
M. Meier, D. Reinhardt, S. Wendzel (Hrsg.): Sicherheit 2016,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 137

Surreptitious Sharing on Android

Dominik Schürmann1 Lars Wolf 1

Abstract: Many email and messaging applications on Android utilize the Intent API for sharing
images, videos, and documents. Android standardizes Intents for sending and Intent Filters for
receiving content. Instead of sending entire files, such as videos, via this API, only URIs are exchanged
pointing to the actual storage position. In this paper we evaluate applications regarding a security
vulnerability allowing privilege escalation and data leakage, which is related to the handling of
URIs using the file scheme. We analyze a vulnerability called Surreptitious Sharing and present
two scenarios showing how it can be exploited in practice. Based on these scenarios, 4 email and
8 messaging applications have been analyzed in detail. We found that 8 out of 12 applications are
vulnerable. Guidelines how to properly handle file access on Android and a fix for the discussed
vulnerability are attached.

Keywords: Android, sharing, vulnerability, Intent, API.

1 Motivation

Android includes a rich API for communication and interaction between applications. It
introduced the concept of Intents with a set of standardized actions to facilitate sharing of
data. This allows applications to concentrate on its core functionality and rely on others to
deal with extended use cases. For example, there is no need to support recording of video
when implementing an email client, instead a video recorder can directly share a finished
recording with the email application. In this example, it is crucial to only share the intended
video—other recordings must be protected against unauthorized access. Android provides
a variety of security mechanisms to implement access control. These include sandboxing
on file system layer via Unix UIDs, as well as Android permissions and URI permissions
on the API layer. Even though these mechanisms are already sophisticated in comparison
to traditional desktop operating systems, several vulnerabilities have been discovered and
discussed in the research community [EMM12, Mu14b, Mu15, Ba15a, Mi15]. These often
emerge from edge cases in inter-application communication, which were not considered in
the application developer’s or Android’s security model.

The main contribution of this paper is the presentation and evaluation of a security vul-
nerability we call Surreptitious Sharing related to content sharing via file schemes. So far
this vulnerability has been neglected in literature and to the best of the authors’ knowledge
a related vulnerability exploiting file URIs has only been described in a security audit by
Cure53 [He15]. We provide a detailed explanation of the vulnerability and analyze popular
applications in regards to it. Finally, we will discuss best practices of securing Android
against this issue and what developers can do to protect their users.
1 TU Braunschweig, Institute for Operating Systems and Computer Networks, Mühlenpfordtstr. 23, 38106

Braunschweig, {schuermann, wolf}@ibr.cs.tu-bs.de

Since Android’s inception and widespread adoption, a huge amount of research papers
has been published analyzing certain security mechanisms. A great overview of Android’s
model and especially URI handling can be found in [EMM12]. An example of recent work
in this area are publications of Bagheri et al. In [Ba15a], they developed a formal model
to describe and evaluate Android’s permission model to discover issues, e.g., privilege
escalation attacks. They found a previously undiscovered flaw in Android’s handling of
custom permissions, which are still heavily based on installation order. They also found
an URI permission flaw, where applications were able to access certain URIs because
URI permissions are not properly revoked when the associated content provider has been
uninstalled. In a different paper, they presented COVERT [Ba15b], a tool to evaluate the
security of inter-application communication. Using formal models, the interactions of
multiple applications can be checked based on the applications’ control-flows. They showed
their ability to find privilege escalation vulnerabilities using an experimental evaluation
with applications from Google Play, F-Droid, MalGenome, and Bazaar. Still, it is not clear
if the vulnerability presented in this paper could have been found using their model, which
does not consider the underlying file system permissions.

While a vast amount of research has been published about static and dynamic analysis
tools for Android, we will focus on specific discovered vulnerabilities related to the one
presented in this paper. Mark Murphy discusses permission and URI permission issues
in several blog posts. He describes a problem where an application can gain access to
protected functionality by being installed before the targeted application, declaring the
same custom permission as the targeted application while at the same time requesting
the permission via <uses-permission> [Mu14b]. This vulnerability no longer works on
Android 5; the installation of a second application requesting the same permission now fails
with INSTALL_FAILED_DUPLICATE_PERMISSION [Mu14a]. In [Mu15], he discusses the
limits of URI permissions granted via Content Providers.

A different way to gain access to data is by tricking the users to input their private informa-
tion into user interfaces controlled by an attacker. Qi Alfred Chen et al. were able to launch
malicious user interfaces from background processes to hijack login screens, i.e., launch
a similar looking screen where the user enters her credentials [CQM14]. They were able
to determine precise timings by detecting UI state changes via side channels of Android’s
shared memory [CQM14]. The authors of [NE13] tried to prevent other accidental data
leakages on Android. They present Aquifer, a policy framework that developers can use
to define restrictions and to protect their user interfaces in addition to Android’s security
model. They implemented an example using K-9 Mail, which has also been analyzed in
this paper.

Other paper looking at application specific issues have been published. In [Fa13], 21 pass-
word manager have been evaluated. Besides complete failures in regards to cryptographic
implementations, the main problem is that most password managers pasted passwords
into Android’s clipboard, which can be accessed without additional permissions. They
propose fixes that require changes in the Android operating system, as well as fixes that can
be deployed by developers. A more automated process of finding misused cryptographic
principles has been investigated in [Eg13]. The authors found that 88% of all considered

M. Meier, D. Reinhardt, S. Wendzel (Hrsg.): Sicherheit 2016,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 139

applications violated at least one posed rule. An evaluation of the security of nine popular
messaging tools has been presented in “Guess Who’s texting You?” [Sc12]. It focuses on
several aspects, such as deployed authentication techniques, registration mechanisms, and
privacy leakages. A detailed analysis of WhatsApp can be found in [Th13].

A vulnerability similar to the one discussed in this paper has been discovered by Rob Miller
of MWR Labs [Mi15]. He was able to bypass Android’s file system permission model
using Google’s Android Admin application by opening a specially crafted webpage with
this application. This webpage is opened inside the application’s context and includes a file
URI, which can be used to gain access to the private storage.

2 IPC and Access Control on Android

Before discussing the vulnerability in detail, we introduce fundamentals of Android’s Inter
Process Communication (IPC) and Access Control mechanisms. Android’s IPC is based
on the Binder mechanism. It is not based on traditional System V components, but has
been implemented due to performance and security reasons as a patch for the Linux kernel.
Memory can be allocated and shared between processes without making actual copies of
the data. Binder’s security is based on a combination of the usage of Unix UIDs and Binder
capabilities. It is differentiated between direct capabilities, which are used to control access
to a particular interface, and indirect capabilities, which are implemented by sharing tokens
between applications. Android Permissions are checked by verifying that a permission that
is associated to a Binder transaction is granted to the participating application. UIDs are
used as an identifier in this process.

The Binder mechanism is normally not directly used inside the Android Open Source
Project (AOSP) and Android applications. Instead, more easily usable IPC primitives exist
that are based on Binder allowing communication between processes. These are Activi-
ty/Broadcast Intents, Messenger, and Services. While these primitives can be used to share
data, they are only suitable for up to 1 MB of actual payload. Instead of sharing the data di-
rectly as a copy, it is advised to provide it via Content Providers and only share a Uniform Re-
source Identifier (URI) pointing to the payload. Google provides the class FileProvider3

shipped with their support library to ease and secure the implementation of file sharing
between applications. A file that is intended to be shared is temporarily stored inside the
application’s private cache directory and all metadata inside FileProvider’s database.
A unique URI is created, and this URI is shared, for example via an Intent, to a different
application. URIs served via FileProvider are using the content scheme, e.g., content:
//com.google.android.apps.docs.files/exposed_content/6jn9cnzdJbDy. Ac-
cess to these files can be granted using two different methods. Calling Context.grantUri
Permission(package, Uri, mode_flags) allows another package to retrieve the file
until revokeUriPermission() is executed. Possible flags are FLAG_GRANT_READ_URI_
PERMISSION and FLAG_GRANT_WRITE_URI_PERMISSION. If the URI is shared by Intent
only, the flags can also be directly assigned via Intent.setFlags() which means that

3 http://developer.android.com/reference/android/support/v4/content/FileProvider.html

access is granted to the called Activity until the corresponding stack is finished. Besides
these content-URIs, Android supports a legacy way of sharing files, which is discouraged
in recent documentations: URIs starting with the file scheme can point to an actual file
in the file system, e.g., file:///sdcard/paper.pdf. The security of file URIs is based
on file system permissions only, i.e., Unix UIDs. For the default case of accessing files
on the external storage, access control is handled differently on Android versions: Since
SDK 4 WRITE_EXTERNAL_STORAGE permission is required to access the card. In SDK
16, READ_EXTERNAL_STORAGE has been introduced for read operations only. Since SDK
19, actual external storages (not internal ones, which strangely also fall under the broader
definition of “external storage”) are no longer readable or writable. In SDK 21, the Storage
Access Framework has been introduced which allows to access external storages via a
new API, complementing the original Java File API. Since SDK 23, runtime permissions
are introduced. READ_EXTERNAL_STORAGE permission must be granted during runtime to
access file based URIs pointing to the SD card.

On the receiving side, these URIs are opened via ContentResolver.openInputStream
(Uri uri). This method supports the schemes content, file, and android.resource (used to
open resources, e.g., android.resource://package_name/id_number).

In addition to storing on external mediums, applications can save private data using
Context.openFileOutput(String name, int mode). This datum is saved in /data/
data/com.example.app/ and can only be access by the application itself, not other appli-
cations or the user (in contrast to storing on SD cards)4. These methods utilize the standard
File API and streaming classes of Java. Each application on Android has its own file system
UID that protects these data directories against unauthorized access. In effect, all Android
applications are separated from one another on the file system layer.

2.1 Sharing API

Using the described IPC methods, Android provides great ways to allow sharing of data
between applications. One of the most simple standardized ways of sharing content between
applications is by using share buttons or menus implemented in a variety of applications.
By constructing an Intent with the android.intent.action.SEND action, a sender can
transfer text or other content. The actual payload is included via so called extras, which
are serialized using Android’s Parcelable methods. For SEND, the following extras exist
(all prefixed with android.intent.extra.): TEXT, HTML_TEXT, STREAM. While TEXT
and HTML_TEXT contain the whole String, STREAM contains an URI, which points to the
actual content via content or file schemes. Other standardized extras are EMAIL, CC, BCC,
SUBJECT. Applications can introduce new extras, as Intent APIs are not fixed like traditional
IPC interfaces. There exists a range of other Intent actions with similar semantics, such
as SEND_MULTIPLE. It is basically the same mechanism as SEND, but allows sharing of
multiple URIs using a list.

4 http://developer.android.com/guide/topics/data/data-storage.html#filesInternal

M. Meier, D. Reinhardt, S. Wendzel (Hrsg.): Sicherheit 2016,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 141

(a) Pretended crash en-
couraging a bug report

(b) K-9 Mail (c) WEB.DE

Fig. 1: Surreptitious Sharing of IMAP passwords stored in email clients (Scenario 1)

To receive data sent by these Intents, Android allows to specify Intent Filters inside the
AndroidManifest.xml. Intent Filters consist of an XML structure defining the receiving
action, the accepted MIME types, and filters which URIs are accepted5. It is important to
note that explicitly declaring MIME types when constructing an Intent helps the receiving
application to determine the type of content, but without any checks whatsoever that the
actual payload is of that type. No magic bytes are checked by the Android OS.

3 Surreptitious Sharing

The central issue presented in this paper is related to the security of URIs using the
file scheme. As discussed previously, access control to URIs based on this scheme is
handled via traditional Unix file system permissions. The introduced permissions READ_
EXTERNAL_STORAGE and WRITE_EXTERNAL_STORAGE are designed as additional barriers
for accessing SD cards. The main issue lies in the fact that applications cannot only
access their private data directories using Context.openFileOutput(String name,
int mode), but also using file URIs. While these URIs are normally used to access files
on the SD card, via file:///sdcard/paper.pdf for example, they can also point to
private files, e.g., file:///data/data/com.example.app/files/paper.pdf. If an
application registers Intent Filters to support Android’s sharing API or defines custom
Intents accepting URIs, they are potentially accepting file URIs that could also point to
their own private files. For applications facilitating communication, like email or messaging
applications, this leads to what we call Surreptitious Sharing. To our knowledge, this issue
has first been documented as vulnerability OKC-01-010 in Cure53’s security audit of the
OpenPGP application OpenKeychain [He15]. While their report applies this issue to the file

5 http://developer.android.com/guide/topics/manifest/intent-filter-element.html

(a) Music player encour-
aging music sharing

(b) Threema: Select recip-
ient

(c) Threema: Shared
database shown as audio
recording

Fig. 2: Surreptitious Sharing of messaging databases (Scenario 2)

encryption API in OpenKeychain, which accepts file URIs, we apply it in a broader context
to communication applications. Investigating the AOSP source code reveals that support for
file URIs using Context.openFileOutput(String name, int mode) (similar checks
are present in openAssetFileDescriptor) was planned to be removed 6. To demonstrate
the impact of this security vulnerability, we consider two attack scenarios: Scenario 1)
“Fake Bug Report” and Scenario 2) “Music Sharing”.

Scenario 1 is intended to surreptitiously share IMAP passwords of email clients to an
attacker. Following Figure 1, interaction with Scenario 1 consists of a sequence of actions.
A malicious application shows a screen indicating that a problem has occurred urging
the user to report the bug to the developers. Touching the button starts a malicious Intent
specially crafted for a particular email application with an URI pointing to a private file of
this email application, containing the IMAP password. Generally, this Intent uses the SEND
action and a set of extras to prefill the recipient for example in addition to the malicious file
URI inside the STREAM extra. The Intent is explicitly defined using the package name and
the exact Activity. The private file is attached to the email shown in the compose screen.
The user finally needs to send this email to expose her sensitive information.

Scenario 2 is designed to exploit messaging applications and share their databases to obtain
message histories, for example. Instead of faking a crash followed by a bug report, it
consists of a functional music player also featuring a button to share music with friends
via installed messengers (cf. Figure 2). The button is prominently placed to encourage
sharing. Based on the targeted messaging application, the user interfaces following the
sharing action, differ.

6 see inline comments in openInputStream method in https://android.googlesource.com/platform/
frameworks/base/+/master/core/java/android/content/ContentResolver.java

M. Meier, D. Reinhardt, S. Wendzel (Hrsg.): Sicherheit 2016,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 143

Application Version Component Ope
n so

urc
e

Disp
lay

s filen
am

e

Ign
ore

s M
IM

E
typ

e

File
pre

-pr
oc

ess
ing

Sec
uri

ty
ch

ec
k

Sec
ure

K-9 Mail 5.006 MessageCompose # # #

AOSP Maila 5.1.1-ecfa8c7973 ComposeActivityEmail # G# #

GMail 5.8.107203005 ComposeActivityGmail # # G# #

WEB.DE 3.6 MailComposeActivity # # # #

a AOSP Mail from CyanogenMod 12.1

Tab. 1: Scenario 1 using SEND Intents with file URI

Even if it is not known beforehand which applications are installed, Android’s API allows
to query for available components via PackageManager.queryIntentActivities().
Thus, it is easy to search for targeted applications and then use a custom malicious Intent.
In the following, we will investigate several applications in regards to this vulnerability.
The applications have been evaluated on Android 6.0 (SDK 23), except AOSP Mail which
has been tested on CyanogenMod 12.1 (Android 5.1, SDK 22). However, the vulnerability
itself is present on all Android versions.

3.1 Scenario 1: Fake Bug Report

We will first look into two of the most popular open source email applications, K-9 Mail
and AOSP Mail, and analyze their security. Due to the availability of their source code, it is
possible to analyze the actual implementation of opening URIs more precisely. Afterwards,
GMail and WEB.DE apps are tested. All results are listed in a concise form in Table 1.

K-9 Mail The crafted exploit (cf. Appendix 7.1) works as intended. As typical for an
email client that accepts all MIME types (filters for “*/*”), no pre-processing is done
for attached files and explicitly declared MIME types via Intent.setType() are
ignored. The file preference_storage7 containing the IMAP passwords is shared
and displayed in K-9 Mail (cf. Figure 1b). At least, the attached file is displayed
upfront to the user.

AOSP Mail Google has stopped introducing new features to the AOSP Mail client since
the GMail application supports external IMAP accounts starting from version 5.0.
Still, the AOSP Mail client is used as the code base for many derived proprietary
clients and is still maintained by custom roms such as CyanogenMod. Here, we tested
a version from CyanogenMod 12.1.
AOSP Mail has a security check in place to prevent attachments from data directories

7 file:///data/data/com.fsck.k9/databases/preferences_storage

except from directories of the calling application, which shows “Permission denied
for the attachment.”8. By creating a world-readable hard link from the malicious
application to the AOSP Mail’s EmailProvider.db9 file we were able to work
around this security check and successfully attach the database containing the IMAP
password (cf. Appendix 7.1). This also allows to hide the actual filename as only the
name of the hard link is shown in the displayed attachments.

GMail GMail also has a similar security check in place resulting in “Permission denied
for the attachment”. Again, we were able to circumvent this by using a hard link.
However, we were not able to exploit GMail on Android 6, maybe due to the
new runtime permissions; this has not been investigated further. Retrieving the
Google password is not possible due to the usage of OAuth in combination with
the AccountManager API. Still, stored emails can be retrieved by retrieving the
Google account name via AccountManager.getAccounts() and then sharing a
URI pointing to mailstore.example@gmail.com.db10.

WEB.DE The WEB.DE Android client is based on K-9 Mail and behaves similarly, except
that the attachment is initially hidden behind the keyboard making it more difficult
for the user to notice it (cf. Figure 1c).

3.2 Scenario 2: Music Sharing

Due to the nature of messaging applications, these are rarely used for bug reports. Thus, to
exploit these, Scenario 2 is used. Table 2 gives an overview of the analyzed applications
and their properties. We looked at five popular messaging applications from Google Play
and three selected privacy-focused ones. In contrast to email applications, most messaging
applications do not ignore the given MIME type and often rely on it instead of detecting
the type itself.

WhatsApp We were not able to exploit WhatsApp. According to our analysis, only image,
audio, and video types are supported. Sharing the message database11 as an image
MIME type resulted in “The file you picked was not an image file.”, which seems to
be detected during pre-processing of the image. Audio and video files were displayed
in the message history, but were not properly uploaded; the retry button did not work.

Hangouts Hangouts behaves similarly to WhatsApp. Sending the database12 as an image
results in “Media format not supported”.

8 https://android.googlesource.com/platform/packages/apps/UnifiedEmail/+/
adea2c809c1a97d3948b131a6f36ee9b88039a45
https://android.googlesource.com/platform/packages/apps/UnifiedEmail/+/
24ed2941ab132e4156bd38f0ab734c81dae8fc2e

9 /data/data/com.android.email/databases/EmailProvider.db
10 file:///data/data/com.google.android.gm/databases/mailstore.example@gmail.com.db
11 file:///data/data/com.whatsapp/databases/msgstore.db
12 file:///data/data/com.google.android.talk/databases/message_store.db

M. Meier, D. Reinhardt, S. Wendzel (Hrsg.): Sicherheit 2016,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 145

Application Version Component Ope
n so

urc
e

Disp
lay

s filen
am

e

Ign
ore

s M
IM

E
typ

e

File
pre

-pr
oc

ess
ing

Sec
uri

ty
ch

ec
k

Sec
ure

WhatsApp 2.12.365 ContactPicker # # #a #

Hangouts 6.0.107278502 ShareIntentActivity # # #a #
Facebook

Messenger 50.0.0.11.67 ShareIntentHandler # G# a G# a

Skype 6.12.0.585 SplashActivity # G# G# # #

Snapchat 9.20.2.0 LandingPageActivity # # # a

Threema 2.532 RecipientListActivity # G# # G# # #

Signal 3.5.2 ShareActivity # # G# # #

Telegram 3.2.6 LaunchActivity G# # G# # #

a Indefinite results, difficult to verify because application is not open source

Tab. 2: Scenario 2 using SEND, SEND_MULTIPLE Intents with file URIs

Facebook Messenger Facebook messenger registers the Intent for audio, video, image,
text/plain and we were able to share a test file from the SD card, which was properly
been sent and displayed in message history with its filename. However, we were not
able to exploit the application. Sharing a malicious URI13 from the internal storage
resulted in “Sorry, Messenger was unable to process the file”.

Skype Skype allows sharing of any MIME type and we were easily able to execute the
exploit to retrieve offlinestorage.db14. Pre-processing is done for images and
videos; sharing the malicious URI with these MIME types results in a frozen program.

Snapchat We were not able to retrieve private files from Snapchat, because it is limited to
image files which are pre-processed before sending.

Threema As depicted in Figure 2, we were able to retrieve Threema’s database15 shown
as an audio recording by setting the MIME type to “audio/mp4”. This is possible
because Threema does not pre-process these files before sending. Obviously, the
audio cannot be played. The file can still be saved successfully by the receiving
attacker and opened as a database file. Threema supports encrypted databases, which,
according to [DLP13], are encrypted using a key saved beside the database. Using
SEND_MULTIPLE, we were able to retrieve both the database and the key16. However,
explicit MIME types are ignored here, thus the files cannot be hidden as audio
recordings.

13 file:///data/data/com.facebook.orca/databases/threads_db2
14 file:///data/data/com.skype.raider/files/offlinestorage.db
15 file:///data/data/ch.threema.app/databases/threema.db
16 file:///data/data/ch.threema.app/files/key.dat

Signal Signal was in the same way vulnerable as Threema, i.e., its database17 has been
shared as an audio recording. Sending it using “image/png” resulted in a crash due to
pre-processing in AttachmentDatabase.getThumbnailStream(). Because the
fake image has been cached in Signal’s database, Signal now crashes on each start.

Telegram Telegram was exploitable18 but we were not able to hide the filename or type
with any of the discussed tricks. However, using the hard link can help to make the
user less suspicious.

4 Countermeasures

Upcoming Android versions should incorporate a security check into ContentResolver
.openInputStream() that prevents opening of file URIs where the files are solely owned
by the application’s UID (cf. Appendix 7.2). In addition, Google’s support library should be
extended. While it contains a FileProvider19 to provide files to other applications based
on content URIs avoiding the file scheme, it should additionally include the method from
Appendix 7.2 to securely open streams from URIs.

Furthermore, we recommend that application developers follow best practices to prevent
Surreptitious Sharing: Content shared from other applications should be considered as
unverified input that needs to be explicitly acknowledged by the user. Even after fixing
the vulnerability, applications could still share different content than what has been shown
to the user before, e.g., files from an SD card instead of the displayed image. Thus, we
propose to pre-process content if possible as well as display the content and filename before
actually sending it.

5 Conclusion

In this paper, we analyzed 12 applications in respect to a security vulnerability called
Surreptitious Sharing. Our evaluation showed that 8 applications were exploitable and
security checks implemented in GMail and AOSP Mail could be bypassed. Unfortunately,
especially the privacy-focused messaging applications were easily exploitable. Hiding
the private files by setting an explicit MIME type has been shown to work in Signal and
Threema. Besides fixing the vulnerability, we recommend best practices for application
developers how to handle shared files.

6 Acknowledgments

We thank Cure53 for discovering the original vulnerability OKC-01-010 [He15] and dis-
cussing possible attack vectors via hard links. We thank all vendors in advance for fixing
the vulnerabilities.

17 file:///data/data/org.thoughtcrime.securesms/databases/messages.db
18 file:///data/data/org.telegram.messenger/files/cache4.db
19 http://developer.android.com/reference/android/support/v4/content/FileProvider.html

M. Meier, D. Reinhardt, S. Wendzel (Hrsg.): Sicherheit 2016,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2016 147

References
[Ba15a] Bagheri, Hamid; Kang, Eunsuk; Malek, Sam; Jackson, Daniel: Detection of Design

Flaws in the Android Permission Protocol Through Bounded Verification. In (Bjørner,
Nikolaj; de Boer, Frank, Hrsg.): FM 2015: Formal Methods, Jgg. 9109 in Lecture Notes
in Computer Science, S. 73–89. Springer, 2015.

[Ba15b] Bagheri, Hamid; Sadeghi, Alireza; Garcia, Joshua; Malek, Sam: COVERT: Compositional
Analysis of Android Inter-App Permission Leakage. IEEE Transactions on Software
Engineering, 41(9):866–886, Sept 2015.

[CQM14] Chen, Qi Alfred; Qian, Zhiyun; Mao, Z Morley: Peeking into your app without actually
seeing it: Ui state inference and novel android attacks. In: Proceedings of the 23rd
USENIX Security Symposium. S. 1037–1052, 2014.

[DLP13] Dimitrov, Hristo; Laan, Jan; Pineda, Guido: Threema security assessment. In: Research
project for Security of Systems and Networks. Dezember 2013.

[Eg13] Egele, Manuel; Brumley, David; Fratantonio, Yanick; Kruegel, Christopher: An Empirical
Study of Cryptographic Misuse in Android Applications. In: Proceedings of the 2013
Conference on Computer and Communications Security (CCS). ACM, New York, NY,
USA, S. 73–84, 2013.

[EMM12] Egners, Andre; Meyer, Ulrike; Marschollek, Björn: Messing with Android’s Permission
Model. In: 11th International Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom). S. 505–514, June 2012.

[Fa13] Fahl, Sascha; Harbach, Marian; Oltrogge, Marten; Muders, Thomas; Smith, Matthew:
Hey, You, Get Off of My Clipboard. In: Financial Cryptography and Data Security, Jgg.
7859 in Lecture Notes in Computer Science, S. 144–161. Springer, 2013.

[He15] Heiderich, Mario; Horn, Jann; Aranguren, Abraham; Magazinius, Jonas; Weißer, Dario:
Pentest-Report OpenKeychain, August 2015. https://cure53.de/pentest-report_
openkeychain.pdf.

[Mi15] Miller, Rob: Sandbox bypass through Google Admin WebView. MWR Labs, August
2015.

[Mu14a] Murphy, Mark: Custom Permission Vulnerability and the ‘L’ Developer Preview. Com-
monsware Blog, August 2014. https://commonsware.com/blog/2014/08/04/
custom-permission-vulnerability-l-developer-preview.html.

[Mu14b] Murphy, Mark: Vulnerabilities with Custom Permissions. Commonsware
Blog, Februar 2014. https://commonsware.com/blog/2014/02/12/
vulnerabilities-custom-permissions.html.

[Mu15] Murphy, Mark: The Limits of ContentProvider Security. Common-
sware Blog, Juli 2015. https://commonsware.com/blog/2015/07/13/
limits-contentprovider-security.html.

[NE13] Nadkarni, Adwait; Enck, William: Preventing accidental data disclosure in modern operat-
ing systems. In: Proceedings of the 2013 Conference on Computer and Communications
Security (CCS). ACM, S. 1029–1042, 2013.

[Sc12] Schrittwieser, Sebastian; Frühwirt, Peter; Kieseberg, Peter; Leithner, Manuel; Mulazzani,
Martin; Huber, Markus; Weippl, Edgar R: Guess Who’s Texting You? Evaluating the
Security of Smartphone Messaging Applications. In: 19th Annual Network & Distributed
System Security Symposium (NDSS). 2012.

[Th13] Thakur, Neha S.: Forensic analysis of WhatsApp on Android smartphones, 2013.

7 Appendix

7.1 Example Exploit Targeting K-9 Mail

public void exploit () {
Intent intent = new Intent ();
intent.setComponent(new ComponentName("com.fsck.k9", "com.fsck.k9.activity.

MessageCompose"));
intent.setAction(Intent.ACTION_SEND);
String linkPath = createLink("/data/data/com.fsck.k9/databases/

preferences_storage");
Uri uri = Uri.parse("file ://" + linkPath);
intent.putExtra(Intent.EXTRA_STREAM , uri);
intent.putExtra(Intent.EXTRA_EMAIL , new String []{"support@company.com"});
intent.putExtra(Intent.EXTRA_TEXT , "Dear support team ,\n\nthe application

crashed due to the following bug:\n\nNullPointerException");
intent.putExtra(Intent.EXTRA_SUBJECT , "Bug Report");
startActivity(intent);

}

private String createLink(String path) {
File link = new File(getFilesDir ().getPath () + "/bug_report");
link.delete ();
try {

Os.link(path , link.getAbsolutePath ());
} catch (ErrnoException e) {

Log.e("SurreptitiousSharing", "hard link failed", e);
}
link.setReadable(true , false);
return link.getAbsolutePath ();

}

7.2 Secure Replacement for ContentResolver.openInputStream()

@TargetApi(VERSION_CODES.LOLLIPOP)
static InputStream openInputStreamSafe(ContentResolver resolver , Uri uri)

throws FileNotFoundException {
String scheme = uri.getScheme ();
if (ContentResolver.SCHEME_FILE.equals(scheme)) {

ParcelFileDescriptor pfd = ParcelFileDescriptor.open(
new File(uri.getPath ()), ParcelFileDescriptor.parseMode("r"));

try {
final StructStat st = Os.fstat(pfd.getFileDescriptor ());
if (st.st_uid == android.os.Process.myUid ()) {

Log.e("SafeOpen", "File is owned by the application itself ,
aborting!");

throw new FileNotFoundException("Unable to create stream");
}

} catch (ErrnoException e) {
Log.e("SafeOpen", "fstat() failed", e);
throw new FileNotFoundException("fstat() failed");

}

AssetFileDescriptor fd = new AssetFileDescriptor(pfd , 0, -1);
try {

return fd.createInputStream ();
} catch (IOException e) {

throw new FileNotFoundException("Unable to create stream");
}

} else {
return resolver.openInputStream(uri);

}
}

