Report No. 95.206

Finding All Anchored Squares in a Convex Polygon in Subquadratic Time

by

Sándor P. Fekete

1995

A previous version appeared in: Proceedings of the 4th Canadian Conference on Computational Geometry, 1992

Sándor P. Fekete Center for Parallel Computing Universität zu Köln D–50923 Köln GERMANY

1991 Mathematics Subject Classification: 52A10, 52B55, 68Q20, 68U05 Keywords: theoretical computer science, computational geometry, polygons, convex sets, inscribed squares, pattern recognition

Finding All Anchored Squares in a Convex Polygon in Subquadratic Time

Sándor P. Fekete
Center for Parallel Computing
Universität zu Köln
D-50923 Köln
Germany
sandor@zpr.uni-koeln.de

Abstract

We present an $O(n \log^2 n)$ method that finds all squares inscribed in a convex polygon with n vertices such that at least one corner lies on a vertex of the polygon.

Keywords: Computational geometry, polygons, convex sets, inscribed squares, pattern recognition

1 Introduction

Approximating a polygon with a simpler shape is a problem that has received a considerable amount of attention. Finding *inscribed* polygons has applications to pattern recognition, as well as being of theoretical interest in computational geometry. In [2], De Pano, Ke and O'Rourke have described an $O(n^2)$ algorithm for finding the largest inscribed square in a convex polygon \mathcal{P} with n vertices.

The interest in inscribed squares has also been highlighted by Klee in his recent book [7].

Of particular interest are squares that are *anchored*: One corner of the square is located at a vertex of the polygon. While it is relatively easy to find anchored squares in quadratic time, it is nontrivial even to find all squares formed by the $O(n^2)$ diagonals of \mathcal{P} in subquadratic time.

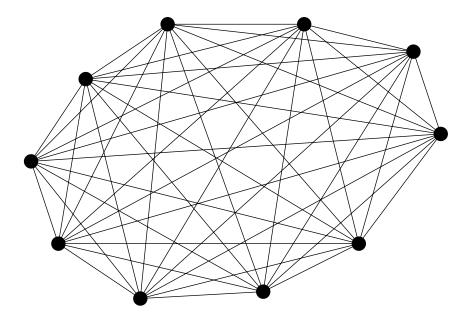


Figure 1: Pattern Recognition: Is there a square among the diagonals of \mathcal{P} ?

2 Inscribed Squares and Dual Curves

In the following, we denote the corners of a square by s_1 , s_2 , s_3 and s_4 in counterclockwise order. The vertices of \mathcal{P} are counterclockwise v_1, \ldots, v_n , while the edges are e_1, \ldots, e_n , where e_i has vertices v_i and v_{i+1} .

Let α be any point on a convex polygon \mathcal{P} . For any point p on \mathcal{P} , placing s_1 at α and s_2 at p positions s_3 at the point $R_{\alpha}(p)$. Obviously, $R_{\alpha}(p)$ is obtained by scaling the distance of p from α by a factor of $\sqrt{2}$ and rotating the resulting point by $\frac{\pi}{4}$ counterclockwise around α . Consequently, the locus $R_{\alpha}(\mathcal{P})$ of all possible positions of s_3 for s_1 at p and s_2 on \mathcal{P} is a scaled and rotated copy of \mathcal{P} , called the right dual curve to \mathcal{P} .

Similarly, the left dual curve $L_{\alpha}(\mathcal{P})$ of \mathcal{P} is the locus of all positions of s_3 with s_1 at α and s_4 on \mathcal{P} and obtained by scaling \mathcal{P} by $\sqrt{2}$ and a clockwise rotation of $\frac{\pi}{4}$ around α .

It is straightforward to verify the following lemma:

Lemma 2.1 There is a one-to-one correspondence between squares inscribed in \mathcal{P} anchored at α and points other than α where all three curves \mathcal{P} , $R_{\alpha}(\mathcal{P})$ and $L_{\alpha}(\mathcal{P})$ intersect.

Before we describe how to use the dual curves for locating anchored squares, we note the following:

Theorem 2.2 Let c be a closed convex curve in the plane and α be some extreme point on c. There is at most one square inscribed in c that is anchored at α .

Proof:

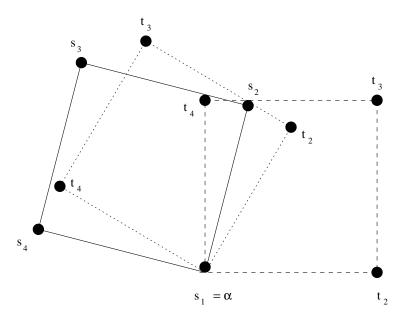


Figure 2: There is at most one inscribed square that is anchored at α

Assume there is an anchored square with corners $s_1 = \alpha$, s_2 , s_3 and s_4 - see Figure 2. It is not hard to check that it is impossible to place another square with vertices $t_1 = \alpha$, t_2 , t_3 and t_4 , such that the seven points α , s_2 , s_3 , s_4 , t_2 , t_3 and t_4 form a convex arrangement.(One of the points s_2 , s_4 will lie inside the square (α, t_2, t_3, t_4) or one of t_2 , t_4 will lie inside the square (α, s_2, s_3, s_4) .)

We distinguish two kinds of intersections between the dual curves: Simple intersections, where an intersection point can be separated from all other intersection points, and nonsimple intersections, which consist of a common segment of the polygons $R_{\alpha}(\mathcal{P})$ and $L_{\alpha}(\mathcal{P})$. Clearly, we get a nonsimple intersection only if there are two edges of \mathcal{P} that enclose an angle of $\frac{\pi}{2}$ and have the same distance from α . This property enables us to check all nonsimple intersections in time $O(n \log n)$:

```
Algorithm Nonsimple for each edge e_i of \mathcal{P} do if there is an edge e_j enclosing an angle of \frac{\pi}{2} with e_i.

Determine the unique point p_i on \mathcal{P} that has the same positive distance from e_i and e_j.

Check whether R_{p_i}(e_i) and L_{p_i}(e_j) intersect on \mathcal{P}.

return End of Nonsimple.
```

Note that NONSIMPLE detects even those inscribed squares with corresponding nonsimple intersections that are not anchored at a vertex of the polygon \mathcal{P} .

3 Simple Intersections

We will now discuss the problem of detecting inscribed squares with corresponding simple intersection of the dual curves.

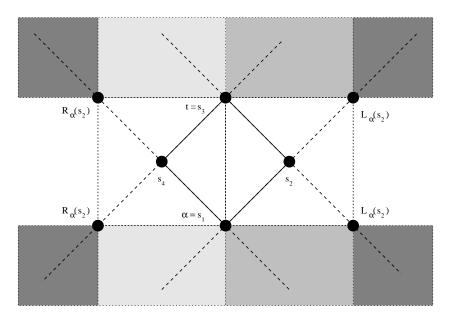


Figure 3: The situation for a square with a simple intersection

Assume α is an anchor point for which there exists an inscribed square with a simple intersection point t; see Figure 3. (The shaded areas indicate areas that cannot contain any part of $R_{\alpha}(\mathcal{P})$, or $L_{\alpha}(\mathcal{P})$ rsp., because of convexity.) We see that as a consequence of convexity of \mathcal{P} , $R_{\alpha}(\mathcal{P})$ and $L_{\alpha}(\mathcal{P})$, any other intersection point t' of the dual curves must satisfy $|\angle(t',\alpha,t)| > \frac{\pi}{4}$. Furthermore, for any two other such intersection points t' and t'', we get $|\angle(t',\alpha,t'')| < \frac{\pi}{4}$. Finally, we see that the two dual curves cross each other at t.

This implies the following algorithm:

```
Algorithm Square use Nonsimple to detect all nonsimple intersections. for each vertex v_i of \mathcal P do if no nonsimple intersection t' for anchor point v_i, use binary search to determine a simple intersection point t'. if intersection point t' does not yield square, Use binary search on \{t \in L_\alpha(\mathcal P) \mid \frac{\pi}{4} < |\angle(t,\alpha,t')|\} to detect any simple intersection point t corresponding to an inscribed square. return all squares Q_i. End of Square.
```

For the binary searches, we use the following idea:

Consider a ray from α through a vertex of $L_{\alpha}(\mathcal{P})$. In time $O(\log n)$, determine the (unique) intersection point $q \neq \alpha$ with $R_{\alpha}(\mathcal{P})$. If q lies outside $L_{\alpha}(\mathcal{P})$, an intersection must lie clockwise from q, as seen from α . If q lies inside $L_{\alpha}(\mathcal{P})$, an intersection must lie counterclockwise from q, as seen from α . When we are left with an edge as our search interval, we can calculate the intersection point.

Using this binary search on the vertices of $L_{\alpha}(\mathcal{P})$, we get an overall complexity of $O(n \log^2 n)$.

4 Conclusion

We have presented an $O(n \log^2 n)$ algorithm for determining all anchored squares inscribed in a convex polygon with n vertices. It is an open question whether there is a lower bound of $\Omega(n \log n)$; in that case, it would be particularly nice to improve our algorithm to $O(n \log n)$. This might be possible with a more sophisticated approach for locating simple intersections of the two dual curves.

Another interesting question is to give a subquadratic algorithm for finding maximal inscribed squares that are not anchored, i.e. that have no corners on vertices. This would improve the method of [2] for finding maximal inscribed squares to quadratic running time. It remains an open question whether there can be a superlinear number of maximal squares of this type.

Our method can be immediately generalized for finding inscribed rectangles with a given ratio of sides. Other quadrangles make it necessary to give some more specifications - we have omitted a detailed discussion at this point. It is not true for general convex quadrangles that there can only be one similar inscribed copy anchored at a vertex. (Theorem 2 cannot even be generalized to rhombi, i.e. quadrangles with four equal sides.)

We do conjecture, however, that the overall number of anchored quadrangles will still be linear.

Acknowledgements

I would like to thank Naji Mouawad for first bringing the problem to my attention and him and Sven Schuierer for taking part in some fruitful discussions; Jit Bose and Karen Daniels for helping to find mistakes in a preliminary version; Victor Klee and Stephen Wright for pointing out connections to previous work.

References

- [1] C. Christensen, Kvadrat indskrevet i konveks figur, Matematisk Tiddskrifft B, 1950 (1950) 22-26.
- [2] N.ADLAI DE PANO, YAN KE, JOSEPH O'ROURKE Finding largest inscribed equilateral triangles and squares, *Proceedings of the 1987 Allerton Conference*, 869–878. (Also submitted to Internat.Jour.of Comput.Geom.)
- [3] R.L.DRYSDALE, J.W.JAROMCZYK, A note on lower bounds for the maximum area and maximum perimeter k-gon problems *Inf.Proc.Letters*, **32** (1989), 301–303.
- [4] A. EMCH, Some properties of closed convex curves in a plane, American Journal of Mathematics, 35 (1913) 407–412.
- [5] A. EMCH, On the medians of a closed convex polygon, American Journal of Mathematics, 37 (1915) 19-28.
- [6] S.P.FEKETE Finding All Anchored Squares in a Convex Polygon in Subquadratic Time, *Proceedings of the Fourth CCCG*, 1992, 71-76.
- [7] V. Klee, Old and new unsolved problems in plane geometry and number theory, Mathematical Association of America, 1991.