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Abstract—Wireless Sensor Networks in real world context are
per se error-prone; motes can be lost, destroyed, corrupted, or
stolen. Some scenarios demand a high level of confidentiality and
integrity so that an attacker cannot access or alter the secret data.
Other setups may require a high level of redundancy so that data
from many motes can be recovered by only collecting a few.

In this paper we show how both can be achieved at the same
time by designing a protocol based on Shamir’s Secret Sharing,
symmetric ciphers, and Message Authentication Codes to dis-
tribute, encrypt, and authenticate the data. Our implementation
RAIM supports the whole bandwidth from full redundancy to
full confidentiality. RAIM is the first security implementation
for Contiki OS, which uses secret sharing techniques. It has
been deployed on physical motes, where its real world energy
consumption and throughput has been measured. In addition to
real world experiments, we provide a simulation to evaluate all
possible configurations.

Index Terms—Wireless Sensor Networks, Shamir’s Secret
Sharing, Contiki OS, redundancy, replication

I. INTRODUCTION

“Whatever can go wrong will go wrong.” – Murphy’s Law
is true for nearly every system ever built, and particularly for
Wireless Sensor Networks (WSNs) or Cyber-Physical System
(CPS). In theory, thousands to millions of Sensor Nodes – so-
called motes – are installed over wide areas [1]. In practice,
at least a few to hundreds of motes are deployed to observe
wildlife [2], prevent fire [3], monitor the structural health of
buildings [4], or the well-being of humans [5] with (wireless)
Body Area Networks (BANs).

By virtue of the sheer number of motes alone, there is a
high risk of single failures on single motes. This is a known
problem and handled by default by many techniques and/or
protocols such as dynamic routing for changing topologies or
simple hardware watchdogs for failing devices. Especially in
outdoor deployments, a high level of robustness is needed due
to the mostly harsh and varying environmental conditions.

If such networks are constantly connected to a sink and data
is forwarded to this sink right after being recorded, there is
usually no critical loss of data to be expected. Additionally,
in such constantly connected networks, privacy and security
issues could be handled by a PKI or by using pre-deployed
keys. But, in reality, many scenarios do not have a constant
end-to-end connection of every mote to the sink. Especially
in wildlife observation or health monitoring scenarios, there
might not even be a sink and motes have to be collected
to gather the recorded data. Moreover, additional things may
occur to motes besides the “normal” failures. Motes can be
destroyed – either by mistake or by intention. They can
be corrupted – either by bad programming skills or by an

attacker’s intention. Depending on the specific scenario, data
stored on howsoever lost motes is at least lost or in the hand
of an attacker which may be even worse. We discuss two
scenarios to introduce these challenges.

A. Scenario 1: Wildlife Monitoring – Maximum Redundancy

In many wildlife monitoring scenarios, such as Ze-
braNet [2], motes are attached to the observed animals or
deployed in the environment where the observation takes
place. Obviously, in real life outdoor scenarios that include
wild animals, sensors get lost or destroyed and not every
mote can be detached and readout in the end – perhaps the
specific animals are missing as well. Nevertheless, it would
be desirable to have the recorded data of all sensors. Thus,
storing the locally generated data on as many motes of other
animals as possible leads to a high level of redundancy. With
an increasing level of redundancy, the number of motes that
will have to be collected for data analysis decreases, e.g., with
“full redundancy” only one animal has to be found and caught.

B. Scenario 2: Personal Health Monitoring – Maximum Con-
fidentiality

In a BAN, motes attached to the human body measure
vital parameters or activity data. Thus, high confidentiality is
required to protect this sensitive information, e.g., by using
One Time Pads (OTPs) [6]. Not every sensor node in a BAN
may have a dedicated storage, some will send the recorded
data instantly to other more powerful nodes. On the other
hand, BANs may also not constantly be connected to some
backend network and recorded data has eventually to be stored
locally for a longer period of time. In such scenarios sensors
can get lost, stolen, or destroyed, e.g., by accidentally putting
them into the washing machine. In contradiction to the first
scenario, a pure redundancy is neither needed nor intended.
Thus, confidentiality may be the higher target in BANs, but
some redundancy for single lost nodes would be beneficial.

C. Different Levels of Redundancy and Confidentiality

In comparison to wildlife monitoring and BAN, the require-
ments for many other use cases like production monitoring [7]
or structural health monitoring [4] can be located somewhere
between these scenarios. Thus, the ideal level of redundancy
at maximum possible confidentiality differs from use case to
use case and has to be adjusted according to the individual
needs.



D. Contributions

In the following sections, we show how both can be
achieved at the same time by utilizing RAIM. We combine
existing methods for confidentiality, data integrity and redun-
dancy with a well-defined storage format. Besides symmetric
ciphers and Message Authentication Codes, we utilize a (k, n)-
threshold Shamir’s Secret Sharing (SSS) scheme to provide
the security property that an attacker needs to get at least k
SD cards to access the data collection. No amount of less
motes reveal any data. While it is possible that one SD card
is physically stolen, it is more unlikely that k SD cards will
be stolen.

In this paper, we provide the first SSS-based implementation
for combined secure data distribution and redundancy. This
allows us to actually deploy RAIM on physical motes and
measure its energy consumption and throughput. We are able
to show that it provides low energy consumption due to the
usage of hardware AES, while also having low overhead
resulting in a negligible decrease in throughput.

In Section 2 we present related work regarding security
schemes based on secret sharing schemes in WSNs. RAIMs
design and attack model is discussed in Section 3. In Section 4,
the implementation of RAIM is given with a focus on its
storage layout. RAIM’s energy consumption and throughput
is evaluated in Section 5. Section 6 concludes the paper.

II. RELATED WORK

WSNs are increasingly deployed in malicious environments
and, thus, exposed to external attackers. Due to the motes’
limited memory and computing power, routing protocols are
often kept stateless and simple. This makes them an easy target
for a range of attacks such as Sybil, Sinkhole, and Wormhole
attacks [8]. To achieve data integrity, confidentiality, and au-
thentication of senders, several key management schemes have
been proposed in the literature [9]. Real-world security ar-
chitectures have been designed and implemented for TinyOS,
Contiki, and other WSN operating systems [10]–[14]. While
these systems protect against passive eavesdropping and active
man-in-the-middle attacks, attacks against data availability by
destroying motes or interfering with their memory are not
considered. In the following we look at data redundancy
protocols and architectures that provide both confidentiality
and data redundancy.

Di Pietro et al. describe a local distribution protocol that
randomly selects neighbors to share their data with [15]. It is
based on SSS [16] to ensure confidentiality and redundancy
properties. Their simulation assumes mobile unattended motes
and shows the probability of data recovery based on time
depending on the selection of the threshold and number of
shares. Besides SSS, erasure codes can be utilized to achieve
encrypted data redundancy. Wang et al. propose an efficient
data redundancy scheme based on secret sharing and erasure
coding [17]. Their design is sound, but has not been evaluated
by an implementation or simulation besides their storage and
communication overhead analysis. Chessa et al. introduce
protocols using erasure codes based on Redundant Residue

Number Systems (RRNS) [18], [19]. For this, an abstract
model has been defined and theoretically evaluated, i.e., it has
been shown that the RRNS requirement of assigning modulis
to motes is NP-complete and thus a random assignment is
appropriate [19]. Similar to Di Pietro et al., they showed a
trade-off between confidentiality and availability for WSNs
with a specific density and redundancy level. Girao et al.
[20] propose tinyPEDS, a storage framework for static nodes
that subdivides a network into clusters. A balance between
security and overhead is achieved by using asymmetric (PH a)
and symmetric (PH s) additive privacy homomorphism func-
tions. The authors analyze the performance of the underlying
cryptographic operations and simulate their protocol using
GloMoSim. While their simulation shows that their protocol
succeeds to recover data even when 40 % of all motes are
exhausted, it is important to note the complexity of their
protocol potentially complicating a real implementation. Ab-
dullahi et al. [21] introduce a protocol that encrypts payload
using Elliptic Curve Integrated Encryption Scheme (ECIES)
and divides it into fragments, which are replicated across the
network. Their threat model includes collusion, pollution, and
data dropping attacks as well as guarantees forward and back-
ward secrecy. A performance evaluation has been done with
Matlab. A protocol based on Homomorphic Encryption and
Homomorphic Secret Sharing has been proposed by Ren et al.
[22]. The homomorphic property of their proposed protocol
allows for minimization of storage overhead and transmission
cost. Their numerical evaluation shows that their assumptions
hold for scenarios where the probability of data modification
and destruction attacks is less than 40 %. Chen et al. [23]
implement a distributed file system based on secret sharing.
Instead of using SSS, they use Blakley’s, which is based
on hyperplanes [24]. In comparison to other publications,
they discuss their file system design in detail and provide
a experimental performance analysis of their implementation,
which uses matrix calculations on GPUs. Bagci et al. [25]
propose Fusion, a storage extension for existing IPSec and
DTLS architectures. Their main contribution is to decrease
the number of cryptographic operations by mapping incoming
encrypted packets to stored blocks instead of re-encrypting
them for storage. They provide a real-world implementation
for the Contiki OS. However, no data redundancy for recovery
is considered.

Most described protocols considering data redundancy have
only been evaluated theoretically or by simulations. Only two
real world implementations have been described [23], [25].
However, the hyperplane calculations of Chen et al. require
GPUs which are hardly available on motes [23], while the
Fusion framework does not protect against data destruction
attacks [25]. Our goal is to provide an implementation and
evaluation on real mote hardware using a well chosen combi-
nation of confidentiality, data integrity and redundancy. To the
best of the authors’ knowledge, we are the first to not only
implement a redundancy scheme based on SSS for Contiki
OS, but also deploy this implementation on physical motes to
evaluate real world energy consumption and throughput.
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Fig. 1: RAIM’s modular architecture.

III. RAIM

RAIM is designed to provide protection against an external
attacker, i.e., an attacker who can intercept and alter commu-
nication but is not part of the network. Also, protection against
non-complex internal attacks is provided. In addition, it allows
to recover data in case of hardware failures, which can happen
frequently in low-cost WSNs. Finally, RAIM is low on energy
consumption and network overhead (cf. Section V).

A. Design

As depicted in Figure 1, RAIM’s architecture consists of a
modular layer between applications and the operating system
that allows the secure distribution of data across several
motes. It provides data redundancy, unified storage/transport
confidentiality, as well as data integrity. Furthermore, RAIM
provides an additional communication layer to allow distribu-
tion of redundancy data and communication with other RAIM-
enabled motes.

Due to differing requirements arising from variable scenar-
ios, RAIM can be configured in a flexible way. The encryption
layer can be configured for usage with the OTP streaming
cipher using a locally stored key-file requiring external storage
or for usage with the Advanced Encryption Standard (AES)
in Cipher Block Chaining Mode (CBC) Mode. CBC-MAC
is available as a Message Authentication Code (MAC) for
authenticating stored and transmitted data. If no confidentiality
and integrity is required, Cyclic Redundancy Check (CRC)
checksums can provide error detection only. A list of sensible
cipher suite configurations is depicted in Table I. If CBC-MAC
is combined with an encryption algorithm, it is always applied
via Encrypt-then-Authenticate (EtA) [26], providing protec-
tion against chosen-ciphertext attacks. If hardware support is
available, we recommend AES + CBC-MAC, otherwise OTP
+ CBC-MAC is also a valid option (cf. Section V). RAIM’s
redundancy can be configured for either full redundancy or
with a chosen k for a (k, n)-threshold SSS scheme.

Data is encrypted and authenticated on the sender before
handing it to the communication layer. For AES a configured
pre-shared key is used for the whole network, for OTP a key-
file is generated from random separately for each mote, which
is consumed from an external storage when deployed. The
communication layer broadcasts the data to all neighboring
motes for distribution. On receiving motes, the CBC-MAC is
verified and a share is calculated directly from the encrypted

TABLE I: Cipher suite configurations

Cipher Suite Properties

CRC only a Error Detection
CBC-MAC only Data Integrity
AES Confidentiality
OTP Confidentiality
OTP + CBC-MAC b Confidentiality + Data Integrity
AES + CBC-MAC b Confidentiality + Data Integrity

a Only checksum calculation, no security properties.
b Encrypt-then-Authenticate (EtA) [26]

data using the (k, n)-threshold SSS redundancy scheme. We
decided to execute SSS on the receiving motes to allow
for broadcasting. Executing the scheme on the sending side
requires unicasting the encrypted data which would result in
a huge amount of network overhead. On the receiving mote,
shares are directly saved in the assigned storage, that is limited
in its capacity per neighboring mote. If an external storage
medium is attached, the shares are saved there, but RAIM also
works with integrated flash storages. To protect against replay
attacks, packets contain a counter which is increased over time.
A packet is only accepted if the mote has not already received
a packet with this counter and the counter is greater than the
least received counter value. It is important to note that data is
never decrypted on motes. Decryption and restoring of shares
is done on external hardware after collecting the motes in
case of wildlife monitoring or periodically using powerful sink
motes in case of BANs.

To reduce energy consumption, RAIM’s AES implementa-
tion is based on hardware-backed symmetric cryptography and
directly processes encrypted data without separation between
storage and transport confidentiality. A detailed evaluation of
RAIM’s energy consumption can be found in Section V-C2.

B. Attack Model

As presented before, the security of our architecture includes
transport and storage confidentiality as well as data integrity.
To maintain a proper balance between security measures and
the limited battery and processing power of motes, no public
key infrastructure has been implemented or deployed. Still,
RAIM protects against external attacks and common internal
attacks as outlined in this section.

1) External Attacker: First, an external attacker is assumed
with no physical access to the motes.

Eavesdropping/man-in-the-middle: If RAIM has been
properly configured for OTP/AES + CBC-MAC according
to Table I, transmitted data is encrypted and authenticated.
Thus, the data cannot be read by simple eavesdropping. It is
important to note that for OTP mode, each mote gets its own
key-file to prevent an attacker from guessing messages when
eavesdropping ciphertexts c1, c2 and applying c1 ⊕ c2. Also,
due to the CBC-MAC, a man-in-the-middle attacker is not able
to replace parts of the encrypted data to change the meaning
of the content.



Insert data: In this attack, an attacker sends random or
fake data to motes of the WSN. If RAIM has been configured
for OTP/AES, the attacker does not possess the network’s pre-
shared key and is, thus, not able to properly encrypt data for
the network. In addition, RAIM’s communication layer accepts
only packets suitable for the current firmware configuration to
prevent downgrade attacks.

Replay attacks: An attacker who records communication
between neighboring nodes could replay this recorded data
to exhaust the storage of the originally receiving mote. This
attack is prevented because RAIM includes an index that is
authenticated using CBC-MAC and receiving nodes verify that
this index has not been used before (cf. Section III-A).

2) Internal Attacker: In the following scenarios, an internal
attacker is assumed, e.g., a compromised mote that is still
part of the WSN. Most of these attacks are hard to execute
in practice as they require physical access to the motes and
special hardware equipment as well as knowledge.

Stolen external storage: In case of AES encryption, steal-
ing the external storage, e.g., the microSD, does not lead to
an exposure of the encryption key which is configured in
the mote firmware. Thus, the data cannot be decrypted and
is still confidential. In case of OTP, already consumed parts
of the local key file are overwritten, i.e., already encrypted
data and old communication is still secure. However, when an
attacker has physical access to re-attach this storage medium,
remaining key blocks can be extracted. Further considerations
in case an AES key is stolen in regards to the SSS scheme
are described in the “compromised AES key” scenario.

Storage exhaustion: In this attack, a number of compro-
mised motes continuously transmit random data to all other
motes filling their storage to hinder RAIM’s data distribution.
To weaken this attack, each “$mote_id” file (cf. Section IV-A)
is limited to prevent storage exhaustion.

Pollution/data dropping: In this attack, a number of
compromised motes modify or drop their stored shares [21].
When using (k, n)-threshold SSS for redundancy, restoring
will still work as long as no more than n−k motes have been
compromised.

Stolen/destroyed mote: If a mote gets broken or is deliber-
ately destroyed, RAIM’s redundancy layer prevents data loss.
When using (k, n)-threshold SSS, if no more than n−k motes
are gone, the data can still be fully recovered. As discussed
in the next attack, as long as no firmware/memory extraction
has been performed, the data is still confidential.

Compromised AES key: In case of AES encryption,
the pre-shared key could be compromised by extracting the
firmware/memory or recording the SPI communication to the
radio. This attack requires direct physical access as well
as hardware equipment and knowledge. A compromised key
allows for decryption of future communications and addition
of new motes to the network. Still, past data collections can
only be recovered when k motes/SD cards are stolen, where
k is defined by the (k, n)-threshold SSS scheme. No amount
of less motes than k provide any data recovery.

next_block

/state

data0

/local

data1

length

flags

content

checksum

data2

data3
data0

/${mote_id}

data1

length

flags

content

checksum

index

data4

Fig. 2: Layout for data storage depicting complete local data
blocks as well as appended and incomplete data blocks for
“$mote_id”.

IV. IMPLEMENTATION

The presented architecture has been fully implemented for
the Contiki OS. Some methods are based on hardware support
of our open source mote called Inexpensive Node for Gen-
eral Applications (INGA) [27]. RAIM has been published on
https://www.ibr.cs.tu-bs.de/projects/raim and licensed under a
3-clause BSD-style license. In the following, we describe
RAIM’s modular layers in detail.

A. Storage

The local storage is implemented using a special directory
structure based on a FAT32 file system supporting internal and
external storage. Due to the ease of exchanging microSDs,
these are preferable in comparison to an integrated flash
storage. As depicted in Figure 2, three types of files are
utilized. The file “local” contains all data blocks generated
on the mote itself. These are consecutively written to this file.
When utilizing OTP encryption, this file is also the key file
used as a one time pad in conjunction with “state” holding
a relative offset to the beginning of the next data block.
This allows the system to append new data correctly and
prevents overwrites even after restarting the system. Besides
the actual content (+ checksum), “local” contains a length
field for the whole block including the length of the field
itself. The flags field encodes the parameters how the data
has been secured, i.e., the encryption, data authentication,
and redundancy methods. Data received from other motes is
stored in separate files named by mote ID, i.e., “$mote_id”.
Additionally, an index is appended to each block pointing to
the corresponding data block in “local”. This index is used as
an ID in the restoration process. Because received data blocks
are not modified, the layout for single data blocks is not only
used on storage but also on transport layer.



If, instead of using the index field, data would be stored
at the corresponding position inside the file, attackers could
overwrite existing storage positions. In addition, storage space
would be allocated without actually using them on motes that
do not receive all shares. The difficulty of restoring the data
would then increase due to the created unused storage spaces,
which must be detected beforehand.

B. Confidentiality

Confidentiality is achieved on transport as well as on storage
layer by encrypting data prior to sending (cf. Section III-A).
RAIM supports OTP, which can achieve high throughput rates
even in software, as well as hardware-backed AES.

OTP has been implemented to operate in-place, i.e., the
targeted storage location within the local file is read as an OTP
key, the data is encrypted in-memory, and then overwrites the
consumed key locally. Thus, sensed data is always encrypted
directly without being written to a flash storage in clear.
During the recovery process, OTP-encrypted data can be
handled in the same way as unencrypted data due to the usage
of the same file layout.

While OTP always requires a large storage medium, AES
can be configured for motes without additional storage hard-
ware. Due to the usage of an AT86RF23X radio on our
INGA mote, AES-128 has been implemented using hardware
support. As described before, the utilized pre-shared AES key
must be configured before firmware compilation. To prevent
correlation of plaintext to ciphertext blocks, AES is operating
in CBC mode. The Initialization Vector for CBC is read from
the storage address of the local file. Prior to encryption, the
plaintext data is padded using null bytes to 16 byte data blocks.

C. Integrity

Data integrity is achieved by configuring RAIM for the
usage with CBC-MAC to protect against malicious tampering
of transmitted data using pre-shared keys. The CBC-MAC tag
is calculated using the hardware-backed AES methods with a
pre-shared key, which can be configured independently from
the AES key. The output of the last AES pass is used as the
CBC-MAC tag which is appended to the transmitted data for
verification on the receiver. To prevent concatenation attacks,
the data length is included together with the first data block.
The scheme can be described by

AES (data) ‖ index ‖ CBC -MAC (AES (data) ‖ index ).

While we recommend AES + CBC-MAC, it is difficult to
deploy pre-shared keys in legacy WSNs. Thus, RAIM also
provides the possibility to use CRC checksums, providing
Error Detection only without shared keys. RAIM utilizes a
CRC-8 checksum with x8 + x2 + x+ 1 polynomial which is
stored in one byte.

D. Data Redundancy and Distribution

Using the data format described in Section IV-A, data is
distributed accross motes inside the WSN. To achieve data
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redundancy, RAIM can be configured for either full redun-
dancy or with a chosen k for a (k, n)-threshold SSS scheme.
When using SSS, receiving motes calculate their share using
their own ID. Based on the configured threshold, k defines
directly how many bytes are used for calculating a single share.
An example for a (3, 4)-threshold SSS scheme is depicted in
Figure 3.

V. EVALUATION

We evaluated RAIM’s storage requirements on local and
remote motes, simulated and physically tested its functionality
and throughput. Finally, its energy consumption has been
measured in our laboratory.

A. Storage Requirements

Storing data on the local mote is different to storing
replicated data received from neighboring motes. Thus, these
scenarios are evaluated separately. As depicted in Figure 4a,
besides the payload of length l, either 1 byte (CRC) or 16
byte (CBC-MAC) is appended. When configuring for AES, the
storage requirement increases to the next size that is divisible
by 16. Using these values, equations for lower (Equation 1)
and upper bound (Equation 3) can be derived.

fmin,local(l) = l + 3 (1)

fmax,local(l) =

⌈
l + 16

16

⌉
· 16 + 3 (2)

=

{
l + 16 + 3 for l mod 16 = 0

l + 16− (l mod 16) + 16 + 3 otherwise
(3)



TABLE II: Zebra scenario: Percentage of recoverable data
after the loss of one node at different levels of redundancy.

SSS
full redundancy k = 2 k = 3 k = 4

mean 96.5 88.0 72.8 52.9
σ 3.9 12.2 21.1 25.7

On neighboring remote motes, the storage requirements de-
pend on SSS with a (k, n)-threshold for payloads of length l
with an additional index appended. SSS reduces the payload
and yields to a significantly reduced lower (Equation 4) and
upper bound (Equation 5) for remote motes.

fmin,remote(l) = l + 7 (4)

fmax,remote(l) =

⌈⌈
l+16
16

⌉
· 16

k

⌉
+ 7 (5)

In the worst case, an overhead of 38 byte still exists, but even
when using SSS with k = 2, it is reduced to 19 byte.

B. Simulation of Scenarios

The two scenarios described in the introduction define a
baseline for maximum redundancy (Wildlife Monitoring –
Section I-A) and maximum confidentiality (BAN – Section
I-B). So, we simulated these scenarios using Contiki’s Cooja.

1) Wildlife Monitoring: In this dynamic scenario 20 of
30 nodes have a simulated storage. All nodes are constantly
moving on random but previously determined paths and record
respectively transmit their position. We simulated four differ-
ent configurations for (k, n)-threshold SSS which differ in the
number of shares required for data recovery (k = 1, . . . , 4).

In Table II can be seen that in case of full redundancy, the
recovery rate for single lost nodes has a mean value over all
nodes of 96.5 %. The configuration with k = 4 is not very well
suited for this scenario, because nearly 50 % of data cannot
be recovered; if SSS should be applied to such a scenario, the
configuration k = 2 is much better suited.

2) Personal Health Monitoring: We simulated eight motes
of a BAN which randomly generate data. Only a subset of four
nodes (mote IDs 1-4 in Table III) have a simulated storage;
the others are just able to send data. As expected on a human
body, every node is within the radio range of every other
node. (k, n)-threshold SSS has been configured with k = 3.
Additionally, AES + CBC-MAC has been used to provide
confidentiality and integrity. After running the simulation for
13 hours for simulating 4 hours, each node generated more
than 100 packets. In Table III it can be seen which amount
of data is recoverable when a single node is missing. Thus, in
this scenario between 97.5 % and 100 % of the generated data
can be recovered – with a storage overhead of just 33 %.

3) Throughput Simulation: In Figure 5, the mean duration
and the specific standard deviation for several configurations
at 2,000 simulation runs is given. It is obvious that simple

TABLE III: Recoverable data after the
loss of one node.

mote ID stored
packets

restored
packets [%]

1 118 115 97.5
2 113 112 99.1
3 125 125 100.0
4 119 117 98.3
5 105 105 100.0
6 109 109 100.0
5 118 118 100.0
8 135 134 99.3
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Fig. 5: Storage durations depending on (redundancy, cipher
suite)-configurations.

storing on the mote without sending any redundant information
to other motes is faster than anything else. It is interesting to
note that there is no difference if just a SSS share of data is
sent and stored on other motes or if a full data-set is sent.

Looking at the different encryption methods, surely “no en-
cryption” is fastest; followed by AES. This may be confusing
at first glance, because OTP encryption is just a simple XOR
and AES needs several rounds; but, OTPs need another local
storage access for reading the specific pads which surely has
an impact on the overall performance.

C. Measurements Using Physical Motes

We used a static setup of 9 motes which have been deployed
in our lab (Figure 6) for at least 1.5 days. Motes 3 and 6 have
been placed outside the building, mote 8 was located in a
climate chamber. During the experiments the motes measured
and sent temperature and barometric pressure every 60 s.
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Fig. 7: Measured throughput on physical motes depending on
the chosen symmetric encryption.

1) Real Throughput: In Figure 7, the real throughput on
a physical mote is shown. In comparison to our simulation
results in Figure 5, our real-world measurements are 100 ms
faster. Thus, while the effects predicted by the simulator can be
observed in the physical implementation, the absolute values
of the simulation results must be adjusted upwards by 100 ms.

2) Energy Consumption: To analyze the energy consump-
tion of RAIM, the consumption of the mote itself is measured
by using a shunt resistor of 5 Ω with a digital storage oscil-
loscope. The consumption has been observed while the motes

where connected to a laboratory power supply without using
the voltage regulator of the mote itself.

A baseline measurement in the mote’s “idle” mode has been
executed first. As shown in Figure 8b, a stable 24.4 mA is con-
sumed without microSD and 36.0 mA with microSD attached,
i.e., using the microSD consumes additional 11.6 mA.

Energy consumption during storing and transmitting data
via RAIM, i.e, read and write access, can be observed in
Figure 8a. Read access can be seen as a short peak with
70 mA followed by a phase with 45 mA where 512 byte test
data is transmitted. Write access behaves inverse: A longer
45 mA phase can be observed followed by am 75-80 mA
peak. The order of read and write accesses conform to the
expected behavior, i.e, depend on the limitation of the mote’s
memory on one sector. Every sector needs to be loaded for
access and after editing again written to the storage. Of
special interest is the time span between 80 ms and 120 ms in
Figure 8a: The observed double access is due to an additionally
required access to the FAT32 cluster table. In case of AES,
the encryption is executed before read and write access. For
OTP, the local key file needs to be read prior to its execution
and write access. We found no significant difference in energy
consumption between RAIM’s AES and OTP mode.

The energy consumption for an incoming communication
packet and due to a rejected CBC-MAC packet has been
measured and compared in Figure 8c. It shows that CBC-
MAC verification has a similar energy footprint as a default
communication packet and thus works as a mechanism against
attackers trying to exhaust the mote’s energy. Compared to
Figure 8a, no further energy is consumed since no storage
encryption and writing process is executed.



VI. CONCLUSION

RAIM utilizes a combination of Shamir’s Secret Sharing
together with symmetric ciphers and MACs to distribute,
encrypt, and authenticate the data within a WSN. RAIM
is flexible and configurable – according to the specific and
countless application scenarios in which data is gathered and
stored within the WSN. Thus, data can be transmitted securely
over insecure wireless channels and be stored on neighboring
motes. We discussed the design of RAIM, attacks to be
considered, and corresponding implementation details. The
evaluation, using simulations as well as physical motes, shows
that RAIM provides a suitable approach for data distribution
in WSNs, while being low on energy consumption. RAIM can
be accessed at https://www.ibr.cs.tu-bs.de/projects/raim.
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