lang [Lang 03].

We now show that this circle-packing problem is NP-complete.
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3 Packing and Complexity

Problems of packing a given set of objects into a specific container appear in
a large variety of applied and theoretical contexts. Many one-dimensional
variants are known to be NP-complete (e.g., Bin Packing, where the ob-
jective is to pack a set of intervals of given lengths into as few unit-sized
containers as possible). A special case of Bin Packing that is still NP-
hard is 3-Partition, for which an instance is given by 3n numbers xi with
1/4 < xi < 1/2, and

∑3n
i=1 xi = n. Clearly, n unit-sized containers suffice

for packing the object, iff there is a partition of the xi into n triples that
each have combined weight 1; hence the name 3-Partition. An important
property of the problem is that it is strongly NP-complete: it remains hard
even if there is only a constant number of different values xi [Garey and
Johnson 79].

Like their one-dimensional counterparts, higher-dimensional packing
problems tend to be hard. Typically, the difficulty arises from complicated
container shapes (e.g., a nonsimple polygon to be filled with a large number
of unit squares) or complicated objects (e.g., rectangles of many different
sizes to be filled into a square, which is a generalization of Bin Packing.)
This does not mean that packing simple objects into simple containers is
necessarily easy: for some such problems, it is not even known whether
they belong to the class NP. One example is the problem of Pallet Loading,
deciding whether n rectangles of dimensions a × b can be packed into a
larger rectangle of dimensions A × B, for positive integers n, a, b, A,B; it
is open whether the existence of any feasible solution implies the existence
of a packing that can be described in space polynomial in the input size
log n+ log a+ log b+ logA+ logB, as the two different orientations of the
small rectangles may give rise to complicated patterns. (See Problem #55
in The Open Problems Project, [Demaine et al. 04].)

None of these difficulties arises when a limited number of simple shapes
without rotation, in particular, different squares or circles, are to be packed
into a unit square. Leung et al. [Leung et al. 90] managed to prove that the
problem of Square Packing, deciding whether a given set of squares can be
packed into a unit square, is an NP-complete problem. Their proof is based
on a reduction of the 3-Partition problem mentioned above: any 3-Partition
instance Π3p can be encoded as an instance Πsp of Square Packing, such
that Πsp is solvable iff Π3p is, and the encoding size of Πsp is polynomial in
the encoding size of Π3p. Membership in NP is not an issue, as coordinates
of a feasible packing are integers of a description size polynomial in the
encoding size of Πsp.

In the context of circle/river origami design, we are particularly inter-
ested in the problem of Circle Packing: given a set of n circles of a limited
number of different sizes, decide whether they can be packed into a unit
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square. More precisely, we are interested in Circle Placement: given a set
of n circles, place the circle centers on the paper, such that the overall circle
layout is nonoverlapping. Clearly, this feels closely related to Square Pack-
ing, so it is natural to suspect NP-completeness. However, when packing
circles, another issue arises: tight packings may give rise to complicated
coordinates. In fact, the minimum size Cn of a Cn × Cn square that can
accommodate n unit circles is known only for relatively moderate values
of n; consequently, the membership of Circle Packing in NP is wide open.
(At this point, n = 36 is the largest n for which the exact value of Cn is
known; see [Specht 10] for the current status of upper and lower bounds
for n ≤ 10, 000.)

Paradoxically, this additional difficulty has also constituted a major
roadblock for establishing the NP-hardness of Circle Packing, which re-
quires encoding desired combinatorial structures as appropriate packings:
this is hard to do when little is known about the structure of optimal
packings.

The main result of this paper is to describe an NP-hardness proof of
Circle Placement, based on a reduction of 3-Partition; it is straightforward
to see that this also implies NP-hardness of Circle Packing. In Section 4,
we describe the key idea of using symmetric 3-pockets for this reduction: a
triple of small “shim” circles Ci1 , Ci2 , Ci3 and a medium-sized “plug” circle
can be packed into such a pocket iff the corresponding triple of numbers
xi1 , xi2 , xi3 add up to at most 1. In the following sections, we show
how symmetric 3-pockets can be forced for triangular paper (Section 5),
for rectangular paper (Section 6), and for square paper (Section 7). The
technical details for the proof of NP-hardness are wrapped up in Sections 8
and 9, in which we sketch additional aspects of filling undesired holes in the
resulting packings, approximating the involved irrational coordinates, and
the polynomial size of the overall construction. On the positive side, we
show in Section 10 that circle packing becomes a lot easier if one is willing
to compromise on the size of the piece of paper; we prove that any given
set of circles of total area at most 1 can easily and recursively be packed
into a square of edge length 4/

√
π = 2.2567 . . ..

4 Symmetric 3-Pockets
Our reduction is based on the simple construction shown in Figure 3. It
consists of a symmetric 3-pocket as the container, which is the area bounded
by three congruent touching circles. Into each pocket, we pack a medium-
sized circle (plug) that fits into the center, and three small identical circles
(shims) that fit into the three corners left by the plug. Straightforward
trigonometry (or the use of Proposition 2 in Section 8) shows that for a
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Figure 3. A symmetric 3-pocket with plug and shims.

pocket formed by three unit circles, the corresponding size is 2/
√
3 − 1 =

0.1547... for the plug; the value for the shims works out to 1/(5 +
√
3 +

2
√
7 + 4

√
3) = 0.07044....

Clearly, this packing is unique, and the basic layout of the solution does
not change when the plug is reduced in size by a tiny amount, say, ε =
1/N for a suitably big N , while each shim is increased by a corresponding
amount that keeps the overall packing tight. This results in a radius of rp
for each plug, and a radius of rs for each shim.

Now consider the numbers xi for i = 1, . . . , 3n, constituting an in-
stance of 3-Partition. We get a feasible partition iff all triples (i1, i2, i3)

are feasible, i.e.,
∑3

j=1 xij = 1. By introducing x′
i = 1/3 − xi and using∑3n

i=1 xi = n, it is easy to see that a partition is feasible iff
∑3

j=1 x
′
ij

≤ 0

for all triples (i1, i2, i3). Note that a 3-Partition instance involves only a
constant number of different sizes, so there is some δ > 0 such that any
infeasible triple (i1, i2, i3) incurs

∑3
j=1 x

′
ij
≥ δ. By picking N large enough,

we may assume δ > ε.
As a next step, map each xi to a slightly modified shim Si by picking

the shim radius to be ri = rs − x′
i/N

2. We make use of the following
elementary lemma; see Figure 4.

Lemma 1. Refer to Figure 4. Consider an equilateral triangle Δ = (v1, v2, v3)
bounded by the lines �1, �2, �3 through the triangle edges e1, e2, e3. For an
arbitrary point p, let dj be the distance of p from �j. Define yj = dj if p is
on the same side of �j as Δ, and yj = −dj if p is separated from Δ by �j.

Then
∑3

j=1 yj is independent of the position of p.

Proof: Consider the three triangles (v1, v2, p), (v2, v3, p), (v3, v1, p). Their
areas are d3/2, d1/2, d2/2, hence d1/2+ d2/2+ d3/2 is always equal to the
area of Δ, i.e., a constant. �
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Figure 4. For an equilateral triangle, the sum of distances from the three sides is
a constant.

The crucial argument for our reduction is the following:

Lemma 2. A set of three shims Si1 , Si2 , Si3 and a plug P of radius rp can

be packed into a 3-pocket, iff
∑3

j=1 x
′
ij
≤ 0, i.e., if (i1, i2, i3) is feasible.

Proof: Refer to Figure 5. Let c be the center point of the pocket. For each
of the three corners of the pocket, consider the two tangents T 1

ij
and T 2

ij
between an unmodified shim of radius rs and the touching pocket boundary;
let 2φ ∈]0, π[ be the angle enclosed by those two tangents. (If the pocket
were an equilateral triangle, we would get φ = π/6; the exact value for
pockets with circular boundaries can be computed, but the exact value
does not matter.)

Now consider the shim motion arising by modifying rs by x′
ij
/N2, while

keeping the shim tightly wedged into the corner. This moves its center point
pij along the bisector b between T 1

ij
and T 2

ij
. Let c = 1/ sinφ. Considering

the first-order expansion of the shim motion, we conclude that pij moves
by c× x′

ij/N
2 +Θ(1/N4) along b, to a position qj .

Finally, refer to Figure 6 and consider the possible placement of a plug
after placing the modified shims Si1 , Si2 , Si3 into the the three corners;
this requires finding a point within the pocket that has distance at least
rp + rs − x′

ij
/N2 from each pij . For this purpose, consider the circle Cij

of radius rp + rs − x′
ij
/N2 around each pij . As shown in Figure 7, let tij
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Figure 5. Changing the size of a shim.
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Figure 6. Finding a feasible placement for the plug.
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Figure 7. The existence of a feasible placement for the plug depends on the sum
of distances of c from the sides of Δ. (Distances are not drawn to scale so that
circles and tangents can be distinguished; in reality, they are much closer.)

be the tangent to Cij at the point closest to c; let dij be the distance of c
to tij . If we define yij = dij for c is outside of Cij , and yij = −dij for c is
inside of Cij , then yij = −((c+1)×x′

ij/N
2+Θ(1/N4)). Now consider the

set Δ of points separated by ti1 from pi1 , ti2 from pi2 , ti3 from pi3 . Making
use of Lemma 1, we conclude that Δ is a nonempty isosceles triangle, iff∑

yij ≥ 0, i.e., iff
∑

x′
ij/N

2−Θ(1/N4) ≤ 0. Given that
∑

x′
ij > 0 implies∑

x′
ij

≥ δ > 1/N , we conclude that
∑

x′
ij

≤ 0 implies the existence of a
feasible packing.

Conversely, consider
∑

x′
ij

> 0. Given that each ti1 has a distance

Θ(1/N2) from c, we observe that the corners of the triangle formed by
ti1 , ti2 , ti3 are within Θ(1/N4) from Ci1 , Ci2 , Ci3 . However, because∑

x′
ij ≥ δ > 1/N , we conclude that any point of Δ is at least Θ(1/N3)

from being feasible. This implies that there is no feasible placement for the
plug, concluding the proof. �

5 Triangular Paper
For making use of Lemma 2 and completing the reduction, we need to
define a set of circles (called rocks) that can only be packed in a way that
results in a suitable number of 3-pockets. In the case of triangular paper,
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Figure 8. The unique packing of (k + 2)(k + 1)/2 unit circles into an equilateral
triangle of edge length 2k leaves k2 identical symmetric 3-pockets.

this is relatively easy by making use of a result by Graham [Folkman and
Graham 69].

Proposition 1. An equilateral triangle of edge length 2k has a unique packing
of (k + 2)(k + 1)/2 unit circles; this uses a hexagonal grid pattern, placing
circles on the corners of the triangle. (See Figure 8.)

This creates
∑k

i=1(2i − 1) = k2 symmetric 3-pockets. After handling
some issues of accuracy and approximation (which are discussed in Sec-
tion 9), we get the desired result.

Theorem 1. Circle/river origami design for triangular paper is NP-hard.

As a corollary, we get the following:

Corollary 1. It is NP-hard to decide whether a given set of circles can be
packed into an equilateral triangle.

6 Rectangular Paper
Similar to triangular paper, it is easy to force a suitable number of symmet-
ric 3-pockets for the case of rectangular paper; see Figure 9. Disregarding
symmetries, 2k unit circles can be packed into an 2k − 1 by

√
3 rectangle

only in the manner shown. This creates 2k− 2 symmetric 3-pockets, which
can be used for the hardness proof.
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Figure 9. Packing 2k unit circles into a rectangle of dimensions 2k − 1 and
√
3

leaves 2k − 2 identical symmetric 3-pockets.

Because the input created for encoding an instance Π3p of 3-Partition
needs to be a set of rationals whose size is bounded by a polynomial in the
encoding size of Π3p, the irrational numbers need to be suitably approx-
imated without compromising the overall structure. This is discussed in
Section 9. As a consequence, we get the following:

Theorem 2. Circle/river origami design for rectangular paper is NP-hard.

This yields the following easy corollary:

Corollary 2. It is NP-hard to decide whether a given set of circles can be
packed into a given rectangle.

7 Square Paper
Setting up a sufficient number of symmetric 3-pockets for square paper is
slightly trickier: there is no infinite family of positive integers n for which
the optimal patterns of packing n unit circles into a minimum-size square
are known. As a consequence, we make use of a different construction;
without loss of generality, our piece of paper is a unit square.

As a first step, we use four large circles of radius 1/2, creating a sym-
metric 4-pocket, as shown in Figure 10. A circle of radius (

√
2− 1)/2 has a

unique feasible placement in the center of the pocket, leaving four smaller
auxiliary pockets, as shown. Now we use 12 identical “plug” circles and
four slightly smaller “fixation” circles, such that three plugs and one shim
have a tight packing, as shown in the figure. For these, it is not hard to
argue that not more than three plugs fit into an auxiliary pocket, ensuring
that precisely three must be placed into each pocket. Moreover, it can
be shown that at most one additional shim can be packed along with the
three plugs; this admits precisely the packing shown in Figure 10, creating a
symmetric 3-pocket in each auxiliary pocket. In addition, we get a number
of undesired asymmetric pockets, which must be used for accommodating
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Figure 10. A gadget for creating identical triangular pockets. This set of 13 circles
has a unique packing into a symmetric 4-pocket, creating four smaller symmetric
3-pockets, indicated by arrows.

appropriate sets of “filling” circles, leaving only small gaps that cannot be
used for packing the circles that are relevant for the reduction.

As shown in Figure 11, we can use a similar auxiliary construction
(consisting of 13 circles) for the 3-pockets in a recursive manner in order
to replace each symmetric 3-pocket by three smaller symmetric 3-pockets.

Figure 11. A gadget for creating multiple identical triangular pockets. This set of
13 circles has a unique packing into a symmetric 3-pocket, creating three smaller
symmetric 3-pockets, indicated by arrows.
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The argument is analogous to the one for 4-pockets. Again, additional
filling circles are used; these do not compromise the overall structure of the
packing, as the overall argument holds.

Theorem 3. Circle/river origami design for square paper is NP-hard.

This yields the following easy corollary.

Corollary 3. It is NP-hard to decide whether a given set of circles can be
packed into a given square.

8 Filling Gaps
The constructions shown create a number of additional gaps in the form of
asymmetric 3-pockets. Each is bounded by three touching circles, say, of
radius r1, r2, r3. By adding appropriate sets of “filler” circles that precisely
fit into these pockets, we can ensure that they cannot be exploited for
sidestepping the desired packing structure of the reduction. Computing
the necessary radii can simply be done by using the following formula.

Proposition 2. The radius r of a largest circle inscribed into a pocket formed
by three mutually touching circles with radii r1, r2, r3 satisfies

1/r = 1/r1 + 1/r2 + 1/r3 + 2
√
1/r1r2 + 1/r1r3 + 1/r2r3.

Note that the resulting r is smaller than the smallest ri, and at least
a factor of 3 smaller than the largest of the circles. Therefore, computing
the filler circles by decreasing magnitude guarantees that all gaps are filled
in the desired fashion, and that only a polynomial number of such circles
is needed.

9 Encoding the Input
To complete our NP-hardness proof for Circle Placement, we still need
to ensure that the description size of the resulting Circle Placement is
polynomial in the size of the input for the original 3-Partition. It is easy
to see from the previous discussions that the total number of circles re-
mains polynomial. This leaves the issue of encoding the radii themselves:
if we insist on tightness of all packings, we get irrational numbers that
can be described as nested square roots. As described in Section 4, the
key mechanisms of our construction still work if we use a sufficiently close
approximation. This allows us to use sufficiently tight approximations of
the involved square roots in other parts of the construction, provided the
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involved computations are fast and easy to carry out. For our purposes,
even Heron’s quadratically converging method (which doubles the number
of correct digits in each simple iteration step) suffices.

10 A Positive Result
Our NP-hardness results imply that there is little hope for a polynomial-
time algorithm that computes the smallest possible triangle, rectangle or
square for placing or packing a given set of circles. However, it is possible to
guarantee the existence of a feasible solution, if one is willing to use larger
paper. In fact, we show that a square of edge length 4/

√
π = 2.2567 . . .

suffices for packing any set of circles that have total area 1.

Theorem 4. Consider a set SC of circles of total area 1, and a square S of
edge length 4/

√
π. Then SC can be packed into S.

Proof: Refer to Figure 12. For each circle Ci of radius ri, let ni be chosen
such that γ/2ni+1 < ri ≤ γ/2ni. Hence, replacing each Ci by a square Si

of size γ/2ni increases the edge length by a factor of at most γ = 4/
√
π.

Now a recursive subdivision of S into sub-squares of progressively smaller
size can be used to pack all squares Si, showing that all circles Ci can be
packed. �

Figure 12. A quad-tree packing guarantees that any set of circles of total area at
most 1 can be packed into a square of edge length γ = 4/

√
π = 2.2567 . . ..
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Figure 13. A lower-bound example for packing circles: two circles of area 1/2
require a square of edge length at least 1.362 . . ..

11 Conclusions
In this paper, we have proven that even the aspect of circle packing in
circle/river origami design is NP-hard. On the positive side, we showed
that the size of a smallest sufficient square for accommodating a given set
of circles can easily be approximated within a factor 2.2567 . . .. A number
of interesting open questions remain:

• Our 2.2567-approximation is quite simple. The performance guar-
antee is based on a simple area argument. This gives rise to the
following question: what is the smallest square that suffices for pack-
ing any set of circles of total area 1? We believe the worst case
may very well be shown in Figure 13, which yields a lower bound
of (1 +

√
2)/

√
π = 1.362 . . .. There are ways to improve the upper

bound; at this point, we can establish 2
√
2/
√
π = 1.5957 . . . [Demaine

and Fekete 10].

• The same question can be posed for placing circles instead of packing
them.

• The approximation of circle packing does not produce a “clustered”
layout, as required by circle/river origami design, where objects that
are close in the hierarchy should be placed in close proximity. In
the absence of rivers, we can reproduce the quad-tree packing in this
context by making use of a space-filling curve.
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• We do not know yet, however, how to approximate the necessary
paper size in the presence of rivers of positive width.

Acknowledgments. We thank Ron Graham for several helpful hints concern-
ing the state of the art on packing circles. We also thank Vinayak Pathak
for pointing out a numerical typo related to Figure 13.
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