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Secure communication based on ambient audio
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Abstract—We propose to establish a secure communication channel among devices based on similar audio patterns. Features from
ambient audio are used to generate a shared cryptographic key between devices without exchanging information about the ambient
audio itself or the features utilised for the key generation process. We explore a common audio-fingerprinting approach and account
for the noise in the derived fingerprints by employing error correcting codes. This fuzzy-cryptography scheme enables the adaptation
of a specific value for the tolerated noise among fingerprints based on environmental conditions by altering the parameters of the
error correction and the length of the audio samples utilised. In this paper we experimentally verify the feasibility of the protocol in
four different realistic settings and a laboratory experiment. The case-studies include an office setting, a scenario where an attacker is
capable of reproducing parts of the audio context, a setting near a traffic loaded road and a crowded canteen environment. We apply
statistical tests to show that the entropy of fingerprints based on ambient audio is high. The proposed scheme constitutes a totally
unobtrusive but cryptographically strong security mechanism based on contextual information.

Index Terms—J.9.d Pervasive computing, E.3 Data Encryption, G.3.j Random number generation, H.5.5.c Signal analysis, synthesis,
and processing, 1.5.4.m Signal processing, J.9.a Location-dependent and sensitive

1 INTRODUCTION

A N important factor in the set of security risks is typ-
ically the human impact. People are occasionally
careless or incompletely understanding the underlying
technology. This is especially true for wireless commu-
nication. For instance, the communication range or the
number of potential communication partners might be
underestimated. This is natural since humans typically
base trust on the situation or context they perceive [1].
Nevertheless, the range of a communication network
most likely bridges devices in various contexts.

As context, proximity and trust are related [1], a
security scheme that utilises common contextual features
among communicating devices might provide a sense of
security which is perceived as natural by individuals and
reduce the number of human errors related to security.

Consider, for instance, a meeting with co-workers of a
specific project. Naturally, workers trust the others based
on working agreements. Every group member needs the
permission to access common information like mobile
phone numbers or shared files. Communication between
group members, however, should be guarded against
access from external devices or individuals. The meeting
room defines the borders which shall not be crossed
by any confidential data. Context information that is
unique inside these borders, such as ambient audio, can
be exploited as the seed to generate a common secret for
the secure information exchange and authentication.

Mobile phones can then synchronise their ID-cards ad-
hoc without user interaction and secured by their phys-
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ical proximity. Similarly, access to shared files on com-
puters of co-workers and communication links among
co-workers can be secured.

Another reason why security cautions might be dis-
carded occasionally is the effort required and inconve-
nience to establish a secure connection. This is especially
true between devices that communicate seldom or for
the first time.

We propose a mechanism to unobtrusively (zero inter-
action) establish an ad-hoc secure communication chan-
nel between unacquainted devices which is conditioned
on the surrounding context. In particular, we consider
audio as a source of spatially centred context. We exploit
the similarity of features from ambient audio by devices
in proximity to create a secure communication channel
exclusively based on these features. At no point in the
protocol the secret itself or information that could be
used to derive audio feature values is made public.
In order to do so, we generate synchronised audio-
fingerprints from ambient sounds and utilise error cor-
recting codes to account for noise in the feature vector.
On each communicating device the feature vector is then
used to create an identical key. The proposed protocol is
non-interactive, unobtrusive and does not require spe-
cific or identical hardware at communication partners.

The remainder of this document is structured as fol-
lows. In section 2 we introduce related work on context-
based security mechanisms and security with noisy in-
put data. Section 3 discusses the algorithmic background
required for ambient audio-based key generation and
implementation details. In section 4 we discuss the
noise and entropy of audio-fingerprints achieved in an
offline-experiment with sampled audio sequences. We
show that the similarity in audio-fingerprints is sufficient
for authentication but can not be utilised as secure
key directly. In particular, we utilise fuzzy-cryptography
schemes to account for noise in the input data. Section 5
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presents four case-studies in different environments that
exploit the feasibility of the approach in various settings.
The general feasibility of the approach is demonstrated
in section 5.1 in a controlled office environment. Sec-
tion 5.2 then shows that the audio context can be sep-
arated between two offices even when a synchronised
audio source is located in both places. Additionally,
we studied the feasibility of ambient audio-based key
generation at the side of a heavily trafficked road in
section 5.4 and in a canteen environment in section 5.3.
The entropy of the ambient audio-based characteristic
binary sequences generated by our method is discussed
in section 6. In section 7 we draw our conclusion.

2 RELATED WORK

In the literature, several authors consider spontaneous
authentication or the establishing of a secure communi-
cation channel among mobile and ad-hoc devices based
on environmental stimuli [2], [3], [4], [5]. So far, shaking
processes from accelerometer data and RF-channel mea-
surements have been utilised as unique context source
that contains shared characteristic information.

This concept was presented 2001 by Holmquist et
al. [4]. The authors propose to utilise the accelerometer
of the Smart-It [6] device to extract characteristic features
from simultaneous shaking processes of two devices.
Later, Mayrhofer et al. presented an authentication mech-
anism based on this principle [7]. The authors demon-
strated, that an authentication is possible when devices
are shaken simultaneously by a single person, while an
authentication was unlikely for a third person trying
to mimic the correct movement pattern remotely. Also,
Mayrhofer derived in [8] that the sharing of secret keys
is possible with a similar protocol. The proposed pro-
tocol that can be utilised with arbitrary context features
repeatedly exchanges hashes of key-sub-sequences until
a common secret is found. In this instrumentation, ex-
ponentially quantised fast Fourier transformation (FFT)
coefficients of a sequence of accelerometer samples are
utilised. In contrast, Bicher et al. describe an approach
in which noisy acceleration readings can be utilised
to establish a secure communication channel among
devices [9], [3]. They utilise a hash function that maps
similar acceleration patterns to identical key sequences.
However, their approach suffers from the required exact
synchronisation among devices so that the authors com-
puted the correct hash-values offline. Additionally, the
hash function utilised required that the keys computed
exactly match and that the neighbourhood around these
keys is precisely defined. When patterns are located at
the border of one of the region’s neighbourhoods, the
tolerance for noise in the input is biased in the direction
of the centre of this region. Additionally, key generation
by simultaneous shaking is not unobtrusive.

We utilise an error correction scheme to account for
noise in the input data which can be fine-tuned for any
Hamming distance desired which is centred around the

noisy characteristic sequences generated instead of an ar-
tificially defined centre value. We implement a Network
Time Protocol (NTP) based synchronisation mechanism
that establishes sufficient synchronisation among nodes.

Another sensor class utilised for context-based de-
vice authentication is the RF-channel. Varshavsky et al.
present a technique to authenticate co-located devices
based on RF-measurements since channel measurements
from devices in near proximity are sufficiently similar
to authenticate devices against each other [5]. Hershey
et al. utilise physical layer features to derive secret
keys for a pair of devices [10]. In the absence of in-
terference and non-linear components, transmitter and
receiver experience identical channel response [11]. This
information is utilised to generate a secret key among
a node pair. Since channel characteristics are spatially
sharply concentrated and not predictable at a remote
location [12], an eavesdropper is not capable of guessing
information about the secret. This scheme was validated
in an indoor environment in [13]. Although we consider
the keys generated by this scheme as strong, it does not
preserve spatial properties. A device at arbitrary distance
could pretend to be a nearby communication partner.

Kunze and Lukowicz recently demonstrated, that au-
dio information indeed suffices to derive spatial informa-
tion [14]. They combine audio readings with accelerom-
eter data to classify locations of mobile devices. In their
work, the noise emitted by a vibrating mobile phone
was utilised to distinguish among 35 specific locations
in three different rooms with over 90 % accuracy.

Instead, we utilise purely ambient noise to estab-
lish a secure communication channel among devices in
spatial proximity. We record NTP-synchronised audio
samples at two locations, generate a characteristic audio-
fingerprint and map this fingerprint to a unique secret
key with the help of error correcting codes.

The last step is necessary since the similarity between
fingerprints is typically not sufficient to establish a
secure channel. With fuzzy-cryptography schemes, the
generation of an identical key based on noisy input
data [15] is possible. Li et al. analyse the usage of
biometric or multimedia data as part of an authentication
process and propose a protocol [16]. Due to the use
of error-tolerant cryptographic techniques, this protocol
is robust against noise in the input data. The authors
utilise a secure sketch [17] to produce public information
about an input without revealing it. The input can then
be recovered given another value that is close to it. A
similar study is presented by Miao et al. [18]. The authors
establish a key distribution based on a fuzzy vault [19]
using data measured by devices worn on the human
body. The fuzzy vault scheme, also utilised in [20],
enables the decryption of a secret with any key that is
substantially similar to the key used for encryption.

3 AD-HOC AUDIO-BASED ENCRYPTION
Originally, audio-fingerprinting was proposed to clas-
sify music or speech. In our work binary fingerprints
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from ambient audio are used to establish an encrypted
connection based on the surrounding audio context.
Due to differences between fingerprints generated by
participating devices, a cryptographic protocol is needed
that tolerates a specific amount of noise in these keys.

We propose the following scheme. A set of devices
willing to establish a common key conditioned on am-
bient audio take synchronised audio samples from their
local microphones. Each device then computes a binary
characteristic sequence for the recorded audio: An audio-
fingerprint (cf. section 3.1). This binary sequence is de-
signed to fall onto a code-space of an error correcting
code (cf. section 3.2). In general, a fingerprint will not
match any of the codewords exactly. Fingerprints gen-
erated from similar ambient audio resemble but due
to noise and inaccuracy in the audio-sampling process,
it is unlikely that two fingerprints are identical. De-
vices therefore exploit the error correction capabilities
of the error correcting code utilised to map fingerprints
to codewords (cf. section 3.3). For fingerprints with a
Hamming-distance within the error correction threshold
of the error correcting code the resulting codewords are
identical and then utilised as secure keys (cf. section 3.4).
This scheme is in principle not limited in the number of
devices that participate. When devices are synchronised
in their local times, they agree on a point in time when
audio shall be recorded and proceed with the fingerprint
creation and error correction autonomously as described
above. All similar fingerprints will map to an identical
codeword. As detailed in section 5.3, the Hamming
distance tolerated in fingerprints rises with increasing
distance of devices.

The following sections provide an overview over
audio-fingerprinting, our fuzzy commitment implemen-
tation, problems we experienced and possible solutions.

3.1

Audio-fingerprinting is an approach to derive a charac-
teristic pattern from an audio sequence [21]. Generally,
the first step involves the extraction of features from a
piece of audio. These features are usually isolated in a
time-frequency analysis after application of Fourier or
Cosine transforms. Some authors also utilise wavelet-
transforms [22], [23], [24]. Common applications in-
clude the retrieval of a specific music file in an audio
database [25], duplicate detection in such a database [26]
as well as identification of music based on short sam-
ples [27]. The capabilities of detecting similar audio
sequences in the presence of heavy signal distortion are
prominently demonstrated by applications such as query
by humming [28]. The authors utilise autocorrelation,
maximum likelihood and Cepstrum analysis to describe
the pitch of an audio sequence as a Parsons encoded
music contour [29]. Similar audio sequences are detected
by approximate string matching [30]. McNab et al. added
rhythm information by analysing note duration to match
the beginning of a song [31]. A similar approach is

Audio-fingerprinting

presented by Prechelt et al. [32]. They achieved more ac-
curate results for query by whistling since the frequency
range of whistling is much lower than for humming or
singing. In 2002, Chai et al. computed a rough melodic
contour by counting the number of equivalent transi-
tions in each beat [33]. Notes are detected by amplitude-
based note segmentation. Later, Shiffrin et al. showed
that songs can be described by Markov-chains [34] where
states represent note transitions. Retrieval of songs is
then achieved by the HMM Forward algorithm [35] so
that no database query is required. In 2003, Zhu et al.
addressed practical problems of recently proposed ap-
proaches such as the accuracy of the derived description
by utilising a dynamic time-warping mechanism [36].

Most of these studies are based on music-specific
properties such as rhythm information, pitch or melodic
contour. Since such features might be missing in ambient
audio, these methods are not applicable in our case.
Haitsma et al. presented in [37] an approach applica-
ble for the classification of general audio sequences by
extracting a binary representation of audio from changes
in the energy of successive frequency bands. This system
was later shown to be highly robust to noise and distor-
tion in audio data [25]. Due to its reported robustness,
several authors employ slightly modified versions of this
approach [27]. Lebossé et al, for instance, add further re-
dundant sub-samples taken from the beginning and the
end of an overlapping time window in order to reduce
the number of bits in the fingerprint representation [38].
Alternatively, Burges et al. enhance the former approach
by utilising a distortion discriminant analysis [39]. Gen-
erally, time frames taken from the audio source are
mapped successively on smaller time windows in order
to generate a condensed characteristic representation of
the audio sequence. An alternative approach based on
spectral flatness of a signal is proposed Herre et al. [40].

Also, Yang presented a method to utilise characteristic
energy peaks in the signal spectrum in order to extract a
unique pattern [41]. A general framework that supports
this scheme was later presented by Yang et al. [42].
Building on these ideas, a similar algorithm was then
successfully applied commercially by Avery Wang on a
huge data base of audio sequences [43], [44].

To create audio-fingerprints for our studies, we split an
audio sequence S with length |S| = [ and sample rate r
up into n frames Sy, ..., S, of identical length d = |S;| =
T % On each frame a discrete Fourier transformation
(DFT) weighted by a Hanning window (HW) is applied:

Vie{0,...,n—1},

S, = DFT (HW(F,)) (1)
The frames are divided into m non-overlapping fre-
quency bands of width

maxfreq(S;) — minfreq(S;)
- .

b= @)

On each band the sum of the energy values is calculated
and stored to an energy matrix E with energy per frame
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per frequency band.

Vi e{0,...,m—1},
Sij = bandfilterb,j7b,(j+1)(Si)

By = Silk]
k

Using the matrix F, a fingerprint f is generated, where
Vie{l,...,n—1}Vj€{0,...,m—2} each bit describes
the difference between the energy on frequency bands
between two consecutive frames:

(E(Zvj) - E(Z’j + 1))_
(EGi—1,5) —E(—-1,j4+1))>0

0, otherwise.

®)
)

L

[l 5) = ©)

The complete algorithm is detailed in the appendix.

For each synchronisation, we sampled [ = 6.375 sec-
onds of ambient audio at a sample rate of r = 44100 Hz.
We split the audio stream into n = 17 frames of d = 0.375
seconds each and divide every frame into m = 33
frequency bands, to obtain a 512 bit fingerprint. Due to
the extensive recording duration, the generated finger-
prints show great robustness in real world experiments
(cf. section 4 and section 5). We used a Fast Fourier
Transform (FFT) with fixed values on the length of the
segments as detailed above.

This audio-fingerprinting scheme utilised in our stud-
ies utilises energy differences between frequency bands,
as proposed by Haitsma et al. [25]. However, we take
a more general approach of classifying ambient audio
instead of music. Commonly, in the literature, the char-
acteristic information is found in a smaller frequency
band and a logarithmic scaling is suggested to better
represent properties of the human auditory system. Since
our system is not restricted to musical recordings, we
expect that all frequency bands are equally important.
Therefore, we divide frames into frequency bands at a
linear scale rather than a logarithmic one. Additionally,
we do not use overlapping frames since this has not
shown improvements in our case. Also, the entropy and
therefore the security features of the generated finger-
print is likely to become impaired with overlapping
frames [45], [46].

3.2 Audio-fingerprints as cryptographic keys

To use the audio-fingerprints directly as keys for a
classic encryption scheme the concurrence of fingerprints
generated from related audio sequences has to be 1 with
a considerably high probability [47]. Since we experi-
enced a substantial difference in the audio-fingerprints
created (cf. section 4) we consider the application of
fuzzy-cryptography schemes. Note that a perfect match
in fingerprints is unlikely since devices are spatially
separated, not exactly synchronised and utilise possibly
different audio hardware.

The proposed cryptographic protocol shall be feasible
unattended and ad-hoc with unacquainted devices. For

an eavesdropper in a different audio context it shall be
computationally infeasible to use any intercepted data to
decrypt a message or parts of it. Additionally, we want
to control the threshold for the tolerated offset between
fingerprints based on contextual conditions of different
physical locations.

With fuzzy encryption schemes, a secret ¢ is used to
hide the key & in a set of possible keys K in such a way
that only a similar secret ¢’ can find and decrypt the
original key « correctly. In our case, the secrets which
ought to be similar for all communicating devices in the
same context are audio-fingerprints.

A Fuzzy Commitment scheme can, for instance, be im-
plemented with Reed-Solomon codes [48]. The following
discussion provides a short introduction to these codes.

Given a set of possible words A of length m and a
set of possible codewords C of length n, Reed-Solomon
codes RS(gq,m,n) are initialised as:

A=F",
c=Fr,

(6)
@)

with ¢ = p*,p prime, k € N. These codes are mapping a
word a € A of length m uniquely to a specific codeword
¢ € C of length n:

Encode , (8)
This step adds redundancy to the original words with
n > m, based on polynomials over Galois fields [48].
Decoding utilises the error correction properties of
the Reed-Solomon-based encoding function to account
for differences in the fingerprints created. The decod-
ing function maps a set of codewords from one group

C={c/d, ", ...} CC to one single original word. It is
& 2oy e A )

The value I
-5 (10)

defines the threshold for the maximum number of bits
between codewords that can be corrected in this manner
to decode correctly to the same word a [49]. In the
following algorithms the fingerprints f and f’ are used
in conjunction with codewords to make use of this error
correction procedure. Dependent on the noise in the
created fingerprints, ¢ can then be chosen arbitrarily.

3.3 Commit and Decommit algorithms

We utilise Reed-Solomon error correcting codes in the
following scheme to generate a common secret among
devices. A fingerprint f is used to hide a randomly
chosen word « as the basis for a key in a set of possible
words a € A. This is a commit method. A decommit
method is constructed in such a way that only a finger-
print f* with maximum Hamming distance

Ham(f, f') <t (11)
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can find a again. We use Reed-Solomon RS(g,m,n)
codes, with ¢ = 2%, k € Nand n < 2, for our commit and
decommit methods. After initialisation, a private word
a € A is randomly chosen. It is then encoded following
the Reed-Solomon scheme to a specific codeword c. For
a subtract-function © in C = F7,, the difference to the
fingerprint is calculated as

0= foec

Then, a SHA-512 hash [50] h (a) is generated from a.
Afterwards, the tuple (4, h (a) ) containing the difference
and the hash is made public. Note that the transmis-
sion of h (a) is optional and is only required to check
whether the decommitted a’ on the receiver side equals
a. However, provided a sulfficiently secure hash function,
an eavesdropper does not learn additional information
about the key a within reasonable time provided that
she is ignorant of a fingerprint sufficiently similar to f.

The decommitment algorithm uses the public tuple
(0,h (a) ) together with the secret fingerprint f’ to verify
the similarity between f and f’ and to obtain a shared
word a. A codeword ¢ is calculated by subtracting f’
by 6 in FZ,.

(12)

d=foed (13)

Afterwards ¢’ is decoded to o’ as
d e AL feg (14)
From h(a) = h(d/) we can conclude ¢« = o with

high probability. This procedure is capable of correcting
up to t (cf. equation (10)) differing bits between the
fingerprints. The decommitment was then successful
and differences between f and f’ are ¢ at most. The
decommitted word a’ is privately saved.

Participants can use their private words to derive keys
for encryption. A simple example for using a = a’ =
(ao,...,am—1) to generate an encryption key for the
Advanced Encryption Standard (AES) [51] is to sum over
blocks of values of a. For example, when m = 256 we
would sum over blocks with the length 8 and take these
values modulo 28 — 1 to represent characters for a string
with the length 32, that can be used as a key &:

Let k = (Ko, ..., k31), whereas
7
K = Zc(i*8)+j mod 28 —1
§=0

In our study, for fingerprints of 512 bits we apply
Reed-Solomon codes with RS(q = 2!, m,n = 512).
Given a maximum acceptable Hamming distance t* (cf.
equation (10)) between fingerprints we can then set m
flexibly to define the minimum required fraction u of
identical bits in fingerprints as

t"=[1—-wu) -n],

m=n—2-t".

(15)
(16)

Experimentally, we found u = 0.7 as a good trade-
off for common audio environments to allow a suffi-
cient amount of differences among the used fingerprints
to pair devices successfully while at the same time
providing sufficient cryptographic security against an
eavesdropper in a different audio context (cf. section 4).

m=>512—2-[(1—-0.7)-512] 17)
=204
We therefore use Reed-Solomon codes with
RS(2'°,204,512). (18)

The commit and decommit algorithms are further
detailed in the appendix.

3.4 Synchronising communicating devices

Since audio is time-dependent, a tight synchronisation
among devices is required. In particular, we experienced
that fingerprints created by two devices were sufficiently
similar only when the synchronisation offset among
devices was within tens of milliseconds. For synchro-
nisation, any sufficiently accurate time protocol such as
the Network Time Protocol (NTP) [52], [53], the Precision
Time Protocol (PTP) [54] or a similar time protocol can
be utilised. Also, synchronisation with GPS time might
be a valid option.

When two participants, Alice and Bob, are willing
to communicate securely with each other, Alice starts
the protocol by requesting a pairing with Bob. Then,
they synchronise their absolute system times using a
sufficiently accurate time protocol. Afterwards, Alice
sends a start time 744,+ to Bob. When their clocks reach
Tstart, the recording of ambient audio is initiated and
audio-fingerprinting is applied.

In our case-studies, synchronisation of devices was a
critical issue. Since the approach bases the binary fin-
gerprints on energy differences of sub-samples of 0.375
seconds width, a misalignment of several hundreds of
milliseconds results in completely different fingerprints.
For best results, the start times of the audio recordings
should not differ more than about 0.001 seconds. We
successfully tested this with a remote NTP-server and
also with one of the devices hosting the server.

Still, since NTP is able to synchronise clocks with an
error of several milliseconds [55], [52], some error in the
synchronisation of audio samples remains. For instance,
the usage of sound subsystems, like GStreamer [56], to
record ambient audio introduces new delays.

Figure 1 illustrates this aspect in the frequency spec-
trum of two NTP-synchronised recordings.

As a solution, we had the decommiting node create
200 additional fingerprints by shifting the audio se-
quence in both directions in steps of 0.001 seconds. The
device then tried to create a common key with each of
these fingerprints and uses the first successful attempt.
In this way, we could compensate for an error of about
0.2 seconds in the clock synchronisation among nodes.
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3.5 Security Considerations and Attack Scenarios

Privacy leakages translate to leaking partial information
about the used audio-fingerprints. This can simplify the
attack when further details of the ambient audio of Alice
and Bob is available.

Possible attacks on fuzzy-cryptography are reviewed
by Scheirer et al. [57]. In particular, fuzzy commitment is
evaluated regarding information leakage by Ignatenko et
al. [58]. It was found that the scheme can leak informa-
tion about the secret key. However, this is attributable to
helper data, a bit sequence at random distance to the
secret key, which is made public in traditional fuzzy
commitment schemes. In our case, we do not utilise
helper data and only optionally provide the hash of a
data sequence with similar purpose.

The publicly available distance § between f and ¢
might, however leak information when either the finger-
prints f, the code-sequences ¢ € C or the random word
a € A are not distributed uniformly at random or have
insufficient entropy. Generally, it is important that

1) the random function to generate a has a sufficiently
high entropy

2) the codewords ¢ € C are independently and uni-
formly distributed over all possible bit sequences
of length n

3) The entropy of the generated fingerprints is high

We address these issues in the following.

1) The choice of a € A has to be done by using a ran-
dom source with sufficient entropy. In Linux-based sys-
tems /dev/urandom should provide enough entropy
for using the output for cryptographic purposes [59]. For
generating h (a) a one-way-function has to be chosen to
make sure that no assumptions on « can be made based
on h (a). We utilise SHA-512 which is certified by the
NIST and was extensively evaluated [50].

2) We are using 512 bit fingerprints and the Reed-
Solomon code RS(2'°,204,512). Consequently, sets of
words and codewords are defined as A = Fgm and
C = ]Fg}g A word a out of 210" — 1024204 possible
words is randomly chosen and encoded to c.

3) In order to test the entropy of generated fingerprints
we applied the dieHarder [60] set of statistical tests.
Generally, we could not find any bias in the fingerprints
created from ambient audio. Section 6 discusses the test
results in more detail.

A relevant attack scenario valid in our case is that the
attacker is in the same audio context as Alice and Bob.
In this case, no security is provided by the proposed
protocol. Although this is a plausible threat, it can hardly
be avoided that the leaking of contextual information
poses a thread to a protocol that is designed to base
the secure key generation exclusively on exactly this
information. This principle is essential for the desired
unobtrusive and ad-hoc operation. An overview over
possible attack scenarios when the attacker is not inside
the same context is listed below.

3.5.1 Brute force

The set of possible words A has to be large enough.
It should be computationally infeasible to test every
combination to get the used word a. The probability to
guess the right a is 102472% in our implementation. Note
that even with u = 0.6, this probability is still 1024102,

3.5.2 Denial-of-service (DoS)

An attacker could stress the communication while Alice
and Bob are using the fuzzy pairing. The pairing would
fail if (6,h(a)) is not transmitted correctly. DoS pre-
ventions should be implemented to provide an accurate
treatment. As part of these preventions a maximum
number of attempts to pair two devices should be de-
fined. Generally, this type of attack is only possible when
(6,h (a)) or ¢ is transmitted. As mentioned in section 3.3,
with a careful choice of the fingerprint mechanism the
exchange of data can be avoided.

3.5.3 Man-in-the-middle

An Eavesdropper Eve could be located in such a way,
that she can intercept the wireless connection but is
not located in the same physical context as Alice and
Bob. When Eve intercepts the tuple (4,h (a) ), she must
generate an audio-fingerprint f that is sufficiently close
to the fingerprints f and f’ of Alice and Bob to intercept
successfully. With no knowledge on the audio context,
a brute force attack is then required. This has to be
done while Alice and Bob are currently in the phase of
pairing. Therefore Eve is limited by a strict time frame.
Again, this attack can be prevented by avoiding the
transmission of (4,h (a)) or 4.

3.5.4 Audio amplification

An Eavesdropper Eve could be located in physical prox-
imity where the ambient audio used by Alice and Bob to
generate their fingerprints is replicated. Eve can utilise a
directional microphone to amplify these audio signals. In
fact, this is a security threat which increases the chance
that Eve can reconstruct the fingerprint partly to have
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TABLE 1: Approximate mean loudness experienced for
several sample classes at 1.5m distance

loud | median | quiet

Clap 40dB | 35dB | 25dB
Music 35dB | 25dB 15dB
Snap 30dB | 25dB 10dB
Speak 25dB | 20dB 15dB
Whistle || 45dB | 35dB | 25dB

a greater probability of guessing the secure secret. Since
our scheme inherently relies on contextual information
we can not completely eliminate this threat. However,
we show in section 5.2 that the acoustic properties in
two rooms are at least sufficiently different to prevent a
device with access to the dominant audio source to be
successful in more than 50 % of all cases.

4 FINGERPRINT-BASED AUTHENTICATION

In a controlled environment we recorded several audio
samples with two microphones placed at distinct posi-
tions in a laboratory. The samples were played back by
a single audio source. Microphones were attached to the
left and right ports of an audio card on a single computer
with audio cables of equal lengths. They were placed at
1.5m, 3m, 4.5m and 6m distance to the audio source.
For each setting, the two microphones were always
located at non-equal distances. In several experiments,
the audio source emitted the samples at quiet, medium
and loud volume. The audio samples utilised consisted
of several instances of music, a person clapping her
hands, snapping her fingers, speaking and whistling.
Dependent on the specific sample, the mean dB for these
loudness levels varied slightly. The loudness levels for
several sample classes experienced in 1.5m distance are
detailed in table 1.

For these samples recorded by both microphones we
created audio-fingerprints and compared their Ham-
ming distances pair-wise. We distinguish between fin-
gerprints created for audio sampled simultaneously and
non-simultaneously. Overall, 7500 distinct comparisons
between fingerprints are conducted in various environ-
mental settings. From these, 300 comparisons are created
for simultaneously recorded samples.

Figure 2 depicts the median percentage of identical
bits in the fingerprints for audio samples recorded simul-
taneously and non-simultaneously for several positions
of the microphones and for several loudness levels. The
error bars depict the variance in the Hamming distance.

First, we observe that the similarity in the finger-
prints is significantly higher for simultaneously sampled
audio in all cases. Also, notably, the similarity in the
fingerprints of non-simultaneously recorded audio is
slightly higher than 50 %, which we would expect for a
random guess. The small deviation is a consequence of
the monotonous electronic background noise originated

TABLE 2: Percentage of identical bits between finger-
prints

matching samples | non-matching samples
Median 0.7617 0.5332
Mean 0.7610 0.5322
Variance 0.0014 0.00068342
Min 0.6777 0.4414
Max 0.8750 0.6484

by the recording devices consisting of the microphones
and the audio chipsets.

Additionally, the distance of the microphones to the
audio source has no impact on the similarity of finger-
prints. Similarly, we can not observe a significant effect
of the loudness level. This confirms our expectation
since for the fingerprinting approach not the absolute
energy on frequency bands but changes in energy over
time were considered (cf. section 3.1). Therefore, changes
in the loudness level as, for instance, by altering the
distance to the audio source or by changing the volume
of the audio, have minor impact on the fingerprints.

Table 2 depicts the maximum and minimum Ham-
ming distance among all experiments. We observe
that one of the comparisons of fingerprints for non-
simultaneously recorded audio yielded a maximum sim-
ilarity of 0.6484. This value is still fairly separated from
the minimum bit-similarity observed for fingerprints
from simultaneously recorded samples. Also, this event
is very seldom in the 7200 comparisons since the mean
is sharply concentrated around the median with a low
variance. Therefore, by repeating this process for a small
number of times, we reduce the probability of such an
event to a negligible value. For instance, only about
3.8 % of the comparisons between fingerprints from non-
matching samples have a similarity of more than 0.58;
only 0.4583 % have a similarity of more than 0.6. Simi-
larly, only 2.33 % of the comparisons of synchronously
sampled audio have a similarity of less than 0.7.

With these results, we conclude that an authentication
based on audio-fingerprints created from synchronised
audio samples in identical environmental contexts is fea-
sible. However, since it is unlikely that the fingerprints
match in all bits, it is not possible to utilise the audio-
fingerprints directly as a secret key to establish a secure
communication channel among devices. We therefore
considered error correcting codes to account for the noise
in the fingerprints created.

5 CASE-STUDIES

We implemented the described ambient audio-based
secure communication scheme in Python and conducted
case-studies in four distinct environments. The experi-
ments feature differing loudness levels, different back-
ground noise figures as well as distinct common sit-
uations. In section 5.1, we observe how the proposed
method can establish an ad-hoc secure communication
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Fig. 2: Hamming distance observed for fingerprints created for recorded audio samples at distinct loudness levels

and distances between microphones and the audio source

based on audio from ongoing discussions in a general
office environment. Since an adversary able to sneak
into the audio context of a given room might be better
positioned to guess the secure key, we demonstrate in
section 5.2 that even for an adversary device that is able
to establish a similar dominant audio context in a dif-
ferent room by listening to the same FM-radio-channel,
the gap in the created fingerprints is significant. In these

two experiments, we utilised artificial audio sources in
a sense that they were specifically placed to create the
ambient audio context. In section 5.3 and section 5.4 we
describe experiments in common environments where
ambient audio was utilised exclusively. In section 5.3
we placed devices at distinct locations in a canteen and
studied the success probability based on the distance
between devices. In section 5.4 we study the feasibility
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Fig. 3: Environmental settings of the case-studies conducted.

TABLE 3: Configuration of the four scenarios considered

Microphones (external)

Impedance < 22k

Current consumption < 0.5mA
Frequency response | 100 Hz ~ 16 KHz
Sensitivity —38dB £ 2dB

Microphones (internal)
Device A
Device B

Intel G45 DEVIBX
Intel 828011

of establishing a secure communication channel with
road-traffic as background noise. Figure 3 summarises
all settings considered. To capture audio we utilised
the build-in microphones of the computers. The only
exception is the reference scenario 3a in which simple
off-the-shelf external microphones have been utilised.
For both devices, the manufacturer and audio device
types differed. Table 3 details further configuration of
the scenarios conducted and the hardware utilised.

5.1 Office environment

In our first case-study, we position two laptops in an
office environment. Ambient audio was originated from
individuals speaking inside or outside of the office room.
We conducted several sets of experiments with differing
positions of laptop computers and audio sources as de-
picted in figure 3a. We distinguish four distinct scenarios
3a;  Both devices inside the office at locations a and
b. 1-2 Individuals speaking at locations 1 to 4.
One device inside and one outside the office in
front of the open office door at locations a and
c. 1-2 Individuals speaking at locations 1 and 5.
Both devices in the corridor in front of the office
at locations ¢ and d. 1-2 Individuals speaking
at locations 5 to 11.
One device inside and one outside the office
in front of the closed office door at locations
a and c. 1-2 Individuals speaking (damped but
audible behind closed door) at locations 1 and 5.

3a2

3a3

3614

In all cases the devices were synchronised over NTP.
For each synchronisation, one device indicated at which
point in time it would initiate audio recording. Both
devices then sample ambient audio at that time and
create a common key following the protocol described
in section 3.1. For each scenario the key synchronisa-
tion process was repeated 10 times with the persons
located at different locations. From these persons, either
person 1, person 2 or both were talking during the
synchronisation attempts in order to provide the audio
context.

The settings 3a; and 3as represent the situation of two
friendly devices willing to establish a secure commu-
nication channel. The setting 3as could constitute the
situation in which a person passing by is accidentally
witnessing the communication and part of the audio con-
text. In setting 3a4, the communication partners might
have closed the office door intentionally in order to keep
information secure from persons outside the office.

In scenario 3a;, where both devices share the same
audio context a fraction of 0.9 of all synchronisation
attempts have been successful. Also, for scenario 3ags, the
fraction of successful synchronisation attempts was as
high as 0.8. Consequently, when both devices are located
in the same audio context, a successful synchronisation
is possible with high probability.

For scenario 3az, where the device outside the ajar
door could partly witness the audio context, we had
a success probability of 0.4. Although this means that
less than every second approach was successful, this is
clearly not acceptable in most cases. Still, this low success
probability it is remarkable since the person speaking in
the office or on the corridor was clearly audible at the
respective other location.

In scenario 3a,, however, when the audio context
was separated by the closed door, no synchronisation
attempt was successful. Remarkably in this case, the
person speaking was, although hardly comprehensible,
still audible at the other side of the door.
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Fig. 4: Median percentage of bit errors in fingerprints
generated by two mobile devices in an office setting. The
audio context was dominated by an FM radio tuned to
the same channel.

Finally, we attempted to establish a synchronisation
in the scenarios 3a;, 3az and 3a3 when only background
noise was present. This means that no sound was emit-
ted from a source located in the same location as one of
the devices. Some distant voices and indistinguishable
sounds could occasionally be observed. After a total of
twelve tries in these three scenarios, not a single one
resulted in a successful synchronisation between devices.
We conclude that a dominant noise source or at least
more dominant background noise needs to be present
in the same physical context as the devices that want to
establish a common key.

5.2 Context replication with FM-radio

A straightforward security attack for audio-based en-
cryption could be for the attacker to extract information
about the audio context and use this in order to guess
the secret key created. We studied this threat by trying
to generate a secret key between two devices in different
rooms but with similar audio contexts. In particular, we
placed two FM-radios, tuned to the same frequency in
both rooms (cf. figure 3b).

The audio context was therefore dominated by the
synchronised music and speech from the FM-radio chan-
nel. No other audio sources have been present in the
rooms so that additional background noise was negligi-
ble. We conducted two experiments in which the devices
were first located in the same room and then in different
rooms with the same distance to the audio source. The
loudness level of the audio source was tuned to about
50dB in both rooms. Figure 4 depicts the median bit-
similarity achieved when the devices were placed in the
same room and in different rooms respectively.

We observe that in both cases the variance in the bit
errors achieved is below 0.01 %. When both devices are
placed in the same room, the median Hamming distance
between fingerprints is only 31.64 %. We account this

Hamming distance in a canteen setting
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0.551 =

Median Percentage of identical bits in fingerprints
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Fig. 5: Median percentage of bit errors in fingerprints
generated by two mobile devices in a canteen environ-
ment.

high similarity and the low variance to the fact that
background noise was negligible in this setting since the
FM-radio was the dominant audio source.

When the devices are placed in different rooms, the
variance in bit error rates is still low with 0.008 %. The
median Hamming distance rose in this case to 36.52 %.

Consequently, although the dominant audio source
in both settings generated identical and synchronised
content, the Hamming distance drops significantly when
both devices are in an identical room. With sufficient
tuning of the error correction method conditioned on the
Hamming distance, an eavesdropper can be prevented
from stealing the secret key even though information on
the audio context might be leaking.

5.3 Canteen environment

We studied the accuracy of the approach in the canteen
of the TU Braunschweig (cf. figure 3c). At different
tables, laptop computers have been placed. For each
configuration we conducted 10 attempts to establish a
unique key based on the fingerprints. We conducted
all experiments during 11:30 and 14:00 on a business
day in a well populated canteen. The ambient noise in
this experiment was approximately at 60 dB. Apart from
the audible discussion on each table, background noise
was characterised by occasional high pitches of clashing
cutlery.

Figure 5 depicts the results achieved. The figure shows
the median percentage of bit errors between the finger-
prints generated by both devices.

We observe that generally the percentage of identical
bits in the fingerprint decreases with increasing distance.
With about 2 m distance the percentage of identical bits is
still quite similar to the similarity achieved when devices
are only 30cm apart. This is also true when one of the
devices is placed at the next table. However, with a
distance of about 4 meters and above, the percentage
of bit errors are well separated so that also the error
correction could be tuned such that a generation of a
unique key is not feasible at this a distance.
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Fig. 6: Median percentage of bit errors in fingerprints
from two mobile devices beside a heavily trafficked road.

5.4 Outdoor environment

In this instrumentation the two computers were located
at the side of a well trafficked road. The study has been
conducted during the rush hour between 17:00 and 19:00
at a regular working day. The road was frequented by
pedestrians, bicycles, cars, lorries and trams. The data
was measured not far off a headlight so that traffic
occasionally stopped with running motors in front of
the measurements. The loudness level was about 60 dB
for both devices. The setting is depicted in figure 3d.
We gradually increased the distance among devices.
Devices have been placed with a distance between their
microphones of 0.5m, 3m, 5m, 7m and 9m at one side
of the road. Additionally, for one experiment devices
are placed at opposite sides of the road. For each con-
figuration 10 to 13 experiments have been conducted.
The results are depicted in figure 6. The figure depicts
the median Hamming distance and variance for the
respective configurations applied.

Not surprisingly, we observe that the Hamming dis-
tance between fingerprints generated by both devices is
lowest when devices are placed next to each other. With
increasing distance, the Hamming distance increases
slightly but then stays similar also for greater distances.

At the opposite side of the road, however, the Ham-
ming distance drops more significantly. When both de-
vices are at the same side of the road, the probability to
guess the secret key is high even for greater distances
between the devices. We believe that this property is
attributable to the very monotonic background noise
generated by the vehicles on the road. The audio-context
is therefore similar also in greater distances.

Only when one of the devices is located at the opposite
side of the road, a more significant distinction between
the generated fingerprints is possible. This may account
to the different reflection of audio off surrounding build-
ings and to the fact that vehicles on the other lane
generate a different dominant audio footprint.

Generally, these results suggest that audio-based key

generation is hardly feasible in this scenario. Audio-
based generation of secret keys is not well suited in an
environment with very monotonic and unvaried back-
ground noise. Although a light protection from intruders
on the different side of the road is possible, the radius
in which similar fingerprints are generated on one side
of the road is unacceptably high.

6 ENTROPY OF FINGERPRINTS

Although these results suggest that it is unlikely for a
device in another audio context to generate a fingerprint
which is sufficiently similar, an active adversary might
analyse the structure of fingerprints created to identify
and explore a possible weakness in the encryption key.
Such a weakness might be constituted by repetitions of
subsequences or by an unequal distribution of symbols.
A message encrypted with a key biased in such a way
may leak more information about the encrypted message
than intended.

We estimated the entropy of audio-fingerprints gener-
ated for audio-sub-sequences by applying statistical tests
on the distribution of bits. In particular, we utilised the
dieHarder [60] set of statistical tests. This battery of tests
calculates the p-value of a given random sequence with
respect to several statistical tests. The p-value denotes
the probability to obtain an input sequence by a truly
random bit generator [61]. All tests are applied to a set
of fingerprints of 480 bits length. We utilised all samples
obtained in section 4 and section 5.

From 7490 statistical-test-batches consisting of 100 re-
peated applications of one specific test each, only 173,
or about 2.31% resulted in a p-value of less than 0.05'.
Each specific test was repeated at least 70 times. The p-
values are calculated according to the statistical test of
Kuiper [61], [62].

Figure 7 depicts for all test-series conducted the frac-
tion of tests that did not pass a sequence of 100 con-
secutive runs at > 5% for Kuiper KS p-values [61]
for all 107 distinct tests in the DieHarder battery of
statistical tests. Generally, we observe that for all test-
runs conducted, the number of tests that fail is within the
confidence interval with a confidence value of o = 0.03.
The confidence interval was calculated for m = 107 tests
as
(1-a) «

-

1—a+3. (19)
Alternatively, we could not observe any distinction be-
tween indoor and outdoor settings (cf. figure 7a and fig-
ure 7b) and conclude that also the increasing noise figure
and different hardware utilised 2 does not impact the test
results. Since music might represent a special case due
to its structured properties and possible repetitions in
an audio sequence, we considered it separately from the

1. All results are available at http:/ /www.ibr.cs.tu-
bs.de/users/sigg/StatisticalTests / TestsFingerprints_110601.tar.gz

2. Overall, the microphones utilised (2 internal, 2 external) were
produced by three distinct manufacturers
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Fig. 7: Illustration of P-Values obtained for audio-fingerprints by applying the DieHarder battery of statistical tests.

other samples. We could not identify a significant impact
of music on the outcome of the test results (cf. figure 7c).

Additionally, we separated audio samples of one au-
dio class and used them exclusively as input to the
statistical tests. Again, there is no significant change for
any of the classes (cf. figure 7d).

We conclude that we could not observe any bias
in fingerprints based on ambient audio. Consequently,
the entropy of fingerprints based on ambient audio
can be considered as high. An adversary should gain
no significant information from an encrypted message
eavesdropped.

7 CONCLUSION

We have studied the feasibility to utilise contextual
information to establish a secure communication chan-
nel among devices. The approach was exemplified for
ambient audio and can be similarly applied to alterna-
tive features or context sources. The proposed fuzzy-
cryptography scheme is adaptable in its noise tolerance

through the parameters of the error correcting code
utilised and the audio sample length.

In a laboratory environment, we utilised sets of record-
ings for five situations at three loudness levels and four
relative positions of microphones and audio source. We
derived in 7500 experiments the expected Hamming dis-
tance among audio-fingerprints. The fraction of identical
bits is above 0.75 for fingerprints from the same audio
context and below 0.55 otherwise. This gap in the Ham-
ming distance can be exploited to generate a common
secret among devices in the same audio context. We
detailed a protocol utilising fuzzy-cryptography schemes
that does not require the transmission of any informa-
tion on the secure key. The common secret is instead
conditioned on fingerprints from synchronised audio-
recordings. The scheme enables ad-hoc and unobtrusive
generation of a secure channel among devices in the
same context. We conducted a set of common statistical
tests and showed that the entropy of audio-fingerprints
based on energy differences in adjacent frequency bands
is high and sufficient to implement a cryptographic
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scheme.

In four case-studies, we verified the feasibility of the
protocol under realistic conditions. The greatest sep-
aration between fingerprints from identical and non-
identical audio-contexts was observed indoor with low
background noise and a single dominant audio source.
In such an environment we could distinguish devices
in the same and in different audio contexts. It was
even possible to clearly identify a device that replicated
dominant audio from another room with an equally
tuned FM-radio at similar loudness level.

In a case-study conducted in a crowded canteen envi-
ronment, we observed that the synchronisation quality
was generally impaired due to the absence of a dominant
audio source. However, it was still possible to establish
a privacy area of about 2m inside which the Hamming
distance of fingerprints was distinguishably smaller than
for greater distances. The worst results have been ob-
tained in a setting conducted beside a heavily trafficked
road. In this case, when the noise component becomes
dominant and considerably louder, the synchronisation
quality was further reduced. Additionally, due to the in-
creased loudness level, a similar synchronisation quality
was possible also at distances of about 9m. We conclude
that in this scenario, a secure communication channel
based purely on ambient audio is hard to establish.

We claim that the synchronisation quality in scenarios
with more dominant noise components can be further
improved with improved features and fingerprint algo-
rithms. Currently, most ideas are lent from fingerprint-
ing algorithms and features designed to distinguish be-
tween music sequences. Although algorithms have been
adapted to better capture characteristics of ambient au-
dio, we believe that features and fingerprint generation
to classify ambient audio might be further improved.
Additionally, the consideration of additional contextual
features such as light or RF-channel-based should im-
prove the robustness of the presented approach.

In our implementation we faced difficulties to achieve
sufficiently accurate (in the order of few milliseconds)
time-synchronisation among wireless devices. In our cur-
rent studies we tested several sample windows of NTP-
synchronised recordings in order to achieve a feasible
implementation on standard hardware. However, a more
exact time synchronisation would further reduce the
accuracy and computational complexity of the approach.

ACKNOWLEDGMENTS

This work was supported by a fellowship within the
Postdoc-Programme of the German Academic Exchange
Service (DAAD)

REFERENCES

[1] C. Dupuy and A. Torre, Local Clsuters, trust, confidence and prox-
imity, ser. Clusters and Globalisation: The development of urban
and regional economies. Edward Elgar, 2006, ch. 5, pp. 175-195.

(2]

(31

(4]

(5]

(6]

(7]

(8]

9]

[10]

[11]

(12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

R. Mayrhofer and H. Gellersen, “Spontaneous mobile device
authentication based on sensor data,” information security technical
report, vol. 13, no. 3, pp. 136-150, 2008.

D. Bichler, G. Stromberg, M. Huemer, and M. Loew, “Key gen-
eration based on acceleration data of shaking processes,” in Pro-
ceedings of the 9th International Conference on Ubiquitous Computing,
J. Krumm, Ed., 2007.

L. E. Holmquist, E. Mattern, B. Schiele, P. Schiele, P. Alahuhta,
M. Beigl, and H. W. Gellersen, “Smart-its friends: A technique
for users to easily establish connections between smart artefacts,”
in Proceedings of the 3rd International Conference on Ubiquitous
Computing, 2001.

A. Varshavsky, A. Scannell, A. LaMarca, and E. de Lara, “Amigo:
Proximity-based authentication of mobile devices,” International
Journal of Security and Networks, 2009.

H.-W. Gellersen, G. Kortuem, A. Schmidt, and M. Beigl, “Physical
prototyping with smart-its,” IEEE Pervasive computing, vol. 4, no.
1536-1268, pp. 10-18, 2004.

R. Mayrhofer and H. Gellersen, “Shake well before use: Authen-
tication based on accelerometer data,” Pervasive Computing, pp.
144-161, 2007.

R. Mayrhofer, “The Candidate Key Protocol for Generating Secret
Shared Keys from Similar Sensor Data Streams,” Security and
Privacy in Ad-hoc and Sensor Networks, pp. 1-15, 2007.

D. Bichler, G. Stromberg, and M. Huemer, “Innovative key gener-
ation approach to encrypt wireless communication in personal
area networks,” in Proceedings of the 50th International Global
Communications Conference, 2007.

J. Hershey, A. Hassan, and R. Yarlagadda, “Unconventional cryp-
tographic keying variable management,” IEEE Transactions on
Communications, vol. 43, pp. 3-6, 1995.

G. Smith, “A direct derivation of a single-antenna reciprocity
relation for the time domain,” IEEE Transactions on Antennas and
Propagation, vol. 52, pp. 1568-1577, 2004.

M. G. Madiseh, M. L. McGuire, S. S. Neville, L. Cai, and M. Horie,
“Secret key generation and agreement in uwb communication
channels,” in Proceedings of the 51st International Global Commu-
nications Conference (Globecom), 2008.

S. T. B. Hamida, J.-B. Pierrot, and C. Castelluccia, “An adaptive
quantization algorithm for secret key generation using radio
channel measurements,” in Proceedings of the 3rd International
Conference on New Technologies, Mobility and Security, 2009.

K. Kunze and P. Lukowicz, “Symbolic object localization through
active sampling of acceleration and sound signatures,” in Pro-
ceedings of the 9th International Conference on Ubiquitous Computing,
2007.

P. Tuyls, B. Skoric, and T. Kevenaar, Security with Noisy Data.
Springer-Verlag, 2007.

Q. Li and E.-C. Chang, “Robust, short and sensitive authentication
tags using secure sketch,” in Proceedings of the 8th workshop on
Multimedia and security. ACM, 2006, pp. 56-61.

Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy extractors:
How to generate strong keys from biometrics and other noisy
data,” EUROCRYPT 2004, pp. 79-100, 2004.

F. Miao, L. Jiang, Y. Li, and Y.-T. Zhang, “Biometrics based
novel key distribution solution for body sensor networks,” in
Engineering in Medicine and Biology Society, 2009. EMBC 2009.
Annual International Conference of the IEEE. 1EEE, 2009, pp. 2458
2461.

A. Juels and M. Sudan, “A Fuzzy Vault Scheme,” Proceedings of
IEEE Internation Symposium on Information Theory, p. 408, 2002.
Y. Dodis, J. Katz, L. Reyzin, and A. Smith, “Robust fuzzy ex-
tractors and authenticated key agreement from close secrets,”
Aduvances in Cryptology-CRYPTO 2006, pp. 232-250, 2006.

P. Cano, E. Batlle, T. Kalker, and ]. Haitsma, “A Review of
Algorithms for Audio Fingerprinting,” The Journal of VLSI Signal
Processing, vol. 41, no. 3, pp. 271-284, 2005.

S. Baluja and M. Covell, “Waveprint: Efficient wavelet-based
audio fingerprinting,” Pattern Recognition, vol. 41, no. 11, 2008.
L. Ghouti and A. Bouridane, “A robust perceptual audio hashing
using balanced multiwavelets,” in Proceedings of the 5th IEEE
International Conference on Acoustics, Speech, and Signal Processing,
2006.

S. Sukittanon and L. Atlas, “Modulation frequency features for
audio fingerprinting,” in Proceedings of the 2nd IEEE International
Conference on Acoustics, Speech, and Signal Processing, 2002.



IEEE TRANSACTIONS ON MOBILE COMPUTING

[25]

[26]

[27]
(28]
[29]

[30]

(31]

(32]

[33]

[34]

[35]

[36]

(37]

(38]

[39]

(40]

[41]

[42]

[43]
(44]
[45]

[46]

[47]

(48]

[49]

[50]

J. Haitsma and T. Kalker, “A highly robust audio fingerprinting
system,” in Proceedings of the 3rd International Conference on Music
Information Retrieval, October 2002.

C. Burges, D. Plastina, J. Platt, E. Renshaw, and H. Malvar, “Using
audio fingerprinting for duplicate detection and thumbnail gener-
ation,” in Acoustics, Speech, and Signal Processing, 2005. Proceedings.
(ICASSP '05). IEEE International Conference on, vol. 3, march 2005,
pp. iii/9-iii12 Vol. 3.

C. Bellettini and G. Mazzini, “A framework for robust audio
fingerprinting,” Journal of Communications, vol. 5, no. 5, 2010.

A. Ghias, J. Logan, D. Chamberlin, and B. C. Smith, “Query by
humming,” in Proceedings of the ACM Multimedia, 1995.

D. Parsons, The directory of tunes and musical themes. Cambridge
University press, 1975.

R. A. Baeza-Yates and C. H. perleberg perleberg perleberg per-
leberg, “Fast and practical approximate string matching,” Third
annual symposium on combinatorial pattern matching, 1992.

R.J. McNab, L. A. Smith, I. H. Witten, C. L. Henderson, and S. J.
Cunningham, “Towards the digital music library: tune retrieval
from acoustic iinput,” Proceedings of the ACM, 1996.

L. Prechelt and R. Typke, “An interface for melody input,” ACM
Transactions on Computer Human Interactions, vol. 8, 2001.

W. Chai and B. Vercoe, “Melody retrieval on the web,” in Pro-
ceedings of the ACM/SPIE conference on Multimedia Computing and
Networking, 2002.

L. Shifrin, B. Pardo, and W. Birmingham, “Hmm-based musical
query retrieval,” in Proceedings of the joint conference on digital
libraries, 2002.

L. Rabiner, “A tutorial on hidden markov models and selected ac-
cplications in speech recognition,” Proceedings of the IEEE, vol. 77,
no. 2, 1989.

Y. Zhu and D. Shasha, “Warping indexes with envelope trans-
forms for query by humming,” in Proceedings of the ACM SIGMOD
International Conference on Management of Data, 2003.

J. Haitsma and T. Kalker, “Robust audio hashing for content
identification,” in In Content-Based Multimedia Indexing (CBMI,
2001.

J. Lebossé, L. Brun, and J.-C. Pailles, “A robust audio fingerprint’s
based identification method,” in Proceedings of the 3rd Iberian
conference on Pattern Recognition and Image Analysis, Part I, ser.
IbPRIA ‘07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 185-
192.

C. Burges, J. Platt, and S. Jana, “Distortion discriminant analy-
sis for audio fingerprinting,” Speech and Audio Processing, IEEE
Transactions on, vol. 11, no. 3, pp. 165-174, may 2003.

J. Herre, E. Allamanche, and O. Hellmuth, “Robust matching of
audio signals using spectral flatness features,” in Applications of
Signal Processing to Audio and Acoustics, 2001 IEEE Workshop on
the, 2001, pp. 127-130.

C. Yang, “Macs: music audio characteristic sequence indexing for
similarity retrieval,” in Applications of Signal Processing to Audio
and Acoustics, 2001 IEEE Workshop on the, 2001, pp. 123-126.

, “Efficient acoustic index for music retrieval with various
degrees of similarity,” in Proceedings of the tenth ACM
international conference on Multimedia, ser. MULTIMEDIA ‘02.
New York, NY, USA: ACM, 2002, pp. 584-591. [Online].
Available: http://doi.acm.org/10.1145/641007.641125

A. Wang, “The Shazam music recognition service,” Communica-
tions of the ACM, vol. 49, no. 8, p. 48, 2006.

——, “An Industrial Strength Audio Search Algorithm,” in Inter-
national Conference on Music Information Retrieval (ISMIR), 2003.
F. Hao, “On using fuzzy data in security mechanisms,” Ph.D.
dissertation, Queens College, Cambridge, April 2007.

A. C. Ibarrola and E. Chavez, “A robust entropy-based audio-
fingerprint,” in Proceedings of the 2006 International Conference on
Multimedia and Expo (ICME 2006), 2006.

B. Schneider, Applied Cryptography: Protocols, Algorithms, and Source
Code in C, 2nd ed. John Wiley and Sons, Inc., 1996.

I. Reed and G. Solomon, “Polynomial codes over certain finite
fields,” Journal of the Society for Industrial and Applied Mathematics,
pp- 300-304, 1960.

A. Juels and M. Wattenberg, “A Fuzzy Commitment Scheme,”
Sixth ACM Conference on Computer and Communications Security,
pp- 28-36, 1999.

National Institute of Standards and Technology, “180-3, Secure
Hash Standard (SHS),” Federal Information Processing Standards
Publications (FIPS PUBS), Oct. 2008.

[51]

[52]

[53]

(54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

——, “197, Advanced Encryption Standard (AES),” Federal Infor-
mation Processing Standards Publications (FIPS PUBS), 2001.

D. Mills, J. Martin, J. Burbank, and W. Kasch, “Network Time
Protocol Version 4: Protocol and Algorithms Specification,” RFC
5905 (Proposed Standard), Internet Engineering Task Force, Jun.
2010. [Online]. Available: http://www.ietf.org/rfc/rfc5905.txt

D. L. Mills, “Improved algorithms for synchronising computer
network clocks,” IEEE/ACM Transactions on Networking, vol. 3,
no. 3, June 1995.

S. Meier, H. Weibel, and K. Weber, “Ieee 1588 syntonization and
synchronization functions completely realized in hardware,” in
International IEEE Symposium on Precision Clock Synchronization for
Measurement, Control and Communication (ISPCS 2008), 2008.

D. L. Mills, “Precision synchronisation of computer network
clocks,” ACM Computer Communication Review, vol. 24, no. 2, April
1994.

GStreamer Documentation, Freedesktop.org, Oct. 2010. [Online].
Available: http://gstreamer.freedesktop.org/documentation/

W. J. Scheirer and T. E. Boult, “Cracking fuzzy vaults and biomet-
ric encryption,” in Proceedings of Biometrics Symposium, Baltimore,
USA, 2007.

T. Ignatenko and F. M. J. Willems, “Information Leakage in
Fuzzy Commitment Schemes,” in IEEE Transactions on Information
Forensics and Security, vol. 5, no. 2, Jun. 2010, p. 337.

K. Fenzi and D. Wreski, Linux Se-
curity HOWTO, Jan. 2004. [Online]. Avail-
able: http://www.ibiblio.org/pub/linux/docs/howto/other-

formats/pdf/Security-HOWTO.pdf

R. G. Brown, “Dieharder: A random number test suite,”
http:/ /www.phy.duke.edu/~rgb/General/dieharder.php, 2011.
N. Kuiper, “Tests concerning random points on a circle,” in Pro-
ceedings of the Koinklijke Nederlandse Akademie van Wetenschappen,
vol. Series a 63, 1962, pp. 38-47.

M. Stephens, “The goodness-of-fit statistic v_n: Distribution and
significance points,” Biometrika, vol. 52, 1965.

Dominik Schiirmann received his bachelor of
science from the TU Braunschweig, Germany
in 2010. His research interests include unobtru-
sive security in distributed systems and crypto-
graphic algorithms in general.

Stephan Sigg received his diploma in computer
sciences from the University of Dortmund, Ger-
many in 2004 and finished his PhD in 2008 at the
chair for communication technology at the Uni-
versity of Kassel, Germany. He currently works
in the Information Systems Architecture Science
Research Division at the National Institute of
Informatics (NII), Japan. His research interests
include the analysis, development and optimi-
sation of algorithms for Pervasive Computing
Systems.



