
A Proxy Architecture for Collaborative Media Streaming

Verena Kahmann
kahmann@tm.uni-karlsruhe.de

Lars Wolf
Lars.Wolf@uni-karlsruhe.de

University of Karlsruhe, Institute of Telematics
Zirkel 2

Karlsruhe, Germany

ABSTRACT
Streaming media from the Internet is a successful appli-
cation for end-users. With the upcoming success of mo-
bile devices and home networking environments, coopera-
tion among users will become more important in the future.
To achieve such cooperation, explicit middleware standards
have been defined. However, many of them have been built
for specific networking technologies, and interoperability is
hard to obtain. We propose a new concept for cooperation
exemplary for collaborative media streaming by using IETF
multimedia session control protocols together with a proxy
architecture. This concept is more scalable on any network-
ing environment and provides for easy interoperability.

1. INTRODUCTION
Media streaming from Internet media servers has become an
important application recently. In contrast to downloading
a media file as a whole, streaming offers flexibility in the
sense that live streams as well as recorded files can be trans-
mitted to the client. Additionally, the streams of a movie
can be controlled as an aggregate or as single streams. The
Real-Time Streaming Protocol (RTSP) [7] of the IETF mul-
timedia control architecture provides the means for control-
ling the streaming session. Its functionality is comparable
to a VCR.

Other common multimedia applications are video confer-
ences where several users are able to share a common chan-
nel. The IETF has defined the Session Initiation Protocol
(SIP) [2] for call or conference setup. Other common ar-
chitectures are H.323 or Mbone conferencing tools. Media
can be streamed to such a video conference also. For live
streams, this may be achieved by subscribing to a common
multicast group, e.g. by specifying a multicast session ad-
dress in the invitation. However, for stored files, streaming is
mostly done using unicast. Nonetheless, a user may want to
share the actual content of his / her streaming session with
other users in the conference, which we call collaborative me-
dia streaming. In this case, combining media streaming with

conferencing is not trivial, because both synchronization and
flexibility should be preserved.

Combining RTSP and SIP, it is possible to invite users to an
existing streaming session and pass the URL of the stored
movie to the users, i.e. to perform a push of the stream to
a new user. In the other direction, i.e. to actively get or
pull the stream, it is also possible to join such a streaming
conference retrieving the URL of the stored movie using the
SIP conferencing service. The push to or the pull from an-
other user is what we generally call application extension.
The application of the client then can do its own streaming
session setup and control the stream with RTSP signaling
(PAUSE, PLAY etc.). Overall, this results in several streams
of the same content to different users. Hence, a synchroniza-
tion between these media streams is needed to protect the
collaborative nature of the scenario. However, such a syn-
chronization is not covered by the RTSP standard.

Therefore, we define a proxy architecture to enable both
synchronization and flexibility on collaborative streaming
sessions. By using a proxy, existing media servers in the
Internet need not be changed. In this architecture, we define
the concept of association to bind two or more clients of a
streaming session to a relation, which is more loosely coupled
than a multicast group. For example, each user may jump
freely in the movie, or can open sub-associations with other
users.

Synchronization in our architecture is achieved by handling
associations and calculating timing information for any client
joining an association. We introduce a proposal to map ses-
sion invitation and streaming control requests to association
requests. We do this exemplary with IETF multimedia con-
trol protocols like SIP and RTSP. As we use IETF applica-
tion layer protocols we are not dependent on special hard-
ware or specialized middleware standards like HAVi, but
such standards can inter-operate with our concept if they
have the Internet protocol stack implemented.

An important point in our proxy concept is to keep signaling
and data paths separate. The advantage is that streaming
media is independent of the channel used for the invitation.
The breakdown of the connection between users does not
necessarily include the breakdown of the streaming session.
Therefore the concept is suitable for networks with partial
disconnectivity. Another advantage is that participants can
choose their own streams, e.g. for audio streams with dif-

ferent languages or different levels of quality of service.

In the rest of this paper, we first introduce the architecture
of a streaming proxy serving as a session management entity
in section 2. Then we propose our concept of association in
section 3 before considering session setup and mapping of
control functionality to association requests in the following
subsections. We give an overview of related work in section
4 before we finally conclude the paper.

2. STREAMING PROXY
The possible scenarios we consider for our architecture in-
clude getting a movie from another user or showing a movie
to another user. In both cases, the other user must be lo-
cated and in the case of getting a movie, even the appli-
cation running on the other user’s screen must be located.
Moreover, the second user may wish to get the stream syn-
chronized with the first client.

Therefore, we propose to use a proxy acting as a mediator
between clients and media servers. Thus, existing media
servers need not be rewritten with the ability for applica-
tion extension. Since the proxy only influences the signaling
path, it may be co-located with a media server or gateway,
and even with a client.

The building blocks needed to deploy the application exten-
sion functionality are shown in figure 1. Note the separation
of signaling and data path, since the proxy is only involved
in the signaling path.

*HW���6KRZ
Movie

Synchro-
nization

Media Transport
(Server)

3UR[\

SIP signaling
RTSP signaling

DATA transport

RTSP
Proxy

SIP
Proxy /

Conference
Server

Synchro-
nization

Lookup
Service

Figure 1: Streaming Proxy Building Blocks

The proxy functionality for the signaling protocols SIP and
RTSP acts mostly as virtual client/server in each case. To
enable collaborative streaming, the corresponding requests
are passed from the SIP or RTSP proxy entities to the syn-
chronization block (see section 3.1 for an example). This
block processes the requests according to the functionality
for implementing the association concept as shown in sec-
tion 3 and sends them to a media server handling the actual
media transport as done by existing RTSP servers, if neces-
sary. Additionally, it could also give feedback to the clients
for smoothing out buffer differences (confer section 3.2).

Proxies for SIP and RTSP are defined in the corresponding

IETF documents [2, 7]. For a self-invitation, which is needed
to pull an existing stream, a conferencing server should be
used instead of a proxy. SIP conferencing is currently under
consideration by the corresponding working group of the
IETF.

3. ASSOCIATION CONCEPT
We have introduced the concept of association in [5]. An
association is, in the easiest case, a structure containing the
handle to the application, e. g. a streaming URL, and a list
of client addresses. If synchronization of the clients should
be obtained, the point of time and the position in the movie
where streaming has been started must be stored. This is
illustrated in figure 2. Clients can apply control commands
like PAUSE or jumping to other points in the stream on their
own, thus opening their own sub-association represented by
a recursive structure with starting time, starting position
and another client list in the figure. On leaving the sub-
association, clients may easily return to the original time-
line or to the position they left the main branch. In the
latter case, this position has to be saved in the association
structure.

ApplicationHandle

StartTime StartPosition ClientList

C1 … Cn

Association:

ClientList:

C2

SubStartTime SubStartPosition

Sub-Association

SubClientList

Figure 2: Association Structure

Other objects like access control lists can be easily added
to the association, thus allowing the first client to grant or
reduce permissions for looking up information on the appli-
cation. Also, elements that should be controlled by a single
person can be protected for a certain period on behalf of the
association.

The data flow is separate from the association. Therefore,
every client can take the desired streams by means of RTSP
session setup independently from other clients, which is rea-
sonable because clients or users apply their own capabilities
or preferences, respectively. Nonetheless it is possible to
request the same set of streams another client is currently
receiving, e. g. by exporting that information to the lookup
service and retrieving it on application lookup.

We show the architecture, namely the interaction of SIP and
RTSP proxy building blocks with the association manager
in figure 3. The Association Mapper maps SIP and RTSP
protocol requests to the corresponding association methods
which are given to the Association Manager. This build-
ing block manages the association list structure and returns
timing information to the proxy building blocks.

Association Manager

RTSP Proxy

Client UI

RTSP Client SIP User Agent

SIP Proxy / Server

Association Mapper

Client

Proxy

Control of Movie Call / Conference Control

SIP requestsRTSP requests

SIP requestsRTSP requests

Association methods

Time information

Figure 3: Architecture of Association Management

3.1 Association Methods
To obtain a defined interface and to enable re-usability of
existing RTSP or SIP proxy functionality, we have defined
a set of association methods. Each RTSP or SIP protocol
request is mapped to an association method by the Asso-
ciation Mapper. These methods are used by the Associa-
tion Manager to manipulate the association structure itself.
Thus, they define an interface between the control functions
applied by the client(s) and the logical relation between each
of them.

In our case, an association will be initialized when the first
client starts a streaming session with an RTSP SETUP re-
quest. This request will be mapped to buildAssociation().
Information on the association may also be sent to the ser-
vice needed for application lookup.

The second client will be invited to the session in case of a
push service or do a self-invitation in case of a pull. This SIP
INVITE will cause a bindAssociation() method. We have
invented this method to enable a relation between RTSP
and SIP requests, e. g. to tie the following RTSP SETUP to
the suitable association. It may also be reasonable to prop-
agate information on the client to the Association Manager
with this method or to return actual information on the
association to the client vice versa.

Recall that for the demanded flexibility the clients must do
their own streaming session setup. The RTSP SETUP by
any following client will not require a buildAssociation()

action. Even the information on single streams (like audio,
video etc.) is not necessarily needed, but again may be
stored for further lookup.

RTSP PLAY requests are mapped on the joinAssocia-

tion() method. In any RTSP PLAY request, a range pa-
rameter can be set to indicate the position in the movie from
which streaming is to be started. If no range parameter is
set, streaming will start from the beginning of the movie.
The Association Manager will process the joinAssociation
in the following way: If no binding to the association ex-
ists, the position and actual time are added to the associ-
ation. Otherwise, the timing information, i. e. the position

from where the stream will be played, has to be calculated
for the client issueing the request, e.g. by using the RTSP
GET PARAMETER request for the time that has already
passed. This timing information will be returned to the
RTSP proxy in order to forward the RTSP PLAY request
with the range parameter set to that position to the media
server.

An example of a push service with the interaction of the
proxy building blocks is shown in figure 4. In this example,
the session setup of a first client C1 and the invitation with
the following session setup for the second client C2 are il-
lustrated. The corresponding association methods and their
effect on the association structure are also shown. In the
figure, the timeline for RTSP and SIP proxy building blocks
is coupled with the timeline for the Association Mapper.
All RTSP requests are forwarded to the Server, however, for
the sake of clarity, only the request containing the range pa-
rameter is shown. For the same reason, most responses are
omitted also.

RTSP SETUP
buildAssociation()

RTSP PLAY
join Association()

SIP INVITE C2
bindAssociation(C2)

C1

C1(t1,P1)

C1(t1,P1)
C2SIP INVITE

RTSP SETUP

RTSP PLAY
join Association()

C1(t1,P1)
C2(P2)

Association ManagerProxy /
Association MapperC1

C2

t

t

t

t

Add actual time
and position in
stream to association

Calculate necessary
starting position P2
for C2

TimeInformation(C2, P2)

RTSP PLAY P2 -

Server
t

Figure 4: Association Setup for a Push Example

By default, applying any control functionality on the movie
opens a sub-association, so this client will stream the con-
tent independently. To follow other clients into their sub-
association or to get back to the original timeline, special
commands have to be applied by the client application. Since
RTSP or SIP do not handle that level of cooperation, we will
implement additional functionality for the exchange of such
messages. Besides several possibilities to manipulate the as-
sociations and the branches, helper functions like getting the
list of clients in the association or in a certain sub-association
can be implemented.

3.2 Synchronization Issues
We have kept signaling and data path separate for the rea-
sons of flexible control. Another advantage is that data
paths can be separate if distinct QoS should be applied or
users are mobile with changing routes to them. Yet, this
separation can be a disadvantage in some cases if synchro-
nization is critical. If timing information is calculated by the
association manager and passed to the media server, there
is a delay between the synchronization point and the point
when the new media streams to the second client are sent
out. However, we apply the same mapping to each PLAY
request, and if timing information can be calculated fast
enough and transmission delay between proxy and server

will not change, e. g. if the proxy is co-located with the
server, the time between joining an association and process-
ing the PLAY request in the server will be the same for each
client.

Another synchronization issue is caused by different play-out
buffers in client applications. The playback in one client may
start earlier or later dependent on buffer size. However, if
these buffer sizes can be determined, the difference between
them can be calculated and put into the timing information
sent to the media server. Moreover, such information could
be sent to clients to enable them to apply buffer-level con-
trol mechanisms. Proposals for implementing a protocol for
synchronization between clients in that way can be found in
[6].

Transcoding of the media streams for only a set of clients
may cause additional delay potentially leading to poor syn-
chronization. If transcoding is necessary, additional features
have to be added, for example an artificial delay for other
streams. However, to estimate which delay is introduced by
transcoding may be difficult to do.

The approach that we follow means that modifications in
the control functionality of current streaming clients and
additional functionality of SIP and RTSP proxies (like the
interaction with the association manager) will have to be im-
plemented. However, synchronization with another stream-
ing client can be achieved without changing SIP or RTSP
protocol methods.

4. RELATED WORK
Up to now, several middleware approaches have been de-
fined which allow the extension of applications. For exam-
ple, in the home network environment, HAVi [3] defines a
middleware layer which allows the extension of applications
to different places. The drawback of these approaches is
mostly the restrictedness on a special networking environ-
ment. If clients in different environments want to co-operate,
additional mapping functionality must be deployed in both
stacks. With our approach, every system having the IP suite
implemented can run our application or be equipped with
the proxy functionality. Thus, interoperability is easily pro-
vided.

In Internet environments, concepts of group communications
have been implemented using multicast. Streaming multi-
media content using multicast has been proposed e. g. in [4]
or [8]. Sharing of streaming applications has not found much
consideration yet. One approach is shown in [1] with a pro-
posal for cooperative playback sessions. In that approach,
the main concept is the conference control mechanism be-
tween clients and the propagation of control messages to
other clients. Media streams are transported by using mul-
ticast.

However, there are some drawbacks implementing multicast
for application extension and data transport. In today’s In-
ternet, multicast routing is typically not available, so it is
necessary to provide for tunneling or the implementation of
reflectors splitting multicast into unicast connections. An-
other disadvantage from the user point of view is that the
user cannot use control functions like jumping to a differ-

ent point in the movie. Our concept has the advantage of
granting control to each user so that the clients need not
necessarily follow but can apply all control commands them-
selves. Especially for learning systems this may be valuable,
because users may want to repeat their lessons on their own
without asking others.

5. CONCLUSION AND FUTURE WORK
In this paper, we presented an architecture for collaboration
among streaming clients without specifying an explicit mid-
dleware layer. Control functionality like jumping to other
points in the movie are mapped to methods of the new as-
sociation concept which we proposed in the paper.

Future work will include implementation of our concepts in a
streaming test bed by re-using existing SIP and RTSP com-
ponents as far as possible. The connection of our concept
with directory services or service location entities and the
integration of content description is another issue we will
handle. We will also consider efficient data transport mech-
anisms in RTP and have a close view on standardization
efforts of SIP.

6. REFERENCES
[1] G. Fortino and L. Nigro. A cooperative playback

system for on-demand multimedia sessions over
Internet. In Proc. of IEEE Conference on Multimedia
and Expo, New York, USA, Aug. 2000.

[2] M. Handley, H. Schulzrinne, E. Schooler, and
J. Rosenberg. SIP: Session Initiation Protocol. RFC
2543, The Internet Engineering Task Force, March
1999.

[3] HAVi Specification 1.0. The HAVi Organization;
http://www.havi.org/, January 2000.

[4] K. Jonas, J. Modeker, and M. Kretschmer. Get a KISS
- Communication Infrastructure for Streaming Services
in a Heterogeneous Environment. In Proc. of ACM
Multimedia Conference, University of Bristol, UK,
Sept. 1998.

[5] V. Kahmann and L. Wolf. Collaborative Media
Streaming in an In-Home Network. In Proc. of
International Workshop on Smart Appliances and
Wearable Computing (IWSAWC), Phoenix/Mesa,
Arizona, Apr. 2001.

[6] K. Rothermel and T. Helbig. An Adaptive Stream
Synchronization Protocol . In Proc. of 5th International
Workshop on Network and Operating System Support
for Digital Audio and Video (NOSSDAV), Durham,
New Hampshire, USA, Apr. 1995.

[7] H. Schulzrinne, A. Rao, and R. Lanphier. Real Time
Streaming Protocol (RTSP). RFC 2326, The Internet
Engineering Task Force, April 1998.

[8] S. Sen, D. Towsley, Z.-L. Zhang, and J. Dey. Optimal
Multicast Smoothing of Streaming Video over an
Internetwork. In Proc. of IEEE INFOCOM, New York,
Mar. 1999.

