
Shared Information Spaces for Small Devices: The
SWARMS Software Concept

Jochen Koberstein, Norbert Luttenberger Carsten Buschmann, Stefan Fischer
Dept. for Computer Science Institute of Operating Systems
and Applied Mathematics and Computer Networks

Christan-Albrechts-University in Kiel Technical University at Braunschweig
Christian-Albrechts-Platz 4 Mühlenpfordtstr. 23

D-24098 Kiel D-38106 Braunschweig
{jko|nl}@informatik.uni-kiel.de {buschmann|fischer}@ibr.cs.tu-bs.de

1 Introduction

In sensor networks [ASSC02]–and also other environments with small devices–the classi-
cal client/server co-operation paradigm does no longer seem to be adequate for a number
of reasons: (1) Sensor nodes communicate via unreliable wireless media; thus clients can-
not rely on the accessibility of “their” servers. (2) Typical request/response protocols for
client/server co-operation are built upon point-to-point message exchange. The commu-
nication in wireless sensor networks should exploit the broadcast nature of the wireless
medium which inherently proposes to let more than one neighbour receive the same mes-
sage. (3) For mobile sensor networks it cannot be assumed that services offered by a node
remain accessible for a certain amount of time. Complex service discovery and routing
protocols cause a significant increase in bandwidth and power consumption hardly accept-
able for resource-constraint sensor networks.

Therefore we propose a different co-operation concept namely the distributed virtual Shared
Information Space (dvSIS). In the following section we elaborate on this concept. In sec-
tion 3 we introduce related basic technologies. These re-occur in an adapted application
development process which is shown in section 4.

2 The dvSIS Co-operation Paradigm

We assume the nodes of a sensor network to behave like a swarm: its members fol-
low a common operation goal requiring their co-operation which is based upon–at least
partial–common knowledge about the operational environment and swarm state. This
view on the co-operation of the nodes of a sensor network is clearly distinct from e.g.
[IGE00, SPMC04] who assume a “star-shaped” co-operation with a number of sensor

nodes reporting to a central data sink. Our view is adequate for sensor networks with in-
network data pre-processing and for sensor/actor networks where the execution of actions
must respect not only local but regional knowledge.

Shared information is usually stored in a common place which is accessible to all partici-
pants. For reasons given in the introduction this place should not be a physical, centralized
place–we advocate a distributed virtual place. To share information a swarm establishes a
distributed virtual Shared Information Space. Every swarm node holds a local instance of
the dvSIS, which may be incomplete, partially obsolete, or inconsistent with the local in-
stances of other nodes. By giving up hard requirements on consistency and completeness
the dvSIS does not depend on any centralized infrastructure like an information hub. The
dvSIS is the union of all its local instances; it exists as an abstraction only.

The dvSIS contains information about the swarm state and configuration as well as on
environmental observations. It consists of semi-structured, self-describing information
elements which are augmented with syntactic and semantic meta-information describing
the context of data acquisition (such as position and reliability) or the data itself (such
as the level of aggregation or scope). To make a sensor node’s contribution to the dvSIS
available to all other sensor nodes the information is flooded in the network by broadcast
message transfer. To avoid redundant data transmission the nodes adhere to a content-
based flooding control scheme according to the XCast abstract model [KRL04].

Against all concerns with respect to related overhead we decided to model the dvSIS as an
XML-coded document. This language technology offers a rich wealth of modelling and
processing features among which the capability to define formal grammars for documents
is not the least. It enables validation of documents and support for information centric
application development. In addition the semi-structured and self-describing nature of
XML documents facilitates information processing like merging documents or keeping
information up-to-date. Following this approach the dvSIS structure formally is described
by an XML Schema [BM01]. A dvSIS XML Schema instance is obviously application
specific; it covers three kinds of XML instance documents: (1) the union of all information
components being shared among the swarm nodes, (2) the information being held by a
single swarm member (“local views on dvSIS”) and (3) information elements to be sent as
messages (“message instances”).

3 XML processing on small devices

A single XML-coded sensor reading may consist of 100 to 200 Bytes depending on the
contextual information supplied and tag sizes. So how does this concur with small resource
constraint devices–nowadays with about 2 or 4 Kbytes of RAM?

In traditional approaches for handling XML instances two main streams have emerged.
The first one is based upon DOM [HHW+02] and maps the documents complete tree
hierarchy into a memory representation before the application works on it. This is–as
motivated above–not a viable way for resource constraint devices.

The alternative approach is to report parsing events related to lexical units of an XML

document to the application by invoking predefined call-back functions. The application
thus processes received data without building the document’s complete tree. Well known
for this processing model is the Simple API for XML (SAX). For message decoding this
strategy leads to considerable memory savings, since messages can be transformed on-the-
fly from an XML into a local representation, and possibly merged with locally available
information; irrelevant information can even be dropped. Unfortunately the SAX provided
call-backs are un-typed which implies two drawbacks: (1) the application has to figure out
the type of the received content by itself and (2) the schema must be made accessible
during runtime for validation purposes.

Enhancing the event based approach towards a typed event based approach seems to be
the most promising solution for small devices: (1) the event based approach allows con-
densing space consuming XML coded data into memory saving internal representations at
the earliest possible moment (2) the adaptation of the API to an application specific XML
schema makes code shorter and faster while avoiding the need for accessing the schema at
runtime, and (3) validation may inherently be provided.

4 Application Software Development Process

Following the above presented conceptual ideas the so-called <<ASTAX framework has
been developed (read: CCASTAX). This framework has two main components: STAX/g
and STAX/p, where STAX stands for “Simple Typed API for XML”. STAX/g is a gener-
ator which (1) generates code for a validating parser (STAX/p) and (2) interfaces for the
typed call-backs based upon a given XML schema). STAX/p is built upon a new class
of automata, called Cardinality Constraint Automata (CCA) which are in some depth ex-
plained in [RL02]. At runtime, the parser “links” parsing events to the typed call-back
functions generated by STAX/g. These interfaces form an event-based API that maps the
defined XML type hierarchy onto programming language constructs (explained by an ex-
ample below). These handlers need to be “filled in” by the application developer, as well
as application specific XCast components. An overview is given in figure 1.

Built upon the availability of the <<ASTAX framework, a straightforward software de-
velopment process for dvSIS-based application software can be defined. It comprises a
sequence of three initial steps: The first and constituting step is the specification of the dv-
SIS, formalized in an XML Schema that defines type and structure of all information items
contained in the dvSIS and all related message formats. In the second step, this schema
is fed into STAX/g yielding the validating parser STAX/p plus its controlling CCA au-
tomaton, and a collection of typed call-back interfaces. In the third step, the application
programmer implements and tests the call-backs. This step is followed–as usual–by the
deployment, operation, and maintenance phases, adhering to common software develop-
ment methodologies.

The <<ASTAX framework supports generation of Java and C Code. Generating C code
with STAX/g targets typical sensor nodes. The generated C code is splitted in implemen-
tation and header files (.c- and .h-files) which contain function headers and empty function

STAX/gSTAX/p CCA

XML
Schema

Programming of
the application

XCast

event
driven appl.

local
dvSIS

view

events

receivesend

runtime "compile−time"

extract merge

interfaces

Figure 1: The information centric application development process

bodies. These functions are invoked as call-backs by STAX/p when encountering lexical
units (e.g. XML start tags, end tags, attributes and character data) which validate against
the given schema. For each XML element and attribute defined in the XML Schema a
seperate corresponding .c-file and a .h-file is generated. A .c-file for a complexType com-
prises so-called create and add functions for its child elements and its attributes. A
.c-file for a simpleType or an attribute comprises only a so-called setContent function.
For the document’s root element a .c-file called Start.c is generated by default which con-
tains the appropriate functions. Additionally so-called contains and merge call-backs
can be generated for complexTypes for information aggregation [LRK04]. Table 1 gives
an example: on its left side a fragment of an XML document encoding a sensor read-
ing is depicted. The sequence of call-back invocations when parsing and validating this
document is shown on the right side of the table.

<dvSIS> → Start.c: create dvSIS()
<temp scale=”Celsius”> → dvSIS.c: create temp ()

temp.c: create scale()
scale.c: setContent(“Celsius”)
temp.c: add scale(..)

32 → temp.c: setContent(32)
</temp> → dvSIS.c: contains temp(..)

dvSIS.c: add temp(..) or merge temp(..)
</dvSIS> → Start.c: add dvSIS(..)

Table 1: Sequence of function calls generated when parsing an instance document.

The C code generated by STAX/g may be compiled for a wide variety of platforms in-
cluding e.g. the Texas Instruments MSP430 processor which is for example used on the
Embedded Sensor Boards [ESB] developed at the FU Berlin, Germany. The MSP430 pro-
vides UARTs which may be used for wireless communication tasks. Receiving a byte

triggers an interrupt which leads to the execution of the corresponding interrupt service
routine (ISR). To continuously receive data this routine must return in time. Since STAX/p
directly calls application functions STAX/p is decoupled from the ISR by an event queue.
The ISR recognizes lexical units only and schedules related events for further processing,
i.e. validation and application execution.

For a first proof of concept we have written an XML Schema corresponding to the set
of sensors provided by the above mentioned Embedded Sensor Boards. Compiling the
generated validating parser in conjunction with the ISR leads to a program code size of
about 8 Kbytes. Obviously this heavily depends on the schema’s complexity.

5 Outlook

Next steps are the development of a number of demo applications. Our plan is also to
study more space saving message encodings delivering similar language support as XML.

References

[ASSC02] Akyildiz, I., Su, S., Sankarasubramanian, Y., and Cayirci, E.: Wireless Sensor Net-
works; A Survey. Computer Networks. 38(4):393–422. March 2002.

[BM01] Biron, P. V. and Malhotra, A. XML Schema Part 2: Datatypes. http://www.w3.
org/TR/xmlschema-2/. May 2001.

[ESB] Website of the Embedded Sensor Board (ESB). http://www.scatterweb.com.

[HHW+02] Hors, A. L., H’egaret, P. L., Wood, L., Nicol, G., Robie, J., Champion, M., and Byrne,
S. Document Object Model (DOM) Level 3 Core Specification. October 2002.

[IGE00] Intanagonwiwat, C., Govindan, R., and Estrin, D.: Directed diffusion: a scalable and
robust communication paradigm for sensor networks. In: Proceedings of the sixth
annual international conference on Mobile computing and networking. ACM. 2000.

[KRL04] Koberstein, J., Reuter, F., and Luttenberger, N.: The XCast Approach for Content-
based Flooding Control in Distributed Virtual Shared Information Spaces—Design and
Evaluation. In: Springer Lecture Notes in Computer Science 2920. First European
Workshop on Wireless Sensor Networks. S. 188–203. January 2004.

[LRK04] Luttenberger, N., Reuter, F., and Koberstein, J.: XML Language Binding Support
for Pervasive Communication in Distributed Virtual Shared Information Spaces. In:
Second IEEE International Conference on Pervasive Computing and Communication.
S. 181–186. March 2004. Workshop for Middleware Support for Pervasive Computing.

[RL02] Reuter, F. and Luttenberger, N. Cardinality Constraint Automata: A core tech-
nology for Efficient XML Schema-aware Parsers. http://www.swarms.de/
publications/cca.pdf. 2002.

[SPMC04] Szewczyk, R., Polastre, J., Mainwaring, A., and Culler, D.: Lessons from a Sensor
Network Expedition. In: Springer Lecture Notes in Computer Science 2920. First
European Workshop on Wireless Sensor Networks. S. 307–322. January 2004.

