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Abstract—We present CANDIS, a framework that can dis-
tribute computing tasks to a computing cloud consisting of
mobile devices running Android as well as computers. We argue
how integrating mobile devices into an IT infrastructure makes
ecologic sense while saving costs at the same time. We show
how fluctuating energy spot market prices due to demand and
varying supply could be fed into a CANDIS scheduler to further
reduce costs of computation by shifting it to times of cheap energy
prices. Thus, the presented approach can increase a business’
sustainability, save money and - if applied on a larger scale —
help to stabilize electricity grids when industrialized countries
continue their move to renewables.

Index Terms—Cluster Computing; Smartphone; Mobile Clus-
ter

I. INTRODUCTION

The computational power available to mobile devices such
as smartphones or tablets is increasing rapidly. Currently this
sector of IT industry is growing exceptionally fast, leading
to more and more mobile devices in operation. Due to this
growth and innovation speed, the mobile sector outpaces the
development of classical personal computing hardware, and
the gap in terms of performance is narrowing [1]. This has
lead to some ideas to leverage the computing power of those
devices, especially when they are idle[[1][2]][3][4].

With mobile devices offering “usable” amounts of comput-
ing power it makes economic and ecologic sense to leverage as
much computing power from these devices as possible during
their limited lifetime. Even if specialized high performance
server hardware might provide better performance per watt
ratios, a classical server will also consume much more power
when it is idle. It will also need more supporting infrastructure
such as space and air conditioning, and thus imposes a
much higher TCO compared to mobile devices. Additionally,
mobile devices are already existing, so if by using spare
computing cycles they can displace the cost, energy and
material consumption from the production and operation of
a high performance server, the net gain of such an approach
increases. It is estimated that only around 25% of the total
energy consumption of a mobile device can be attributed to
usage, while 75% of a mobile device’s energy budget is used
during production [3]]. Therefore, from a sustainability point
of view, the usage of already existing mobile devices should
be increased.

In [1] we tried to get a grip on the raw computing power
available to mobile devices by borrowing the proven LINPACK

benchmark from the high-performance computing (HPC) com-
munity. However, in the short term there might be more fruitful
applications than HPC for mobile devices. In this paper we
focus on the following scenario from [1]]: A business decides
to offload some of its computation to mobile devices. During
working hours while employees sit in their offices and charge
their mobile devices a backend infrastructure offloads tasks to
the employee’s phones.

In this paper we present CANDIS, a software framework that
has been designed for these kinds of scenarios. While it can
be argued whether the saying “Java is the new COBOL”, is
entirely true, the majority of enterprise applications today are
written in Java. This is a good fit for the Android ecosystem,
which also uses Java as its primary language. CANDIS is
therefore based on Java and can distribute work to different
mobile devices and gather the results. The advantages of this
approach are twofold: Existing business logic written in Java
can be reused and does not need to be recoded. At the same
time, this allows CANDIS to not only use mobile devices
as computation devices, but also normal desktop or server
hardware. This allows for an approach where as much work
as possible is done on mobile devices, while the remaining
work before a deadline can be seamlessly shifted to a high
performance cloud.

We will also present a simulation showing that CANDIS
has the potential to reduce the energy costs by using a price
aware scheduler. To achieve this we assume a billing model
where the consumer can follow spot market electricity price
variations. With the appropriate business models in place, this
will also provide incentives which would help to “smoothen”
electricity usage, adapting it to the current network situation,
which becomes more important with an increasing amount of
renewable energies on the grid.

II. CANDIS ARCHITECTURE

Figure |1| shows the general setup of the system. The sys-
tem consists of n heterogeneous clients which are wirelessly
connected to a controlling server. While CANDIS focuses on
mobile devices but it is not limited to Android tablets or
smartphones. Normal desktop or server computers can be
integrated as well. This basic setup is very scalable. Scalability
is only limited by the performance of the controlling server
and the capacity of the network links. Large systems can easily
be partitioned by employing more than one control server, and
the network side can be scaled by using multiple WiFi APs.
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Figure 1. CANDIS system overview

A. System Overview

Every time a new device is going to be part of a mobile
cloud, it first has to register at the control server ((a) in
Figure [I). The server keeps track of all currently connected
nodes and manages the distribution of computation tasks.
Pending tasks are distributed to registered and connected nodes
(b). The nodes start the computations (c) and finally send the
results back to the controlling server (d) who might aggregate
the results.

In this concept of distributed computing there are three
different parties involved, as can be seen in Figure 2] First of
all the developer, who implements the problem to be solved.
Second, the control server, which manages the clients and
distribution of tasks. And, last but not least, several clients
which perform the actual computational tasks.
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Figure 2. CANDIS project lifecycle

1) Developer: The developer implements one or more tasks
which shall be computed by the distributed system. These tasks
are written in Java and are packaged within the task.jar file
— including a description of the parameters and the format of
the results. By using standard Java, legacy code can be easily
reused and integrated when developing a CANDIS application.
The task.jar file is compiled to a Dalvik Executable task.dex
file — a compiled Android application code file, which can be
executed on Android tablets or smartphones. The control.jar
file defines the behavior of the server. All three files are stored
in the task.cdb container. This container is then transferred to

the server. If there are multiple different tasks to compute,
different containers can be loaded into the server.

2) Server: At the server the task.cdb file is opened and —
depending on the information in the containing control.jar — a
new controlling instance is started, which allows managing the
clients according to the task. This includes the initialization of
a scheduler for the allocation and distribution of the tasks. The
Android executable task.dex is extracted and can be transferred
to registered devices. Because the fask.jar contains equivalent
code, the server can also distribute tasks to clients using a
normal JVM such as standard servers. The results of the
distributed calculations are collected and aggregated by the
server.

3) Clients: Every time a client is registered and chosen
by the server, the fask.dex can be transferred to the particular
device. After that, the parameters for the computations can
be sent by the server, thus once a client is seeded with
the appropriate code, the overhead for submitting new tasks
is reduced, as only the input data (parameters) need to be
transferred. After any successful computation, a client will
send the results to the server.

B. Scheduling Strategies

The scheduling — performed by the server according to
the strategies chosen by the developer — can be adapted for
several use cases. Its main purpose is to divide the parameters
for the tasks into reasonable slices and send these slices to
the clients. When n clients are registered at the server, the
most straight forward way to implement the scheduling is to
just divide the problem into n equal slices and wait for the
results to come by. This is surely not the best strategy, as —
in a heterogeneous system — there may be huge differences in
computational power, memory usage, and power consumption
between the individual devices. In the worst case, a powerful
client is able to compute its task in very short time, while the
server needs to wait for the results from a under-performing
client for a long time and most clients in the system are idling.

Dividing the set of parameters into > n slices for n nodes
enables the server to send smaller slices to the clients and to
send new slices every time a result from the particular client
arrives. This leads to a better utilization of the framework, as
highly efficient nodes will get to calculate more slices and un-
derachieving clients will compute fewer. However, with more
and smaller slices, also the communication overhead raises.
Just like in Generalized Processor Sharing (GPS), infinitesimal
small slices would lead to an optimal overall utilization, but
also to an infinitive communication overhead. The tradeoff
between the size of the slices and the communication overhead
is dependent on the specific task and the overall number and
capacity of nodes; thus, there is no simple and static setup for
quantity and size of the slices.

1) Self-Assessment of the Clients: A simple, practical
method to optimize task distribution and slicing is the self-
assessment of the clients. Every time a client registers at the
server, it appends its computational capability and resources
to the registration message. Based on this data, the server can
determine the size of the slices he sends to each client. This
is very efficient as no additional communication is needed



for this strategy. Nevertheless, due to the possible different
requirements of diverse tasks, the self assessment can only
give an estimation of the actual capability for a specific task.

2) Task-related Benchmark: The problem with self-
assessment is, that performance for a given task is influenced
by much more factors than simple metrics such as core count
or available memory. How fast is the storage system? To
which performance metrics is a given task especially sensitive?
Therefore the dotted lines in Figure [J] denote an optional
benchmark phase for each client, which is directly tailored
to a specific task. According to the time needed to finish
the benchmark, the server can estimate the nodes capability
for the current task. It can divide the remaining parameters
according to the estimated individual performance of every
single node. This will maximize utilization while minimizing
communication overhead.

III. EVALUATION

The CANDIS framework has been implemented for Android
operating system (OS Version > 2.3). We evaluated CANDIS
on a wide range of devices. For the evaluation we used several
quad-core Asus Nexus 7 tablets. The Sony LT26i (Xperia S)
and the Samsung GT-I8160 (Ace 2) using dualcore CPUs
represent current smartphones. To assess the performance
that can be expected from currently widespread low-midrange
Android handsets the single-core the Huawei U8860 (Honor)
and HTC Nexus One are included.

To get a rough idea about the performance of those devices
we implemented two CANDIS tasks. The hash task is a simple
distributed brute force hash-cracking application. For demon-
stration purposes, this task computes hashes consisting of five
characters each. The first two characters are predetermined
by the server and the second three characters will have to be
alternated by the clients. We setup the task in such a way, that
a solution will never be found, as we did not want to confuse
the results by surprisingly finding a match. The second test is
the XSLT task, which transforms a large XML document into
JSON format using XSLT. This task is more representative of
real workloads.

The performance of the individual test devices in those tasks
is depicted in Figure [3] which is scaled to 100% equaling
the slowest device for each task. It can be seen that the
performance varies widely between devices and that the more
modern multicore devices can profit from tasks that can exploit
multiple cores.

A. Scalability

In [1] we have already shown, that despite the less then
perfect communication infrastructure and other challenges a
mobile cluster can scale using a common benchmark. Figure ]
shows the results for the distributed XSLT and hash tasks
running on 1 to 5 Nexus 7 tablets. This experiment shows,
that the framework scales well. While the synthetic hash task
scales best, the XSLT task, which should be more in line with
the workload to be expected for real CANDIS applications,
also scales reasonably well.
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Figure 3. Performance comparison using the hash and XSLT tasks
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Figure 4. Scalability of the test tasks

B. Scheduling Heterogeneous Clients

With a heterogeneous set of devices, the effect of scheduling
becomes significant. A given task will obviously run faster
on more powerful devices with more cores (see Figure [3).
A simple slicing scheduler (see Section [[I-B) would not take
this into account. Therefore a benchmarking scheduler based
on the simple principle “from each according to his ability,
to each according to his need”’[6] has been used, to distribute
the workload in a fairer way. The scheduler tries to assess the
performance of devices before distributing tasks (see Section

In Figure [5 we scaled the weakest device (GT-I8160) to
100 % and compared the simple scheduler with the bench-
marking scheduler. Using the slicing scheduler, the most
powerful device would only run for ~ 36 % of the time and
idle the remaining time, waiting for the slower devices to
finish. The device utilization of all devices can be increased by
using the more intelligent benchmarking scheduler, because
devices get individually sized chunks of work, according to
their computation capability The total computation time is also
lowered as the server does not have to wait for the weaker
devices to finish their tasks; thus, the overall efficiency of the
framework is significantly increased.

C. Smartphone energy usage

The most energy intensive components in a smartphone are
the cellular modem, the display and the CPU[7]. As mobile
devices can put currently unused components into a low power
state, only the amount of energy used by the CPU is the
relevant factor when evaluating the impact of computation
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Figure 5. Utilization time using the simple and benchmarking scheduler

with mobile devices. Detailed measurements of the energy
consumed by different components in tablets during different
usage scenarios has been performed by the Anandtech website
using equipment provided by Intel[8]][9]]. Measurements have
been done with platforms using the Nvidia Tegra3 (Coretex
A9), Qualcomm APQS060A (Krait) and Intel Atom Z2760
SoCs.

The Tegra3 is a widespread Quad Cortex-A9 architecture
that is also used in the Nexus 7 tablets used for the evaluation,
while the Qualcomm developed Krait microarchitecture marks
the current high end segment in mobile computation. For the
Tegra3 Anandtech reports an average 70.2mW idle power
consumption. For the purpose of looking at the feasibility
of computing on mobile devices it can be said that all
architectures use significantly below 100 mW when idle. The
CPU intensive Sunspider Javascript benchmark is used in [9]
to stress the SoC. Power consumption for all architectures goes
up into the 1 W area.

IV. ENERGY SPOT MARKET SCHEDULING

A. Electricity Prices

While most consumers have electricity contracts that let
them pay a fixed price per kWh, the prices on the market
between electricity producers and brokers vary much more.
Normally, a market should find a balance between producers
and consumers, between supply and demand. For example
usually during the night hours much less electricity is used,
because businesses are closed and people sleep. It is common
practice that electricity providers sell this off-peak power to
consumers for a cheaper price. The reason is, that base load
power stations such as big coal and nuclear power plants can
not ramp their electricity production up or down very fast.
Therefore, they also generate significant amounts of electricity
in low demand situations. In recent years, the mismatches be-
tween supply and demand have gotten more severe, especially
in Germany, due to the growth of renewable energies combined
with aging grids already operating at their maximum capacity:
There might be lots of wind during the night. Because base
load power stations still produce energy there is an excessive
supply of electricity which drives prices down. In order to
match supply and demand, market mechanisms have been
established. The currently largest energy exchange in central
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Figure 6. Average EPEX spot prices during weekdays in 2012

Europe is the European Energy Exchange (EEXE located in
Germany. In 2011 1,075 TWh have been traded through the
EEX. A subsidy of the EEX, EPEXSpot runs a spot market for
electricity. On EPEX contracts can be made up to 45 minutes
before the start of an hour. 314 TWh of electricity have been
traded through the EPEX spot market in 2011. EPEX is the
market closest to the generation of electricity. If the supply
or demand side changes, this is immediately reflected in the
prices.

To get an idea about price fluctuations, in Figure [6] we
plot the average prices for electricity during the hours of a
working day in 2012. It can be seen, that average prices tend
to be lower during the late night and early morning hours.
However, the variances between specific days can be huge as
can be seen by the minimal and maximal average prices for
each hour. For example the lowest peak at -270.11 per MWh
EUR for 01:00 clock results from Tuesday, 25th of December
when EPEX prices fell to an all-time low in 2012. The lowest
observed price in that hour was 473 EUR/MWh. A total of
1,774.0 MWh have been traded in the hours between 01:00 and
02:00 clock yielding an average price of -270.11 EUR/MWh.
That is right: At the right time you can actually receive money
for being able to consume electricity.

Figure [7] takes a more detailed look at the spot market
prices for each day in 2012. There are two observations that
can be made: First, there is no recognizable pattern, and
secondly there is enough dynamic in the market that promises
an economic benefit if you are flexible enough to shift energy
usage to times of low prices. The average realized prices
achieved each day vary between EUR -46,50 and EUR 139,63
per MWh.

B. Shifting loads

Shifting loads in order to save money and helping to stabi-
lize the grid has already been extensively researched for home
appliances[T0][1T]] or industrial applications[12]. Compared to
these load shifting scenarios, technically, for IT systems it
is much easier to shift loads: Most equipment can go from
low to high power states in a matter of milliseconds. Even
cold reserves that need to be booted up, can be ready within

Thttp://www.eex.com/en/
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Figure 7. EPEX spot prices in 2012

minutes. This is much faster than most industrial processes
and there is less inertia to be considered than for example
load shifting a fridge. For many IT processes, the time or com-
putation power needed is known beforehand, and scheduling
mechanisms to meet deadlines is a very well researched topic.
Most technologies to profit from highly volatile energy prices
are already in place. Being able to use surplus energy at low
prices, makes the efficiency of the employed hardware less
important. Even if a mobile phone or vintage hardware can
not match a new server MFlop/J wise it makes sense to use
them at times of low energy prices, making it economic to use
hardware for a longer time. Ecologically this helps in setting
off the environmental cost induced during the production of a
device.

C. Getting access to spot market prices

While the detailed construction mechanisms of energy mar-
kets are out of scope for this paper, and out of the expertise of
the authors, we want to sketch a basic business model allowing
businesses to profit from the energy spot market without being
a participant themselves. Basically an electricity provider with
an EPEX license is needed. Instead of offering standard static
pricing plans, this provider will add some service charge on
top of market prices and offer hourly changing rates to the cus-
tomer. Based on the price given for the next hour the user will
decide how much energy he wants to use in the coming hour.
Hybrid models can be conceived where a consumer will still
order some electricity for its expected baseload using longer-
term contracts and use the spot market pricing model only for
consumption above a predetermined threshold. Alternatively, a
customer might opt to install two separate individually metered
circuits. In the following subsection we show how this model
can be combined with a very simple scheduling mechanism
to cost-optimize long running computations.

D. Cost-optimizing energy scheduling

In this simulation we take a look at the savings that can be
achieved by shifting the usage of energy to cheaper times. For
this experiment we assume that a company has a monthly task
(for example a billing process) that needs to be finished at the
15" of each given month. To simplify analysis, we will not
look into the amount of computation needed for the calculation
nor the exact devices. Instead, we assume a fixed amount
of time needed for the calculation given the average amount
suitable of devices online and available at any given time. The
employed scheduling is simple: If prices fall below threshold
t, electricity will be used for that hour. To prevent deadline
misses, the prices will be ignored if the deadline would be
missed otherwise.

In the first simulation we assume the necessary computation
devices to be available 24/7 and assume 72 hours of raw
computation time. The goal is to beat the average german
spot market energy price (43.59 EUR/MWh in 2012). The
results can be seen in Figure and for t = 50 and
t = 30 respectively. It can be seen, that for some months
the average price spent will be above ¢. This happens, when
the scheduler did not find enough suitable timeslots before
the deadline approaches and demands to pay any price. For
both thresholds it can be seen that the achieved average price
even exceeds the yearly EPEX average in February. This is
due to unusually high prices in February that can also be seen
in figure [/} In general the higher ¢ yields a slightly higher
average price, but also smoothens the price variances.

Figure shows the situation when only considering
working times, which are relevant when using mobile devices
that belong to employees and are taken home each day. For
this we assume devices to be present between 08:00 and 18:00
on weekdays. During the working hours the EPEX spot price
in 2012 was EUR 54.10. We use a threshold of ¢ = 50.
The scheduling achieves an average price of EUR 47,35 over
the year. Probably more advanced scheduling mechanisms
would be able to achieve consistently lower prices without
the spikes during more expensive months. However, even
the simple scheduling presented here can achieve significant
savings provided an electricity provider with a suitable billing
model steps up, linking consumers more closely to volatile
energy markets.

V. COUNTERPOINT: DOES IT ALL MAKE SENSE?

The results in the last section demonstrated the feasibility
of load-shifting based on energy prices. However, since some
high-end servers might be more energy efficient than mobile
devices and are available 24/7, it might be argued that using
mobile devices does not make sense in light of this. This
however defies the most important point regarding mobile
devices: They are there. Whether they are used or not, people
will still bring them and probably plug them in at work.
While the extra energy spent for calculation might be more
efficiently turned into computation using specialized servers,
it is important to note that the total cost of owning and
operating a server far exceeds the cost of energy used during
computation: The server needs to be payed for, it takes up
valuable space and possibly accounts for some extra costs
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Figure 8. Cost optimizing energy scheduling

due to air conditioning. On the other hand, mobile devices
impose no investment costs, because either employees bought
them themselves in an BYOD scheme (a recent study predicts,
that by 2017 50% of all employees will bring their own
devices to work[13]]), or the costs are already justified and
accounted for due to their primary use: Communication needs
of a business’ employees. Therefore, being able to offset a
fraction of classical IT infrastructure by mobile devices makes
economic sense. In the few cases where the deadlines are at
risk of being missed, because the available computing power
provided by mobile devices is not predictable exactly, an
architecture like CANDIS can seamlessly switch computation
to standard hardware. If the usecase is carefully planned, these
situations should not occur too frequently, so that in the few
cases where some extra computation power is needed, the
work might be shifted to a pay-per-use cloud provider.

VI. CONCLUSION

We presented the CANDIS framework for distributing com-
puting tasks to a cloud of mobile devices. CANDIS is available
as open sourceﬁ It can partition tasks based on the com-
putation power of the participating clients. Its architecture
allows it to be used on mobile devices using the Android
operating system as well as on common server hardware.
Using mobile devices makes economic and ecologic sense: As
they are already available only the additional energy used for
computation needs to be considered as cost factor, while being
able to replace a server with mobile devices results into real
cost savings for a business. Ecologically, this improves the
ecologic balance of mobile devices by offsetting the energy
and materials expended at production with more intensive
usage while completely eliminating the ecologic burden of
compute servers that are replaced by mobile devices. We have
shown that with cost-aware scheduling CANDIS can profit
from varying electricity prices, minimizing the costs for the
operation of mobile clouds.

In some ways, mobile device clouds are to computation
what renewables are to today’s electricity generation: They can
not supply the whole demand yet, but the resource is mostly
available with a small amount of uncertainty, continuously

Zhttps://github.com/ejoerns/candis

renewing itself and just waits to be harvested. The potential
will increase, and there will be more and more usecases were
you really can have your cake and eat it too!
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