
Forward Secure Delay-Tolerant Networking∗

Signe Rüsch
Dominik Schürmann
Rüdiger Kapitza

Lars Wolf
ruesch@ibr.cs.tu-bs.de

schuermann@ibr.cs.tu-bs.de
kapitza@ibr.cs.tu-bs.de
wolf@ibr.cs.tu-bs.de
TU Braunschweig

Institute of Operating Systems and Computer Networks

ABSTRACT
Delay-Tolerant Networks exhibit highly asynchronous connections
often routed over many mobile hops before reaching its intended
destination. The Bundle Security Protocol has been standardized
providing properties such as authenticity, integrity, and confiden-
tiality of bundles using traditional Public-Key Cryptography. Other
protocols based on Identity-Based Cryptography have been pro-
posed to reduce the key distribution overhead. However, in both
schemes, secret keys are usually valid for several months. Thus, a se-
cret key extracted from a compromised node allows for decryption
of past communications since its creation.

We solve this problem and propose the first forward secure
protocol for Delay-Tolerant Networking. For this, we apply the
Puncturable Encryption construction designed by Green and Miers,
integrate it into the Bundle Security Protocol and adapt its parame-
ters for different highly asynchronous scenarios. Finally, we provide
performance measurements and discuss their impact.

CCS CONCEPTS
• Networks→ Security protocols; Network mobility;Mobile net-
works; Peer-to-peer networks;

KEYWORDS
Forward Secrecy, Puncturable Encryption, Delay-Tolerant Network-
ing, DTN

ACM Reference Format:
Signe Rüsch, Dominik Schürmann, Rüdiger Kapitza, and Lars Wolf. 2017.
Forward Secure Delay-Tolerant Networking. In Proceedings of CHANTS’17 .
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3124087.3124094

∗Updated version (2017-10-15) with corrected values for the vehicular scenario.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CHANTS’17, October 20, 2017, Snowbird, UT, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5144-7/17/10. . . $15.00
https://doi.org/10.1145/3124087.3124094

1 INTRODUCTION
In typical computer networks, end-to-end connectivity can be as-
sumed as a basic feature. However, in certain scenarios, such as
InterPlanetary Networks (IPNs), communication systems for ru-
ral villages, or delay-tolerant vehicular networks, this assumption
does not hold. Nodes can move out of communication range or
environmental factors may disturb the channel. To overcome these
obstacles, Delay-Tolerant Networks (DTNs) [6] have been designed
usually based on the Bundle Protocol specification [21]. Here, data
is encapsulated using self-contained bundles that are transmitted
using the Store-Carry-Forward approach. DTNs have many areas of
application and the security of the transmitted bundles is an impor-
tant feature. The Bundle Security Protocol [23] defines bundle types
for end-to-end and hop-to-hop security that offer confidentiality,
integrity, and authenticity using a traditional Public-Key Infras-
tructure (PKI). In recent years, Identity-Based Cryptography (IBC)
gained popularity as it eliminates the need for public-key distribu-
tion prior to encryption [2, 13].

However, all existing schemes are vulnerable to the following
attack: An attacker can passively record all encrypted bundles in-
tended for a specific node and decrypt them at a later point in
time when the node’s secret key is leaked. This is highly probable,
because at some point, software exploits or design flaws will be
found in real-world implementations allowing the extraction of
secret keys remotely or via physical access. A naïve protection
against this attack works by encrypting each bundle with a dif-
ferent ephemeral key. An attacker would have no common key
for previously received bundles and could therefore not decrypt
them. This security property is called forward secrecy. As depicted
in Figure 1, it provides protection of past communication until a
specific point in time.

Nowadays, many websites enable forward secure TLS cipher-
suites to encrypt each session with a different ephemeral key [8].

E
compromise

t

secure vulnerable window

Figure 1: Forward Secrecy provides protection of past com-
munication until the point in time where old ephemeral
keys are deleted (Source: [24])

https://doi.org/10.1145/3124087.3124094
https://doi.org/10.1145/3124087.3124094


CHANTS’17, October 20, 2017, Snowbird, UT, USA S. Rüsch, D. Schürmann, R. Kapitza, L. Wolf

For asynchronous communication, however, it is much harder to
include forward secrecy without reducing usability, especially in
mobile communication. For that reason, it is often either forward
secrecy or asynchronous communication but not both. Neither
OpenPGP [4] nor S/MIME [17], two popular end-to-end encryption
protocols for email communication, provide forward secrecy.

Similar to email communication, DTNs are used in highly asyn-
chronous scenarios, where no direct connection between sender
and recipient exist. In addition, nodes are often highly mobile and
connections are not lasting forever. Bundles can be lost or received
in a different order as they have been sent. In PKI-based DTNs, pub-
lic keys are often distributed in the network after their creation to
provide them to other nodes for encryption. Flooding the network
with new keys is an expensive and error-prone operation. Thus, se-
cret keys are typically valid for up to two years. Even in IBC-based
DTNs, keys are valid for several months and can only be renewed
after directly connecting to a so called Private Key Generator (PKG)
because new key pairs cannot be created autonomously [2]. Con-
clusively, it is impractical to generate new key pairs for short time
periods in DTNs.

In this paper, we present a way to make DTNs forward se-
cure using the Puncturable Encryption construction by Green and
Miers [11]. We integrate it into the Bundle Security Protocol and
evaluate possible parameter configurations for different scenarios.
By implementing the libforwardsec library in IBR-DTN [19], we
are able to provide performance measurements. Finally, we discuss
its impact in comparison to traditional RSA ciphersuites defined in
the Bundle Security Protocol.

Our implementation is fully open source and can be downloaded
from https://www.ibr.cs.tu-bs.de/projects/ibr-dtn/.

2 RELATEDWORK
One topic that is often discussed regarding security in DTNs is
key management where the different approaches using PKI- and
IBC-based systems are compared. Overall, it can be seen that IBC-
based systems have some advantages compared with traditional
PKI-based systems in DTN environments, but the practical success
is not as clear as the conceptual design may suggest [2]. IBC-based
systems have certain small advantages regarding confidentiality
in DTN environments; however, the higher computational cost
especially for resource-constraint devices defeats these advantages.

In 2015, Green and Miers [11] presented a method to ensure
forward secrecy in which they introduce Puncturable Encryption.
Using the puncture algorithm, a new secret key is created and
certain previously defined tags are selected so that messages with
these tags cannot be decrypted anymore using the new key. The
messages are therefore protected from potential attackers. This
method leverages multiple other algorithms such as an hierarchical
IBC scheme by Boneh et al. [3], a public key encryption scheme
with forward secrecy by Canetti et al. [5], and Non-Monotonic
Attribute Based Encryption (NM-ABE) by Ostrovsky et al. [16].
The latter is necessary for the puncture algorithm that is used to
modify the secret key to ensure forward secrecy. The authors also
provide the library libforwardsec that implements this forward
secure encryption scheme.

Some approaches to combine asynchronous communication and
forward secrecy already exist, for example the Signal protocol [7].
Here, a client A uploads 100 signed key exchange messages, so-
called prekeys, to a server, which can then be used by another
client B that wants to communicate with A. However, if this would
be adapted for DTNs without any centralized server, prekeys need
to be distributed in the network requiring memory storage on all
participating nodes. Furthermore, the procedure would be prone
to DoS attacks where an attacker consumes the entire supply of
prekeys preventing others from encrypting messages to the cor-
responding node [11]. Extending, e. g., email, to include forward
secrecy often comes with an increase in complexity [20, 22]. Most
proposals require a highly available infrastructure to exchange
fresh key material. This is an even bigger issue in DTN environ-
ments. Therefore, the procedure of Green and Miers [11] is a great
possibility to include both forward secrecy and asynchronous com-
munication in DTNs without added complexity or infrastructure.

Recently, a modified encryption scheme based on this work by
Green and Miers presents a solution to forward secrecy for 0-RTT
protocols [12]. 0-RTT protocols seek to reduce the number of round
trips necessary for the TLS key exchange before encrypted applica-
tion data can be exchanged. TLS 1.3 [18] employs 0-RTT protocols;
however, it was assumed to be impossible to ensure forward secrecy
for the first round trip message of the TLS handshake without a
previously shared state [14]. The scheme of Günther et al. [12], how-
ever, leverages the forward secure Puncturable Encryption scheme
to achieve this.

Our focus lies on the application of the forward secure Punc-
turable Encryption scheme in DTNs and thereby ensuring forward
secrecy for all bundles exchanged between nodes. We are not aware
of other work providing forward secrecy in DTNs.

3 FORWARD SECURE ENCRYPTION
Forward secure encryption means that the user’s secret key is peri-
odically updated to ensure that past messages remain confidential
in the event of a compromised key [11]. The general idea behind
Puncturable Encryption is that recipients may repeatedly update
the decryption keys to revoke decryption capabilities for selected
messages, recipients, or time periods without the necessity of a new
key exchange. In this scheme, time intervals are mapped to por-
tions of the secret key. This is achieved by combining Puncturable
Encryption with a forward secure public key encryption scheme
(FS-PKE) by Canetti et al. with the goal of practical forward secure
messaging with a low overhead [5].

The encryption model assumes a sender and a receiver who
interact via an insecure channel, an existing PKI to exchange keys,
and that sent messages are either initial or interactive. The focus
here is on asynchronous communication, as forward secrecy for
interactive, synchronous communication can easily be ensured by
other protocols such as OTR [11].

Puncturable Encryption is a form of tag-based encryption using
short, unchanging public keys and includes a puncture algorithm.
This puncturing can be described as follows: on input of the current
secret key SK and a tag t ∈ {0, 1}, it outputs a new SK ′ that will
decrypt all ciphertexts that are not encrypted under that tag t .
It is based on the Attribute-Based Encryption (ABE) scheme by

https://www.ibr.cs.tu-bs.de/projects/ibr-dtn/


Forward Secure Delay-Tolerant Networking CHANTS’17, October 20, 2017, Snowbird, UT, USA

Ostrovsky et al. [16]. This is combined with the FS-PKE scheme [5],
which allows for revocation of decryption capabilities for certain
intervals without revocation of all previous intervals. FS-PKE uses
Hierarchical Identity Based Encryption (HIBE) as building blocks,
employed here is the optimized scheme by Boneh et al. [3]. The
total decryption and key storage cost grows linearly only in the
maximum number of messages received within a given time period
and logarithmically in the number of time periods.

An active attacker may block messages so that the recipient can-
not revoke decryption capabilities; however, using the combination
of the two schemes that allow both revocation for tags and time
intervals, it is possible to ensure that the message cannot be de-
crypted after a certain decryption window has passed. This requires
that the secret keys of both schemes are cryptographically bound
to each other.

The algorithms of this combined scheme, called the Forward
Secure Encryption (FSE) scheme, are as follows [11]:

• KeyGen(1d ,k) → (PK, SK0): given a security parameter d
and a maximum number of tags k , it outputs a new public
key and an initial secret key

• Encrypt(PK,M, t1, . . . , tk ) → ciphertext CT
• Decrypt(PK, SKi ,CT , t1, . . . , tk ) → {M} ∪ {⊥}
• Puncture(PK, SKi−1, t) → SKi : see Section 3.1
• NextInterval(SKn ): see Section 3.2

During the key pair generation, first the parameters for an in-
stance of the ABE scheme are produced, the public parameters are
published as the public key, and a decryption key is derived from
the master secret key which is then destroyed. The user now has a
pair of two secret keys (AT , BT ), whereAT is the key for the FS-PKE
scheme and BT the one for the puncturable encryption scheme, for
each time interval T . For puncturing on a tag t , a new secret key
containing the negation of t is derived. Messages are encrypted for
certain time intervals and with one or multiple tags; they can then
only be decrypted with the secret key that corresponds to the same
time interval and that is not punctured on any of the attached tags.

Both schemes are provably secure under the Decisional Bilinear
Diffie-Hellman Inversion and theDecisional Bilinear Diffie-Hellman
assumption for bilinear groups.

3.1 Puncturing of Keys
The general puncturing algorithm is shown in Figure 2. To each
(initial) ciphertext, a unique identifier, the ‘tag’, is attached, which
is generated by the sender. When a user receives such a tagged ci-
phertext, they may revoke their secret key’s decryption capabilities
for this tag via a secret key update, i.e. by puncturing on that tag. It
is also possible to use multiple tags per ciphertext, e. g., for GUIDs,
counters, tags about subjects, or sender IDs. This way, one may, for
example, puncture on all ciphertexts from one sender, all regarding
one subject, on all in general, or only a single ciphertext, thereby
disabling future decryption of these ciphertexts.

3.2 Key Forwarding
The lifetime of the FSE key is divided into several time intervals of
steady, but variable length. Key forwarding describes the process
of deriving new secret keys for a new time interval. Old keys can
either be discarded or kept in the case of late arrivals, they can

On receiving ciphertext CT with tag t

Decryption key

SKi-1 = [sk0, …, ski-1]

Puncture: create new SK,

modify sk0 and include ski

with tag t, discard SKi-1

Decryption key

SKi = [sk0, …, ski-1,ski]

t

t

On receiving ciphertext CT2 with the same tag t

Decryption not possible, 

already punctured with tag t

Figure 2: After receiving a ciphertext with tag t , the secret
key can be punctured: a new secret key is created which can-
not decrypt messages with the same tag anymore.

also be sterilized so that they can still decrypt but cannot be used
for deriving any more new keys. Tags can only be punctured on if
keys for the next interval have already been derived, so until then
messages are not secure according to forward secrecy. It is also
not advisable to store keys for past intervals indefinitely, as these
interval keys may be compromised.

4 FORWARD SECURE DTNS
After introducing the FSE construction, we apply it to DTNs. We
discuss the integration of this new scheme into the Bundle Security
Protocol and discuss a way to generate unique tags compatible
with the existing Bundle Protocol specification. Because FSE needs
to be configured based on the targeted DTN scenario, we give
an overview over all important parameters. Finally, we provide
implementation specific considerations.

4.1 Extending the Bundle Protocol
We seek to extend the security guarantees offered by the Bun-
dle Security Protocol by forward secrecy for every bundle that is
transmitted between sender and receiver. Using the FSE scheme
presented in Section 3, bundles are equipped with a unique tag
and on reception of a bundle, the recipient’s secret key is punc-
tured on attached tag, thereby revoking decryption capabilities. To
support this scheme, it is added as an alternative to the common
ciphersuites of the Bundle Security Protocol, without any further
modification of the defined bundle types. The key management
remains unchanged, only now instead of RSA keys, the FSE public
keys are exchanged. However, the key management itself is out of
scope and we assume some form of key exchange prior to commu-
nication. Signature creation and verification is also not considered
here as they are not included in the FSE scheme.



CHANTS’17, October 20, 2017, Snowbird, UT, USA S. Rüsch, D. Schürmann, R. Kapitza, L. Wolf

4.2 Unique Tags in DTNs
In the FSE scheme, each message can be equipped with one or
multiple tags, which can, for example, be used to uniquely identify
messages or group them according to subject. For generic DTN
communication, we assume that every bundle should be uniquely
identifiable by its tag and decrypted once by the receiver. Thus, we
propose to generate the tag based on the hash of node’s EID and
the current timestamp, e. g., for node A, t = h("A-2017-06-04") and
k = 1 (cf. Section 3). Immediately afterwards, decryption of this
bundle should be permanently disabled by puncturing the FSE key
on this tag. Each bundle can be assumed to be unique within their
source endpoint, creation timestamp, and the creation timestamp
sequence number [21]. We therefore calculate the hash of these
values to be used as unique tags for bundles, to offer forward secrecy
separately to each bundle.

4.3 FSE Parameters
The FSE scheme in general is based on four parameters introduced
in Section 3 and Section 4: The interval length n describes the
lifetime of an FSE key which is divided into time intervals of steady,
but variable length. For optimal performance of encryption and
decryption, it is recommended to receive one message per interval,
i.e., perform one puncturing operation and immediately forward the
key [11]. Messages can be attached with a certain amount of tags
k ≥ 1, the default behaviour of libforwardsec is to include one tag
permessage. FSE keys support a certain amount of time intervals
d , which means that after d time intervals, new FSE keys have to
be generated and exchanged. A maximum of 231 time intervals is
supported by libforwardsec. As keys are periodically forwarded
and thereby lose the ability to decrypt messages of prior intervals,
old interval keys should be retained to support late or early arrival
of messages. N defines how many currently valid interval keys
are stored, i.e. how many secret keys of past intervals in addition to
the current one are preserved. This is advantageous for lost bundles,
which are sent but never received. They will be encrypted for a
specific time interval; however, as secret keys will not be stored
indefinitely, the corresponding secret key will be deleted after N
time intervals have passed, thereby guaranteeing forward secrecy
even for these bundles. For special scenarios, keys could even be
derived in advance before usage.

The optimal choice of these values for different network types
is heavily influenced by both their environment and the chosen
applications. We provide an evaluation for example scenarios in
Section 5.2.

4.4 Implementation
The encryption scheme offering forward secrecy is implemented
in the library libforwardsec, which is openly available [15]. It is
written in C++ and uses both the Relic pairing library and the Ce-
real serialization library, which wraps Relic’s serialization routines
for elliptic curve points, and for performance optimization it em-
ploys OpenMP. The setting employed by libforwardsec uses 256-bit
Barreto-Naehrig curves and, in the conversion from symmetric
to asymmetric curves, optimizes for minimal ciphertext size. The
assumption behind this is that secret key storage is unproblematic
except on highly constraint devices, which is acceptable in most

library
call

full
0

100

200

300

102.9 104.7
89.3 91.1

Ti
m
e
in

m
s

RSA
FSE

(a) Key Generation (10 repeti-
tions)

w/o
pre-keys

w/
pre-keys

0

100

200

300

105

0.2

106

35.1

RSA
FSE

(b) Start-up time of Security-
KeyManager (10 repetitions)

Figure 3: Performance of cryptographic operations

DTN environments. We included the FSE scheme in the DTN imple-
mentation IBR-DTN. The key management required most changes:
the SecurityKeyManager of IBR-DTNwas extended to support the
FSE scheme without modification of the bundle structure specified
in the Bundle Security Protocol. The FSE parameters are set dur-
ing start-up of the IBR-DTN daemon, which implements the DTN
node functionality, and sender and receiver are assumed to be on
the same time interval. Both the FSE keys and the time interval
are restored if the daemon has been started previously; otherwise,
new FSE keys are generated. The bundle itself is encrypted with
a symmetric session key using AES-256, this session key is then
encrypted with the FSE key and attached to the message. After
decryption, the daemon punctures the FSE key on the extracted tag
for this encryption interval.

5 EVALUATION
We present a microbenchmark demonstrating the performance of
IBR-DTN using libforwardsec and an analysis of the optimal FSE
parameters for DTN environments. For this, we consider three
scenarios: IPNs, communication scenarios for rural villages, and
delay-tolerant vehicular networks.

5.1 Microbenchmark
Themeasurementswere conducted on aDell OptiPlex 7010Desktop-
PC with an Intel Core i7-3770 CPU @ 4(8)x3.4 GHz CPU and 16 GB
of RAM running Ubuntu 14.04 LTS. All main key operations were
inspected for both the RSA and the FSE scheme, which includes
key generation and the start-up time of the SecurityKeyManager
as well as en- and decryption of bundles.

Key Generation. In Figure 3a, the duration of the key generation
for the FSE and RSA schemes is shown. We consider both the
complete key generation including serialization of the keys as well
as only the duration of the library call to OpenSSL. Here, it can be
seen that even though OpenSSL is trimmed for performance, the
FSE key generation is faster than that of RSA keys with 89ms to
103ms , respectively, thereby improving performance by 13%. This
and RSA’s large standard deviation in Figure 3 are due to the fact
that for RSA key generation, large prime numbers have to be found.



Forward Secure Delay-Tolerant Networking CHANTS’17, October 20, 2017, Snowbird, UT, USA

Encrypt Decrypt
0

20

40

60

80

100

1.2 4.4

18.4

62.7
Ti
m
e
in

m
s

RSA
FSE

Figure 4: Encryption / Decryption (20 repetitions)

Startup Time of SecurityKeyManager. Figure 3b shows the start-
up time of the SecurityKeyManager. Here, it is differentiated be-
tween start-up when the node already possesses a pre-existing key
pair which has to be deserialized, and without any pre-existing keys,
which in this case have to be generated first and then serialized.
The performance difference between deserializing pre-existing RSA
keys and FSE keys is negligible.

Encryption andDecryption. The performance of the cryptographic
operations for encryption and decryption are shown in Figure 4.
Here, the FSE scheme is less performant than the RSA scheme: the
duration is about 15.7 times and 14.27 times higher for encryption
and decryption, respectively. The FSE decrypt call also contains a
call to the puncturing with the received tag, which is done after
every message.

Latency. The FSE scheme also introduces a higher latency, as
can be seen in Figure 5a. For this, we utilized the DTN application
dtnping to send ping messages between the nodes. Here, the same
trend is apparent as in the other measurements: the RSA scheme
is on average about 11 times faster (13ms to 143ms) than the FSE
scheme, and without any security features, the operation is about
48 times faster (3ms to 143ms). The performance of cryptographic
operations in libforwardsec decreases during the progression of
an interval due to the increasing key size [11], which explains the
large standard deviation in Figure 4. This leads to an increase in
latency over the course of an interval, where round trip times of
up to 200ms are possible. Figure 5b shows this increase for the FSE
scheme, as every bundle leads to an additional puncture operation.
As soon as a new interval is started, the RTT decreases to 115ms .

Summary. These results clearly show the expected better perfor-
mance of OpenSSL’s RSA scheme implementation in comparison
to libforwardsec’s non-optimized FSE construction. One surprising
result was the better performance of libforwardsec regarding key
generation. The increasing duration of cryptographic operations
during the progression of an interval, which is mentioned by Green
and Miers [11], is perceptible in the latency of applications such as
dtnping.

5.2 Choice of FSE Parameters
In the following we discuss three potential DTN scenarios, namely
IPNs, communication systems for rural villages, and delay-tolerant

None RSA FSE
0

50

100

150

200

3.1 12.7

142.7

La
te
nc
y
in
m
s

(a) Latency introduced by FSE (30
repetitions)

1 2 3 4 5 6 7
0

100

200

300

# consecutive bundles

FSE
RSA
None

(b) Latency during interval
progression (3 repetitions)

Figure 5: Performance of cryptographic operations

vehicular networks. For all scenarios we propose the usage of k = 1,
i.e., defining a unique single tag per bundle as specified in Section 4.2.
Based on the variance of the delay, the number of currently valid
intervals N must be chosen carefully to still allow decryption of
bundles arriving late. Thus, we propose to setN = ⌈Max/Mean⌉+1.
Using statistics from existing DTN evaluations, we deduce FSE
parameters for each of them. A summary of these results can be
found in Table 1.

IPN. First, we consider an IPN scenario by Apollonio et al. [1]. A
moon lander sends bundles to a user on earth via the following hops:
The moon lander has periodic connections to a satellite orbiting
the moon that in turn has periodic connections to a Mission Con-
trol Center (MCC) or an Auxiliary Terrestrial Gateway. The earth
stations are connected and the end-user communicates through the
Internet with the MCC. The contact plan of the involved nodes is
fully known. We discuss the streaming scenario where 5 kB bun-
dles are send periodically every 10 s. For this, we propose to set
the interval length n = 124 s, which is the mean delay between the
sender and receiver (cf. Table 1). The secret key is punctured on
each decrypted bundle (k = 1) to obtain the highest forward secrecy.
With this configuration, all bundles are either received during the
same interval they have been sent or at least two intervals later,
because even if they are sent at the end of the current interval, the
worst case delay is less than twice the interval duration n. Thus,
the number of stored secret keys, i.e., the currently valid intervals,
is set to N = 3 following the proposed equation. Conclusively,
following the results by Apollonio et al. [1], 5 bundles are received
per interval. In the worst case a burst can lead to 11 bundles per
interval [1]. As this corresponds to the number of punctures done
by the receiving side, the duration of cryptographic operations is
still acceptable as shown in Figure 5b.

Rural Village. Grasic and Lindgren [10] deploy communication
services to the rural remote village Staloluokta in Sweden. Ser-
vices in Staloluokta are provided via a data mule helicopter that
commutes daily from Ritsem, a camp by the Sami people that is
connected to the Internet. Two outdoor nodes are connected via a
wifi bridge, where one is located near the helicopter landing place
for receiving data from the mule. They provide direct access to



CHANTS’17, October 20, 2017, Snowbird, UT, USA S. Rüsch, D. Schürmann, R. Kapitza, L. Wolf

Table 1: Selected DTN scenarios and their corresponding choice of FSE parameters

Scenario FSE Parameters

Ref. Description Mean Max n N Bundles/Interval

IPN [1], Fig. 6 Satellite stream from moon to earth 124 s 153 s 124 s 3 5
Rural Village [10], Tab. 1 Communication for rural villages 87 071 s ≈ 1 d - 1 d 3 ∼ 9
Vehicular (a) [9], Fig. 7 Routing in urban public transport 749 s ≈ 13min 5900 s ≈ 98min 13min 9 ∼ 1560
Vehicular (b) " " " " 1min 99 ∼ 120

communication services, such as DTN Facebook and messaging to
up to 13 end-user nodes (laptops, mobile devices) with an average
bundle size of 51 kB. Thus, the scenario is quite static with a mean
delay of 1 day due to the commuting helicopter. According to Grasic
and Lindgren, 6107 bundles have been sent during 53 days. Thus,
on average the ratio was 115 bundles per day and 9 bundles per
day per device considering a uniform usage. Conclusively, for this
number of punctures the duration of cryptographic operations is
still acceptable.

Delay-Tolerant Vehicular Networks. Doering et al. [9] simulate a
scenario for transportation systems, e.g., busses, with known timeta-
bles and network maps. In their fixed scenario, they considered a
routing graph with 54 bus stops, 13 lines, and 28 vehicles. Their rout-
ing algorithm called RUTS outperformed other algorithms due to
these known parameters. Here, we consider RUTS as an example for
a fixed network with high traffic and high variance due to variable
hop counts until a bundle reaches a destination. For the simulation,
random nodes are sending to other random nodes in a constant
interval. Due to a mean delay of 13min and a maximum delay of
98min, we choose N = 9. Considering a high network traffic to ex-
change current vehicle positions and traffic jams with ∼ 2 bundles
per second, the Vehicular (a) scenario processes ∼ 1560 bundles per
interval. This would increase the decryption time significantly to
up to ∼ 21.6 s and is thus impractical for real world deployments.
In comparison to the previous scenarios, this exhibits much higher
traffic patterns and high maximum delay times. As a trade-off be-
tween low decryption times and degree of forward secrecy, we
propose a second configuration Vehicular (b) with n = 1min and
N = 99. In the worst case, this has only ∼ 1.8 s decryption time.

6 CONCLUSION
We combined IBR-DTN and libforwardsec to add forward secrecy
as a security guarantee to a DTN implementation. Bundles can
now be encrypted using the FSE scheme by Green and Miers [11],
which, combined with the added interval management and the use
of the puncture algorithm, ensures forward secrecy of messages.
Our evaluation shows that, while the cryptographic operations
introduce an acceptable performance overhead, the latency is con-
siderably higher and increases over the course of a time interval.
We show how this can be remedied by choosing suitable values for
the parameter of the FSE scheme. However, it has to be weighted
based on specific scenario requirements whether forward secrecy
outweighs higher latencies.

REFERENCES
[1] P. Apollonio, C. Caini, and V. Fiore. 2013. From the Far Side of the Moon:

Delay/Disruption-Tolerant Networking Communications via Lunar. China Com-
munications 10, 10 (Oct. 2013), 12–25.

[2] N. Asokan, Kari Jostiainen, Philip Ginzboorg, Jörg Ott, and Cheng Luo. 2007. Ap-
plicability of Identity-Based Cryptography for Disruption-Tolerant Networking.
In Proceedings of the 1st International MobiSys Workshop on Mobile Opportunistic
Networking. 52–56.

[3] D. Boneh, X. Boyen, and E.-J. Goh. 2005. Hierarchical Identity Based Encryption
with Constant Size Ciphertext. Springer, Berlin, Heidelberg, 440–456.

[4] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer. 2007. OpenPGP
Message Format. RFC 4880 (Proposed). (Nov. 2007). http://www.ietf.org/rfc/
rfc4880.txt

[5] R. Canetti, S. Halevi, and J. Katz. 2003. A Forward-Secure Public-Key Encryption
Scheme. Springer, Berlin, Heidelberg, 255–271.

[6] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, K. Fall, and H.
Weiss. 2007. Delay-Tolerant Networking Architecture. RFC 4838 (Informational).
(April 2007). http://www.ietf.org/rfc/rfc4838.txt

[7] K. Cohn-Gordon, C. Cremers, B. Dowling, L. Garratt, and D. Stebila. 2017. A
Formal Security Analysis of the Signal Messaging Protocol. In 2017 IEEE European
Symposium on Security and Privacy (EuroS&P). 451–466.

[8] T. Dierks and E. Rescorla. 2008. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246 (Proposed). (Aug. 2008). http://www.ietf.org/rfc/rfc5246.txt

[9] M. Doering, T. Pögel, and L. Wolf. 2010. DTN Routing in Urban Public Trans-
port Systems. In Proceedings of the 5th ACM Workshop on Challenged Networks
(CHANTS ’10). ACM, New York, NY, USA, 55–62.

[10] S. Grasic and A. Lindgren. 2014. Revisiting a Remote Village Scenario and its
DTN Routing Objective. Computer Communications 48 (2014), 133–140.

[11] M. D. Green and I. Miers. 2015. Forward Secure Asynchronous Messaging from
Puncturable Encryption. In 2015 IEEE Symposium on Security and Privacy. 305–
320.

[12] F. Günther, B. Hale, T. Jager, and S. Lauer. 2017. 0-RTT Key Exchange with Full
Forward Secrecy. Springer, Cham, 519–548.

[13] A. Hennessy and A. Alford. 2013. Demo: Identity-Based Cryptography in Delay-
Tolerant Networks. In ExtremeCom ’13.

[14] H. Krawczyk. 2005. HMQV: A High-Performance Secure Diffie-Hellman Protocol.
Springer, Berlin, Heidelberg, 546–566.

[15] I. Miers. 2015. Libforwardsec. Forward Secure Encryption for Asynchronous
Messaging. (2015). https://github.com/imichaelmiers/libforwardsec

[16] R. Ostrovsky, A. Sahai, and B. Waters. 2007. Attribute-Based Encryption with
Non-Monotonic Access Structures. In ACM CCS ’07. 195–203.

[17] B. Ramsdell and S. Turner. 2010. Secure/Multipurpose Internet Mail Extensions
(S/MIME) Version 3.2 Message Specification. RFC 5751 (Proposed). (Jan. 2010).
http://www.ietf.org/rfc/rfc5751.txt

[18] E. Rescorla. 2016. The Transport Layer Security (TLS) Protocol Version 1.3.
https://tools.ietf.org/html/draft-ietf-tls-tls13-18. (March 2016).

[19] S. Schildt, J. Morgenroth, W.-B. Pöttner, and L. Wolf. 2011. IBR-DTN: A Light-
weight, Modular and Highly Portable Bundle Protocol Implementation. Electronic
Communications of the EASST 37 (Jan. 2011), 1–11.

[20] B. Schneier and C. Hall. 1997. An Improved E-mail Security Protocol. In 13th
Annual Computer Security Applications Conference. 232–238.

[21] K. Scott and S. Burleigh. 2007. Bundle Protocol Specification. RFC 5050 (Experi-
mental). (Nov. 2007). http://www.ietf.org/rfc/rfc5050.txt

[22] H.-M. Sun, B.-T. Hsieh, and H.-J. Hwang. 2005. Secure E-mail Protocols Providing
Perfect Forward Secrecy. IEEE Communications Letters 9, 1 (Jan. 2005), 58–60.

[23] S. Symington, S. Farrell, H. Weiss, and P. Lovell. 2011. Bundle Security Protocol
Specification. RFC 6257 (Experimental). (May 2011). http://www.ietf.org/rfc/
rfc6257.txt

[24] N. Unger, S. Dechand, J. Bonneau, S. Fahl, H. Perl, I. Goldberg, and M. Smith. 2015.
SoK: Secure Messaging. In IEEE Symposium on Security and Privacy. 232–249.

http://www.ietf.org/rfc/rfc4880.txt
http://www.ietf.org/rfc/rfc4880.txt
http://www.ietf.org/rfc/rfc4838.txt
http://www.ietf.org/rfc/rfc5246.txt
https://github.com/imichaelmiers/libforwardsec
http://www.ietf.org/rfc/rfc5751.txt
https://tools.ietf.org/html/draft-ietf-tls-tls13-18
http://www.ietf.org/rfc/rfc5050.txt
http://www.ietf.org/rfc/rfc6257.txt
http://www.ietf.org/rfc/rfc6257.txt

	Abstract
	1 Introduction
	2 Related Work
	3 Forward Secure Encryption
	3.1 Puncturing of Keys
	3.2 Key Forwarding

	4 Forward Secure DTNs
	4.1 Extending the Bundle Protocol
	4.2 Unique Tags in DTNs
	4.3 FSE Parameters
	4.4 Implementation

	5 Evaluation
	5.1 Microbenchmark
	5.2 Choice of FSE Parameters

	6 Conclusion
	References

