The Theme of the Project

Syed M. Huq

Evaluation of Congestion Control in the Stream Control Transmission Protocol (SCTP)

Objectives of the Project

- Theoretical Investigation of Salient Features of SCTP
- Comparison of SCTP and TCP
- Theoretical Investigation of SCTP Congestion Control Mechanism.
- Suitability of Implementation of SCTP in Ad-hoc Networking
- Practical Evaluation of SCTP Congestion Control mechanism in Real World Scenario

Salient Features of SCTP

- Validation and Acknowledgement Mechanisms
- Path Selection and Monitoring
- Flow and Congestion control
- Multi-Homing
- Multi-Streaming

Comparison of SCTP and TCP

- Similarities
 - A Checksum and Transmission Sequence Number
 - Connection-oriented protocol
- Differences
 - SCTP a 32 bit Checksum, TCP a 16 bit Checksum
 - SCTP more than one streams within an Association
 - SCTP -a Stream is a sequence of messages (Chunks), not bytes
 - SCTP no half open connections
 - SCTP multi-homed endpoints for redundancy

Theoretical Investigation of SCTP Congestion Control Mechanism

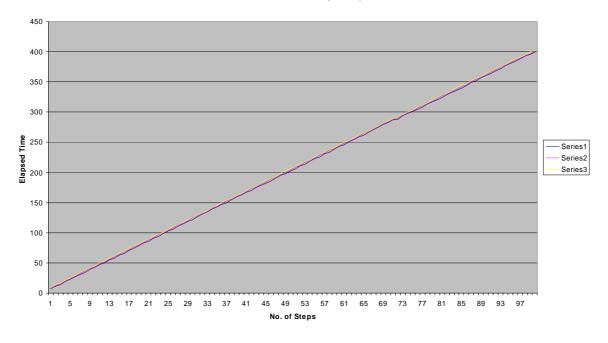
- SCTP Slow-Start and Congestion Avoidance
 - The Slow-Start and Congestion avoidance algorithms control the amount of data being sent in the network.
 - The following parameters are used to regulate the transmission of SCTP
 - The Receiver Window (rwnd)
 - Measured in bytes
 - Set by the receiver based on its available buffer space
 - Constant for the entire association
 - The Congestion Window (cwnd)
 - Measured in bytes
 Set by conder based on the r
 - Set by sender based on the network condition
 Changes with the change of the destination address

Theoretical Investigation of SCTP Congestion Control Mechanism

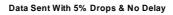
- The Slow-Start Threshold (ssthresh)
 - Measured in bytes
 - Used by sender to distinguish slow-start and congestion avoidance phases
 - Changes with the change of the destination address
- The partial_bytes_sent
 - Variable parameter
 - Used during congestion avoidance phase to facilitate congestion window adjustemnt

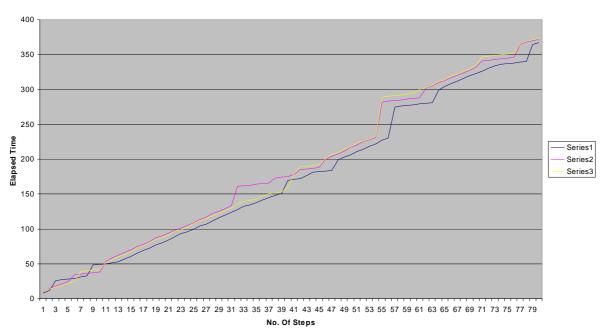
Theoretical Investigation of SCTP Congestion Control Mechanism

- SCTP Retransmission on Gap Reports
 - When no data loss delayed acknowledgment
 - When there is data loss selective acknowledgement for every data packet until no more data loss
 - When 4 consecutive selective acknowledgement indicates the data loss sender


end point starts fast retransmission

Practical Evaluation of SCTP


- The tools used in the Experiments
 - sctplib-1.0.0-pre19
 - Nistnet
- The Experiment
 - 3 streams are made
 - In each stream 100 data chunks are sent
 - Each data chunk is of size 450 bytes
 - In the receiver end various delays and data drops are introduced


Graph of the Practical Evaluation

Data Sent Without Delay & Drops


Graph of the Practical Evaluation

Graph of the Practical Evaluation

Data Sent With 5 ms Delay Variation & 5 % Drops

Conclusions of the Practical Evaluation

- Conclusion
 - Slow start at the beginning
 - When no delay and data drops No fall of data chunks sent Almost a straight Line
 - When delays and / or data drops introduced periodic increase and decrease of data sent
 - Increase of delays and / or data drops -> Increase in periodicity of variation of data sent
 - SCTP is suitable for Ad-hoc networking
 - Showing slight variation in rate of data sent for long time & for high delays + data drops