
µDTNSec: A Security Layer for
Disruption-Tolerant Networks on Microcontrollers

Dominik Schürmann, Georg von Zengen, Marvin Priedigkeit and Lars Wolf
Institute of Operating Systems and Computer Networks, TU Braunschweig

Email: {schuermann, vonzengen, priedigk, wolf}@ibr.cs.tu-bs.de

Abstract—We introduce µDTNSec, the first fully-implemented
security layer for Delay/Disruption-Tolerant Networks (DTN) on
microcontrollers. It provides protection against eavesdropping
and Man-in-the-Middle attacks that are especially easy in these
networks. Following the Store-Carry-Forward principle of DTNs,
an attacker can simply place itself on the route between source
and destination. Our design consists of asymmetric encryption
and signatures with Elliptic Curve Cryptography and hardware-
backed symmetric encryption with the Advanced Encryption
Standard. µDTNSec has been fully implemented as an extension
to µDTN on Contiki OS and is based on the Bundle Protocol
specification. Our performance evaluation shows that the choice
of the curve (secp128r1, secp192r1, secp256r1) dominates the in-
fluence of the payload size. We also provide energy measurements
for all operations to show the feasibility of our security layer on
energy-constrained devices.

I. INTRODUCTION

In recent years Internet of Things (IoT) technology emerged
into more and more fields where sensitive data is handled.
Namely industrial applications like process monitoring where
production data needs to be protected from being accessed
unauthorized. Another situation is in the field of intelligent
transportation systems, where control data must not be ma-
nipulated by an attacker [1]. The most challenging fields are
healthcare applications. IoT technology has to face several
challenges at once: The first challenge is the mobility of nodes.
Devices are mounted to patients, therefore they have to cope
with mobility and thus disruption of connections. To ensure
a curtain level of reliability in terms of data delivery, these
networks have to cope with the mobility of their nodes. Also,
the security layer of such a network needs to be tolerant against
network disruption. Considering frequent connection losses
and short connection periods, key exchange mechanisms like
Diffie Hellman might not be able to exchange a key prior every
connection.

The second challenge is the variety of communication
partners and their different access rights to the data. For
example, an X-ray unit might only need an identifier of the
patient but a doctor needs the full history of the patient.

To keep the costs of these systems low, direct connections as
well as multihop connections are needed. Introducing multihop
and different access rights in one network makes traditional
IoT security concepts not applicable. For instance in a network
using IEEE 802.15.4, a key can be specified that is used by the
MAC sublayer for full link layer AES encryption. Thus, every
device in the network needs to have the same key to be able to

read routing information inside the packets. This means, every
device is able to read all data it forwards. Another problem
with this encryption is that if one device is hijacked and an
attacker was able to read out its key, the attacker is able to
read all data transferred in the whole network. This is a severe
issue when taking into account that the devices will be handed
out to patients for several days or weeks.

In this paper we present a system that overcomes these
challenges. To overcome the challenge of disruptions in the
connections, we propose to use a lightweight implementation
of the bundle protocol [2] called µDTN [3]. By utilizing public
key cryptography we solve the security part of the disruption
challenge. Another advantage of public key cryptography is
the ability to ensure authentication.

The most profound advantage of public key cryptography is
the robustness against Man-in-the-Middle attacks. By using a
light weight design of the bundle security protocol we enable
IoT devices to use all these advantages.

II. RELATED WORK

A possible protocol for Delay/Disruption-Tolerant Networks
(DTNs) has been standardized as the Bundle Protocol (BP)
in RFC 5050 [2]. An extension with security block types,
security processing rules, and ciphersuites is specified in
RFC 6257 [4]. Ciphersuites are based upon the cryptographic
primitives of RSA with SHA-256 for digital signatures, Keyed-
Hash Message Authentication Code (HMAC) for data au-
thenticity, RSA for encrypting symmetric session keys, and
Advanced Encryption Standard (AES) in Galois/Counter Mode
(GCM) for authenticated data encryption. While most desktop
implementations, such as IBR-DTN [5] and DTN2 [6], support
this extension, implementations for embedded devices lack
security features. There are currently three actively maintained
implementations of DTN for microcontrollers:

µDTN1 [3] is our implementation of the BP. It was imple-
mented to meet the hardware and energy constrains of wireless
sensor nodes. To meet these we use the compressed bundle
header encoding [7]. Originally, µDTN was developed for 8-
Bit micro controllers running Contiki OS2. By transmitting
bundles directly in IEEE 802.15.4 frames we reduced the
overhead to a minimum, as shown by Pöttner et al. [8].
To the best of our knowledge it was the first RFC 5050-
compatible DTN implementation for wireless sensor nodes.

1https://www.ibr.cs.tu-bs.de/projects/mudtn/
2http://contiki-os.org



Recently, it was ported to run with FreeRTOS3 on STM32F4
microcontrollers under the name miniDTN [9]. Both, µDTN
and miniDTN, share the same architecture and most of the
code. Therefore, in the remainder we handle them as one.

µPCN4 [10] is a microcontroller-compatible BP implemen-
tation that focuses on CubeSat applications. Therefore, the
authors consider a routing scenario with a single hop from
the satellite to a ground station and multiple nodes behind
the ground station. In satellite applications, not every node
is reachable from all ground stations and malicious ground
station might announce neighbours they can not reach. To
tackle these special challenges, µPCN’s decision whether to
transmit a bundle to the ground station is based on two factors:
the reliability and the trustworthiness. Reliability is the number
of successful contacts minus the number of unsuccessful ones.
Trustworthiness is the probability that a transmitted bundle
reaches its destination. With these factors µPCN implements
routing security but other security and authentication aspects
are left to future work.

DTNLite [11] is an implementation of the concepts of
DTN for TinyOS5. Instead of implementing the BP, it relies
on existing routing protocols and therefore forms an overlay
network. The typical DTN Store-Carry-Forward mechanism is
implemented by storing data in non-volatile memory on nodes
and transporting it towards a single sink over multiple hops.
The authors do not consider encryption or authentication in
their work.

While these DTNs do not provide confidentiality and au-
thenticity, security on microcontrollers has been studied in
other contexts. Because asymmetric RSA operations do not
scale linearly with their key size [12] and secure keys must
be at least 3072 bit [13], RSA is not practical for embedded
systems. Thus, for resource constrained networks, encryption
is often implemented by pre-deploying symmetric keys. To
automate this process, plenty of key pre-distribution protocols
have been designed. However, symmetric key distribution does
not scale for huge networks as envisioned for the IoT [14].
Thus, more performant asymmetric operations, such as El-
liptic Curve Cryptography (ECC), have been evaluated for
ATmega128 and CC1010 microcontrollers by Gura et al. [12].
With NanoECC [15], a fast implementation for TinyOS has
been written in C/nesC with assembly optimizations.

Another approach has been developed by Oliveira et al. [16],
[17]. Their security layer is based on Identity Based Cryp-
tography (IBC) to encrypt messages by deriving public keys
from the nodes’ IDs. Their last implementation TinyPBC is
based on cryptographic pairings [17]. For this, the authors
developed a cryptographic library for microcontrollers called
RELIC [18]. It has been shown that RELIC provides the
fastest operations but with higher RAM usage in comparison
to TinyECC and Wiselib [19]. Later, several improvements
have been made to RELIC, e.g., performance improvements

3http://freertos.org
4https://upcn.eu
5https://github.com/tinyos

on ARM Cortex-M0+ [20]. Due to the costs of cryptographic
co-processors, asymmetric operations are still implemented
in software. In contrast, most modern radio chips support
symmetric algorithms, such as the AES in hardware. In this
paper, we leverage the low-level operations of AES provided
by the AT86RF23X chip [21]. Its Random Number Generator
(RNG) has been evaluated previously during the design of
RAIM [22].

Besides cryptographic primitives, full security layers have
been proposed and implemented for TinyOS and Con-
tiki. TinySec [23] provides modes for authentication-only
(TinySec-Auth) and fully authenticated encryption (TinySec-
AE). Here, the Skipjack cipher is used in Cipher Block Chain-
ing (CBC) mode. TinyKey [24] provides key management for
TinySec, but introduces no algorithm changes. A successor of
TinySec called MiniSec [25] still uses Skipjack, but in Offset
Codebook (OCB) mode. All these use Skipjack instead of a
more widely used and standardized block cipher, such as AES.
Asymmetric ECC operations have been introduced by Liu et
al. for key exchange and digital signatures [26].

For Contiki, ContikiSec [27] has been designed and imple-
mented. It provides modes for encryption-only (ContikiSec-
Enc), authentication-only with CMAC (ContikiSec-Auth), and
a full authenticated encryption mode by using AES in OCB
mode (ContikiSec-AE). All modes require a single network-
wide key that is pre-deployed on all devices. Optionally, by
using other key exchange methods, a session key can be
plugged in. ContikiSec uses standardized and well researched
cryptographic primitives.

For the purpose of transmitting sensor data in Body Area
Networks, One Time Pads (OTPs) have been proposed by
Büsching and Wolf [28]. OTPs are deployed during the time
where sensors are recharged and used for encryption during
the time the sensors are worn. While the authors use µDTN
for transmitting sensor data, their security methods have not
been integrated into the protocol.

To the best of our knowledge, there is no implementation
of a DTN for embedded systems that provides confidentiality
and authenticity. In contrast to existing work, we provide a
fully integrated solution for resource-constrained DTNs with
software-based ECC using the NanoECC [15] and AVR-
Crypto-Lib [29] libraries and hardware-based AES using the
AT86RF23X radio.

III. µDTNSEC

Due to DTN’s architecture, where bundles are carried and
forwarded by many hops on a route, Man-in-the-Middle at-
tacks can be done easily. Thus, µDTNSec provides end-to-end
security between source and destination. It has been designed
as a security layer for µDTN and provides two main modes of
operation: Signature-only mode for authenticity and Sign-then-
Encrypt mode for combined authenticity and confidentiality.
A short reference specification is given in Table I. In the
following, we discuss µDTNSec’s design and modes in detail
and provide a threat model.



TABLE I: µDTNSec Specification: Supported modes with their corresponding BP block, BP ciphersuite and design details

Mode Block Ciphersuite Details

Signature PIB PIB-ECDSA-SHA256 Digital signature generation and verification using ECDSA with SHA-256.
Sign-then-
Encrypt

PIB
+PCB

PCB-ECDH-SHA256-
AES128-PIB-ECDSA-
SHA256

After signature generation, a shared secret is calculated by ECDH on
valid public keys. A session key is derived using the ANSI-X9.63-KDF
and used for hardware-backed AES-128 encryption in CBC mode. The
payload is encrypted in-place while the PIB is encrypted separately.

Supported SECG [30] curves: secp128r1, secp192r1, secp256r1

A. Threat Model

Before discussing the design of µDTNSec, we first specify
a clear threat model. This allows us to derive a set of security
features.

Eavesdropping: The typical threat for all network com-
munications is passive eavesdropping. In a wireless network
without payload encryption an attacker can eavesdrop on the
wireless channel and read transmitted data.

Man-in-the-Middle: In networks with peer-to-peer encryp-
tion, but no end-to-end encryption, an attacker could place
herself into the route between source and destination to read
bundles intended for the victim. This attack can be extended
by announcing perfect routing costs to gather a large amount
of network bundles. In comparison to passive eavesdropping,
a Man-in-the-Middle attack is active and requires a more
sophisticated attacker with network knowledge.

Data Modification: In a variation of the Man-in-the-Middle
attack, the attacker not just reads but modifies bundles in tran-
sit. Every node participating in Store-Carry-Forward routing
can do this.

Impersonation: For this attack, the attacker impersonates
the victim to receive its bundles or to transmit malicious
bundles in the victim’s name. To prevent the victim from
receiving them, additional routing attacks can be executed,
such as blackhole attacks, where packets are dropped instead
of forwarded.

B. Security Features

Our threat model covers the most important threats posed
by outside attackers. µDTNSec’s full Sign-then-Encrypt mode
provides confidentiality, node authenticity/non-reputability,
and data integrity.

Node authenticity provides access control to the network
and thus also protects against outside attackers trying to
execute routing attacks. Still, inside attackers, i.e., nodes that
are already part of the network, are considered out of scope
for µDTNSec. For the typical use cases of sensor networks,
anonymity and metadata protection mechanisms are not rele-
vant and work in contrast to node authenticity. While other BP
implementations, such as IBR-DTN, need to take extra care
to secure the lower network layer, e.g., TCP or UDP, µDTN
works directly above the data link layer. Thus, only Denial-
of-Service jamming attacks against the physical layer must be
considered additionally to µDTNSec.

Transmitter
process µDTNSec µDTN

Network
Receiver
process

µDTNSec

µDTN

Payload Bundle
Bundle

Bundle

Bundle

Bundle
Payload

Transmitter (tx)

Receiver (rx)

Fig. 1: Interaction between µDTN and µDTNSec

Finally, attacks against the hardware, which require physical
access to a placed node, are considered out of scope. This
includes tampering with the hardware and side channel and
fault attacks, such as key extraction by power measurements.

C. System Design

µDTNSec has been developed for the INGA sensor node
platform [31]. INGA is equipped with a AT86RF23X radio
chip that already provides a hardware implementation of
AES-128 in Electronic Code Book (ECB) and CBC mode.
Interfaces to its AES methods and RNG have already been
implemented for Contiki during the design of RAIM [22].
ECC is implemented in software using the NanoECC [15] and
AVR-Crypto-Lib [29] libraries.

Previously, in the µDTN program flow, Contiki processes
were able to call a µDTN function to transmit a payload
together with the destination (receiver) IDs. µDTN encapsu-
lated the given data into a bundle according to RFC 5050
for Store-Carry-Forward routing. We integrate µDTNSec in
this flow as depicted in Figure 1. On the transmitting side,
Contiki processes should now call µDTNSec’s function instead
of µDTN. This allows µDTNSec to apply the configured
security protection before handing the encapsulated bundle to
µDTN. On nodes forwarding a bundle on the route to the
final destination (receiver), bundles can still be processed by
µDTN. This is possible because µDTNSec provides end-to-end
security only, i.e., security functions only need to be called
by the source and the final destination. This also means that
no additional processing overhead is required by forwarding



isValid

ECDH
Shared Secret

pk{rx}

sk{tx}

KDF

Leading
16 bytes

AES-128-CBCPadding

Payload

PayloadPCB

Nonce

PIB generation
as in Figure 3a

Padding

AES-128-CBCIV

PIB

(a) Transmitter: Encryption and generation of digital signature

PIB Payload PCB isValid pk{tx}

IV Nonce ECDH sk{rx}

KDF

AES-128-CBC AES-128-CBC

SHA

IDs

ECDSA-verify Payload

isValid

pk{tx}

(b) Receiver: Decryption and verification of digital signature

Fig. 2: Flow charts of µDTNSec’s Sign-then-Encrypt mode: AES encryption/decryption is done in-place inside the payload
block/PIB. The PCB contains a nonce and the IV . Digital signatures are encapsulated in the encrypted PIB

nodes. At the final destination (receiver), µDTN processes the
bundle and hands it to the Contiki receiver process. If the
bundle includes security protection, the process calls µDTNSec
for decryption/verification.

D. Key Management
µDTNSec is based on ECC as specified by the Standards for

Efficient Cryptography Group (SECG) [32], [30]. It includes
the algorithms Elliptic Curve Digital Signature Algorithm
(ECDSA) for signatures and Elliptic curve Diffie–Hellman
(ECDH) for encryption. For each node, a secret/public key
pair sk , pk is generated. Our implementation supports the
secp128r1, secp192r1, secp256r1 curves for different security
levels [30]. We assume that public keys have been pre-
deployed in a secure way beforehand.

E. Signature Mode
µDTNSec’s signature mode provides end-to-end

authenticity/non-reputability, which automatically includes
integrity protection. We implemented signature generation
and verification based on ECDSA with SHA-256. Following
the flow chart in Figure 3a, first a SHA-256 hash is calculated
over the payload and the non-mutable fields of the bundle.
Non-mutable fields are all fields that are not changed
by nodes forwarding the bundle on the way to its final
receiver. In µDTNSec, the non-mutable fields include the
IDs of the transmitter, the transmitter process, the receiver,
and the receiver process. This is designed similar to the
Mutable Canonicalization in the Bundle Security Protocol
RFC 6257 [4]. No timestamps are included by µDTN.

h = SHA−256 (payload ‖ non−mutable−fields)

The resulting hash h is finally signed with ECDSA [33] using
the transmitters secret key sk{tx} to produce a signature.

σ = ECDSA−sign(sk{tx}, h)

Payload

SHA-256IDs

ECDSA-signsk{tx}

PIBPayload

(a) Transmitter: Generation

PIB Payload

SHA

IDs

ECDSA-verify

yes/no

isValid

pk{tx}

(b) Receiver: Verification

Fig. 3: Flow charts of µDTNSec’s signature mode: Generation
and verification of digital signatures encapsulated in the PIB

The signature σ is encapsulated as a Payload Integrity Block
(PIB) and handed over to µDTN together with the payload.

The verification of bundles including a PIB works analo-
gously. Following Figure 3b, a hash is calculated over the
payload and non-mutable fields. To protect against related key
attacks, the public key of the transmitter pk{tx} is validated
first, i.e., it is checked if the key is based on the correct curve.
For verifying σ, ECDSA verification is executed.

ECDSA−verify(pk{tx}, h, σ)

F. Sign-then-Encrypt Mode

µDTNSec’s Sign-then-Encrypt mode provides end-to-end
confidentiality in addition to the security features provided
by its signature mode. Besides ECDSA signatures, this mode
uses hardware-backed AES encryption, while its session key
is asymmetrically secured with ECDH. Following the flow
chart in Figure 2a, a shared secret is derived using ECDH.
This requires the receiver’s public key pk{rx}, which has
been validated to be based on the correct curve, and the
transmitter’s secret key sk{tx}. Because this shared secret
would be the same for each communication, an additional



nonce, generated from a secure Random Number Generator,
is taken into account. A unique session key is derived using
the ANSI-X9.63-KDF [32].

s = KDF (ECDH (pk{rx}, sk{tx}),nonce))

A PIB is generated as described in µDTNSec’s signature mode.
The payload and PIB are symmetrically encrypted with the
session key s using AES in CBC mode. It is important to note
that symmetric encryption is done in-place without adding new
blocks. Here, the low-level operations of AES are provided by
the AT86RF23X chip [21]. The utilized CBC mode requires
a public initialization vector IV , which should be unique for
each bundle. This IV is stored together with the nonce inside
the added Payload Confidentiality Block (PCB). The resulting
bundle is handed back to µDTN.

After µDTNSec extracts the three blocks, the decryption and
verification of bundles works as follows. Following Figure 2b,
pk{tx} is validated and used together with sk{rx} to derive
a shared secret. Using the public nonce, the same session key
s is derived. Together with the IV , it is used to decrypt the
payload and PIB. The signature encapsulated in PIB is verified
as described before. Finally, the payload is only returned to
the calling process if the verification succeeded.

IV. EVALUATION

Our evaluation focuses on the energy and time overhead
introduced by the security layer to a traditional µDTN com-
munication. In our evaluation setup we connected two INGA
sensor nodes to a precise energy measurement device named
Potatoscope [34]. By utilizing this device we were able to
trigger the measurement exactly at the time µDTNSec started
processing a bundle and also to stop the measurement when
µDTNSec finished.

In the first part of the evaluation, we performed a measure-
ment just for the PIB with the secp192r1 curve, in the second
part we compare the PIB+PCB processing with three curves
namely: secp128r2, secp192r1, and secp256r1. By comparing
the two parts we can point out the overhead introduced by the
encryption or decryption. The ciphersuites used are the ones
mentioned in Table I. To investigate the influence the payload
size, we evaluated six different sizes from 1 byte to 250 bytes.

Figure 4 shows the mean time needed to verify the au-
thenticity of a bundle (blue circles). As the values are neither
linear rising nor falling and have a standard deviation higher
than the span of the of the mean values, we can assume the
influence of the payload size for the verification is negligible.
The red triangles represent the time needed to process the
PIB at the transmitter of the bundle. With up to 7.95 seconds
the transmitter needs significantly less time than the receiver
with up to 9.51 seconds. These results match with the ones by
Jansma et al. [35]. Similar to the receiver, the payload does
not have a significant influence.

The comparison between the time in Figure 4 and the
consumed energy plotted in Figure 5 shows that both correlate
almost perfectly. At the transmitter the energy ranges from
0.1258mWh to 0.1265mWh. As for the time, the receiver’s

1 50 100 150 200 250

8

8.5

9

9.5

Bundle payload in bytes

Ti
m

e
in
s

receiver
transmitter

Fig. 4: Signature mode: The red triangles show the time need
to generate a PIB with secp192r1 at the transmitter, the blue
circles indicate the time used to verify its authenticity at the
receiver

1 50 100 150 200 250

0.13

0.14

0.15

Bundle payload in bytes

E
ne

rg
y

in
m
W
h

receiver
transmitter

Fig. 5: Signature mode: The red triangles show the energy
need to generate a PIB with secp192r1 at the transmitter, the
blue circles indicate the energy used to verify its authenticity
at the receiver

effort in terms of energy is higher with 0.1484mWh to
0.1521mWh. Thus, the receiver needs approximately 20 %
more energy than the transmitter to process the PIB.

In comparison to the PIB, the processing of PIB+PCB
doubles the amount of time and energy needed, as the green
triangles in Figures 6a to 6d show. This is due to the additional
encryption operation of the payload. Another observation
from the figures is that the influence of the chosen curve
clearly dominates the influence of the payload size. While the
payload’s influence is hardly noticeable, secp256r1 doubles
the energy and time needed to process a bundle compared to



1 50 100 150 200 250

10

20

30

40

Bundle payload in bytes

Ti
m

e
in
s

secp128r1
secp192r1
secp256r1

(a) Sign-then-Encrypt mode: Time needed to encrypt and sign a
bundle’s content at the transmitter for the three evaluated curves

1 50 100 150 200 250

10

20

30

40

50

Bundle payload in bytes

Ti
m

e
in
s

secp128r1
secp192r1
secp256r1

(b) Sign-then-Encrypt mode: Time need to decrypt and verify a
bundle’s content at the receiver for the three evaluated curves

1 50 100 150 200 250

0.2

0.4

0.6

Bundle payload in bytes

E
ne

rg
y

in
m
W
h secp128r1

secp192r1
secp256r1

(c) Sign-then-Encrypt mode: Energy consumed to encrypt and sign
a bundle’s content at the transmitter for the three evaluated curves

1 50 100 150 200 250

0.2

0.4

0.6

0.8

Bundle payload in bytes

E
ne

rg
y

in
m
W
h secp128r1

secp192r1
secp256r1

(d) Sign-then-Encrypt mode: Energy consumed to decrypt and verify
a bundle’s content at the receiver for the three evaluated curves

Fig. 6: Comparison of the influence of payload size and ECC curve choice on energy consumption and performance

secp192r1 and this doubles it from secp128r1. For secp128r1
the receiver needs up to 0.121mWh to decrypt and verify the
payload of Bundle. It lasts 7.621 s to perform this operations.
For secp256r1 0.741mWh and 46.6 s are needed. The values
for the transmitter of a bundle are similar: 0.122mWh and
7.742 s for secp128r2. Utilizing secp256r1 at the transmitter
the consumption is raised to 0.691mWh and 43.227 s.

The results show that the curve should be chosen carefully to
the needs of the application. It needs to be considered whether
the additional security that secp256r1 offers compensates the
five times higher energy and time consumption compared
to secp128r1. Further it need to be considered whether an
application needs encryption. If data authenticity is sufficient
only the PIB should be used, this reduces the energy and time
consumption by half.

Another suggestion we deduce from the results is to gather
measurement data as long as possible and therefore transmit
bundles as big as possible. How long measurement data can be
gathered locally depends on the capabilities of the sensor node
and the requirements of the application. In longterm patient
monitoring for example, sensor data can be gathered over a
long time before forwarding it protected by µDTNSec.

Altogether, the evaluation showed that µDTNSec
(µDTNSec) needs be configured for its application to
perform best. Public-key cryptography introduces significant
costs for microcontrollers. Thus, µDTNSec provides no
appropriate solution for real-time communications. However,
its configurability makes it suitable for a wide range of
delay-tolerant applications.



V. CONCLUSION

We presented µDTNSec, an extension to the BP implemen-
tation µDTN for Contiki OS. We have outlined the design
decisions as well as the architecture of µDTNSec. Due to
the performance and energy impact of ECC, the required
security level must be chosen carefully. For example, if only
authenticity/integrity is required, µDTNSec’s signature mode
should be used without encryption.

µDTNSec is licensed as open-source and can be downloaded
at https://www.ibr.cs.tu-bs.de/projects/mudtn/.

REFERENCES

[1] S. Chen, H. Xu, D. Liu, B. Hu, and H. Wang, “A Vision of IoT:
Applications, Challenges, and Opportunities With China Perspective,”
IEEE Internet of Things Journal, vol. 1, no. 4, pp. 349–359, Aug. 2014.

[2] S. B. K. Scott, “Bundle protocol specification,” RFC 5050, Dec. 2007.
[Online]. Available: https://tools.ietf.org/html/rfc5050

[3] G. von Zengen, F. Büsching, W.-B. Pöttner, and L. Wolf, “An Overview
of µDTN: Unifying DTNs and WSNs,” in Proceedings of the 11th
GI/ITG KuVS Fachgespräch Drahtlose Sensornetze (FGSN), Darmstadt,
Germany, Sep. 2012.

[4] S. Symington, S. Farrell, H. Weiss, and P. Lovell, “Bundle security
protocol specification,” RFC 6257, May 2011. [Online]. Available:
https://tools.ietf.org/html/rfc6257

[5] S. Schildt, J. Morgenroth, W.-B. Pöttner, and L. Wolf, “IBR-DTN: A
lightweight, modular and highly portable bundle protocol implementa-
tion,” Electronic Communications of the EASST, vol. 37, pp. 1–11, Jan.
2011.

[6] “DTN2 Reference Implementation.” [Online]. Available:
https://sourceforge.net/projects/dtn/

[7] S. Burleigh, “Compressed Bundle Header Encoding (CBHE),” RFC
6260, May 2011. [Online]. Available: https://tools.ietf.org/html/rfc6260

[8] W.-B. Pöttner, F. Büsching, G. von Zengen, and L. Wolf, “Data ele-
vators: Applying the bundle protocol in delay tolerant wireless sensor
networks,” in The Ninth IEEE International Conference on Mobile Ad-
hoc and Sensor Systems (MASS), Las Vegas, Nevada, USA, Oct. 2012.

[9] S. Rottmann, R. Hartung, J. Käberich, and L. C. Wolf, “Amphisbaena:
A Two-Platform DTN node,” in The 13th International Conference on
Mobile Ad-hoc and Sensor Systems (MASS 2016), Brasilia, Brazil, Oct.
2016.

[10] M. Feldmann and F. Walter, “µPCN — A bundle protocol implementa-
tion for microcontrollers,” in 2015 International Conference on Wireless
Communications Signal Processing (WCSP), Oct. 2015.

[11] S. N. Rabin Patra, “DTNLite: A Reliable Data Transfer Architecture
for Sensor Networks,” CS294-1: Deeply Embedded Networks (Lecture),
2003.

[12] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz, “Comparing
Elliptic Curve Cryptography and RSA on 8-bit CPUs,” in Cryptographic
Hardware and Embedded Systems (CHES). Springer, 2004, pp. 119–
132.

[13] NIST, “Recommendation for Key Management,” Special Publication
800-57 Part 1 Rev. 4, 2016.

[14] Y. Xiao, V. K. Rayi, B. Sun, X. Du, F. Hu, and M. Galloway, “A survey
of key management schemes in wireless sensor networks,” Computer
Communications, vol. 30, no. 11-12, pp. 2314–2341, 2007.

[15] P. Szczechowiak, L. B. Oliveira, M. Scott, M. Collier, and R. Dahab,
“NanoECC: Testing the limits of Elliptic Curve Cryptography in sensor
networks,” in Wireless Sensor Networks, ser. Lecture Notes in Computer
Science, R. Verdone, Ed. Springer, 2008, vol. 4913, pp. 305–320.

[16] L. B. Oliveira and R. Dahab, “Pairing-based cryptography for sensor
networks,” in 5th IEEE International Symposium on Network Computing
and Applications, Cambridge, 2006.

[17] L. B. Oliveira, D. F. Aranha, C. P. Gouvêa, M. Scott, D. F. Câmara,
J. López, and R. Dahab, “TinyPBC: Pairings for authenticated identity-
based non-interactive key distribution in sensor networks,” Computer
Communications, vol. 34, no. 3, pp. 485–493, 2011, special Issue of
Computer Communications on Information and Future Communication
Security.

[18] D. F. Aranha and C. P. L. Gouvêa, “RELIC is an Efficient LIbrary for
Cryptography,” https://github.com/relic-toolkit/relic.

[19] M. Sethi, J. Arkko, and A. Keranen, “End-to-end security for sleepy
smart object networks,” in IEEE 37th Conference on Local Computer
Networks Workshops (LCN Workshops), Oct. 2012, pp. 964–972.

[20] R. de Clercq, L. Uhsadel, A. Van Herrewege, and I. Verbauwhede,
“Ultra low-power implementation of ECC on the ARM Cortex-M0+,” in
Proceedings of the 51st Annual Design Automation Conference (DAC).
New York, NY, USA: ACM, 2014, pp. 112:1–112:6.

[21] Atmel Corporation, “AT86RF231/ZU/ZF datasheet.” [Online].
Available: http://www.atmel.com/images/doc8111.pdf

[22] D. Schürmann, F. Büsching, S. Willenborg, and L. C. Wolf, “RAIM:
redundant array of independent motes,” in Conference on Networked
Systems (NetSys’17), Göttingen, Germany, Mar. 2017.

[23] C. Karlof, N. Sastry, and D. Wagner, “TinySec: a link layer security
architecture for wireless sensor networks,” in Proceedings of the 2nd
International Conference on Embedded Networked Sensor Systems (Sen-
Sys ’04). New York, NY, USA: ACM, 2004, pp. 162–175.

[24] R. Doriguzzi Corin, G. Russello, and E. Salvadori, “TinyKey: A
light-weight architecture for Wireless Sensor Networks securing real-
world applications,” in Eighth International Conference on Wireless On-
Demand Network Systems and Services (WONS), Jan. 2011, pp. 68–75.

[25] M. Luk, G. Mezzour, A. Perrig, and V. Gligor, “MiniSec: a secure sensor
network communication architecture,” in 6th International Symposium
on Information Processing in Sensor Networks (IPSN). IEEE, 2007,
pp. 479–488.

[26] A. Liu and P. Ning, “TinyECC: A configurable library for elliptic curve
cryptography in wireless sensor networks,” in International Conference
on Information Processing in Sensor Networks (IPSN’08). IEEE, 2008,
pp. 245–256.

[27] L. Casado and P. Tsigas, “ContikiSec: A secure network layer for
wireless sensor networks under the contiki operating system,” Identity
and Privacy in the Internet Age, pp. 133–147, 2009.

[28] F. Büsching and L. Wolf, “The rebirth of One-Time Pads – secure data
transmission from BAN to sink,” IEEE Internet of Things Journal, vol. 2,
no. 1, pp. 63–71, Feb. 2015.

[29] ‘Bg’, “AVR–Crypto–Lib.” [Online]. Available: https://wiki.das-
labor.org/w/AVR-Crypto-Lib/en

[30] SECG, “SEC 2: Recommended elliptic curve domain parameters,”
Standards for Efficient Cryptography Group, Certicom Corp, Jan. 2010.

[31] F. Büsching, U. Kulau, and L. Wolf, “Architecture and evaluation of
INGA - an inexpensive node for general applications,” in Sensors, 2012
IEEE. Taipei, Taiwan: IEEE, Oct. 2012, pp. 842–845.

[32] SECG, “SEC 1: Elliptic curve cryptography,” Standards for Efficient
Cryptography Group, Certicom Corp, May 2009.

[33] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital
signature algorithm (ECDSA),” International Journal of Information
Security, vol. 1, no. 1, pp. 36–63, 2001.

[34] R. Hartung, U. Kulau, and L. C. Wolf, “Demo: PotatoScope - scalable
and dependable distributed energy measurement for WSNs,” in IEEE
SECON 2016 Conference Proceedings, London, UK, Jun. 2016.

[35] N. Jansma and B. Arrendondo, “Performance comparison of elliptic
curve and RSA digital signatures,” University of Michigan, College of
Engineering, Tech. Rep., Apr. 2004.


