Piggy-Backing Link Quality Measurements to IEEE 802.15.4
Acknowledgements

Wolf-Bastian Pottner, Sebastian Schildt, Daniel Meyer and Lars Wolf
Institute of Operating Systems and Computer Networks
Technische Universitit Braunschweig,

Braunschweig, Germany
Email: [poettner|schildt|dmeyer|wolf]@ibr.cs.tu-bs.de

Abstract—In this paper we present an approach to
piggy back link quality measurements to IEEE 802.15.4
acknowledgement frames by generating acknowledgements
in software instead of relying on hardware support. We
show that the software ACKs can be sent meeting the
timing constraints in IEEE 802.15.4. This allows for a
standard conforming, energy neutral dissemination of link
quality related information in IEEE 802.15.4 networks.
This information is available at no cost when transmitting
data and can be used as input for various schemes for
adaptive transmission power control and to assess the
current channel quality.

I. INTRODUCTION

Mechanisms such as adaptive transmission power con-
trol or network monitoring in wireless networks re-
quire feedback about the current channel quality. This
information can either be disseminated out-of-band by
using a special packet type, or it can be transmitted
in-band by piggy-backing the desired information on
existing messages, which reduces overhead and energy
consumption.

The idea behind the work presented here is to provide
feedback about the reception quality of a frame to
the sender by recycling three unused bits in the IEEE
802.15.4 acknowledgement frame. Most packet-based
radio chips employed on sensor nodes to date provide
functions to automatically generate and send such ACK
frames. However, they do not provide means to alter
the contents of the ACK. Therefore, ACKs including
feedback have to be generated and sent in software. In
order to remain compatible with IEEE 802.15.4 com-
pliant nodes, our approach has to meet the stringent
time limits of the standard while also using the original
frame format. The energy consumption of sending and
receiving packets should not be increased to make the
approach usable in real-world deployments.

For our prototype implementation we have used the
well-known T-Mote Sky sensor node which features the
TI CC2420 IEEE 802.15.4 transceiver [7]. Since this
radio is used on many other sensor nodes as well, our
results should also apply to these nodes. We have used
the Contiki' operating system on the nodes and base
our work on the existing device driver. However, the

Uhttp://www.sics.se/contiki/

principles of our solution can also be implemented for
other operating systems and hardware platforms.

The remainder of the paper is structured as follows:
In section II we introduce some related work. Section
IIT outlines our concept and introduces the constraints
set by the hardware and the IEEE 802.15.4 standard. In
section IV we present our implementation which we will
evaluate in section V. Finally, in section VI we wrap up
and present some concluding observations.

II. RELATED WORK

Most published mechanisms to control the radio trans-
mission power rely on receiver feedback regarding the
reception quality. ATPC [5] is an adaptive transmission
power control scheme that relies on receiver feedback to
adapt the outgoing power based on a predictive model.
If a node receives a packet where the desired link
quality differs from the actual link quality, an explicit
notification packet is sent to the sender to be used as
input for the predictive model. This transmission of
the explicit notification packet provides the necessary
feedback but also increases energy consumption and
takes longer compared to ACK frames.

Xiao et al. [10] have created a continuous receiver
feedback-based adaptive transmission power control al-
gorithm that provides feedback in acknowledgement
packets. Transmission power is increased or decreased
according to information provided in the ACK packets.
The authors do not mention if IEEE 802.15.4 acknowl-
edgement messages are extended or if additional mes-
sages are sent. Also no information regarding the timing
of the ACKs are given.

TinyOS? uses software generated IEEE 802.15.4 ac-
knowledgements in favour of hardware generated to
avoid a phenomenon of so-called false acknowledge-
ments [9]. The implementation first reads out the packet
from the radio, decides if an ACK should be sent and
then signals the CC2420 radio to generate and send an
ACK message. However, this method neither allows to
embed custom information into the ACK frame nor does
it comply with the stringent timing of the standard.

ITI. BAsICs

The CC2420 is able to generate and send ACKs for
data frames in hardware based on the outcome of the

Zhttp://www.tinyos.net/

integrated address recognition and the verification of the
Frame Check Sequence (FCS, a CRC checksum in the
last two bytes of IEEE 802.15.4 frames). The process
is fully automatic and application code is not involved
which also precludes the modification of the ACK frame.
The existing Contiki radio driver for the CC2420 uses the
CC2420’s AutoAck feature to handle acknowledgements.

Our approach is to switch off the AutoAck feature
and generate the IEEE 802.15.4 ACK frames in software.
All IEEE 802.15.4 control frames including ACK frames
contain a 2-octet Frame Control Field (FCF), where 3
bits in the FCF are currently unused (Reserved). We
use these 3 bits to provide feedback about the reception
quality to the sender. Link quality is typically measured
using the Receiver Signal Strength Indicator (RSSI) or
the Link Quality Indicator (LQI). We focus on RSSI,
although the results should likewise apply to LQI as well.
The mapping between actual RSSI value and the 3 bits
is application-dependant and out of scope for this paper.

As there are some strict timing constraints that the
sending of ACKs have to adhere to (see III-A), imple-
menting software acknowledgements has to be done in
an efficient way. We implemented code that will already
start reading the received frame from the CC2420’s
RXFIFO, while it is still being received. After having
read the first four bytes of the incoming packet, the ACK
frame is constructed and placed in the TXFIFO of the
CC2420. During the time the ACK is constructed and
written to the TXFIFO, more data arrives in the RXFIFO.
Since we can can read the RXFIFO faster than it is filled
by receiving an IEEE 802.15.4 frame, we can make up
for the time needed to construct the ACK frame while
reading the remainder of the frame.

Upon reception of the last byte and after completion
of the copy procedure from the RXFIFO, the prepared
ACK will be send or flushed, depending on the outcome
of the FCS check.

A significant advantage of this approach is that the
packet is completely read out of the buffer shortly after
the frame has been received. This can be beneficial for
time-critical applications and may also increase through-
put. Normally it takes a significant amount of time after
the full frame is received by the radio to copy it out of
the RXFIFO.

A. IEEE 802.15.4 Timing Constraints

According to the standard IEEE 802.15.4 [8], a sender
should wait for up to macAckWaitDuration symbols for
acknowledgement frames after the original data frame
has been transmitted. This period has to be less or equal
to macAckWaitDuration in order to comply with IEEE
802.15.4. The macAckWaitDuration already includes the
time for the ACK frame itself (Table 86, [8]). The value
is calculated as follows ([8], Section 7.4.2):

macAckW ait Duration = aUnitBackof f Period +
aTurnaroundT'ime +

phySH RDuration +

[6 - phySymbolsPerOctet]

For the 2.4 GHz DSSS PHY macAckWaitDuration is
as follows:

macAckW aitDuration =20+ 12+ 10+ [6-2] =54 (1)
54 symbols - 62.5 - 10735/symb0l = 864us (2)

For our discussion and evaluation in the remainder of
this paper, we refer to the actual time between transmis-
sion of the last byte of a data frame until the reception
of the last byte of the ACK frame as acknowledgement
time or ACK time.

According to [8] the transmission of an ACK frame
“shall commence aTurnaroundTime symbols after the
reception of the last symbol of the data or MAC com-
mand frame”. aTurnaroundTime is the maximal time
allowed for a CC2420 compliant transceiver to switch
its radio from TX to RX mode. Commencing to send
the ACK earliest after aTurnaroundTime makes sure that
all compliant transceiver have already switched to RX
mode and are able to receive it. For the 2.4 Ghz PHY
aTurnaroundTime is:

aTurnaroundTime = 12 symbols 3)
12 symbols - 62.5 - 10~ 3s/symbol = 192us 4)

Sending an ACK earlier is harmful, sending it later is
acceptable if it can still be received within the limit set by
macAckWaitDuration. In order to be standard compliant,
an implementation should begin sending the ACK frame
at latest 864us — 192us = 672us after it has received
the last byte of the data frame. We have measured
the timing of the acknowledgement process using the
CC2420 transceiver with hardware acknowledgements
enabled as shown in Figure 1. As can be seen the
CC2420 begins transmitting the ACK 360us after receiv-
ing the last symbol of the data frame. An 802.15.4 ACK
frame consists of 6 bytes, which leads to a transmission
time of 192us using the 2.4 GHz PHY at 250 kbit/s.
As reference the figure also includes the aTurnaround-
Time and the macAckWaitDuration. For the hardware-
generated acknowledgements the measured times are
not dependent on the packet size. All experiments have
been performed with the IEEE 802.15.4 security features
turned off. While the IEEE 802.15.4 security extensions
do not modify the timing requirements of the standard,
the timing observed during measurements with security
enabled might differ from the timing observed in this
paper due to additional processing overhead.

B. CC2420 Interface

Figure 2 shows how the CC2420 on the T-Mote Sky
interfaces with the host controller. The CC2420 uses
an SPI interface to communicate with the application
controller which is driven by the MSP430 controller on
the T-Mote Sky with 3.9 MHz. In addition to the SPI bus
the CC2420 radio chip uses various digital IO pins to
provide information about its current state. In receiving
mode, the SFD pin goes high after the Start of Frame

16 Byte Data Frame 6 Byte ACK Frame

aTurnaroundTime
192 ps

ACK time, 552 ps

1
macAckWaitDuration, 864 us .

] »
360 ps o

]
512 s " 192 ps t

Figure 1: CC2420 Timing using hardware acknowledge-
ments

MISO
SCLCK

CC2420 MSP430

SFD.
FIFO
FIFOP

— SPlinterface
CC2420 control signals

+«—
Agilent MSO8064A 4—
‘—

Figure 2: CC2420 interface

Delimiter (SFD) has been received and goes low after
address recognition has failed or after the last byte of
the frame has been received. The FIFO pin goes high
when there is at least one byte waiting in the RXFIFO
and goes low when the RXFIFO is empty again. The
FIFOP pin is high whenever more than a configurable
number of bytes are waiting in the RXFIFO and the
CC2420’s integrated address recognition was successful
or it goes high after a complete frame has been received.
The threshold for the FIFOP pin is configurable between
0 (go high immediately after address recognition) and
127 (only indicate completely received frames). More
information can be found in the CC2420 data sheet [7].

IV. IMPLEMENTATION

Our implementation aims at being a drop-in replace-
ment for the existing Contiki device driver and conse-
quently uses the same structure. However, instead of
waiting for the complete frame to be received by the
radio, we read the frame out of the RXFIFO in blocks
while it is still being received. After reading the first four
bytes, the ACK frame can be prepared and copied into
the TXFIFO (see section III).

In order to provide link quality feedback to the sender,
this information has to be added to the ACK frame.
The CC2420 provides Receiver Signal Strength Indicator
(RSSI) and Link Quality Indicator (LQI) information
in the last two bytes of the frame, replacing the FCS.
However, waiting for these last bytes to create the ACK
frame is too time consuming to send out the ACK in
time. Therefore we opted for obtaining RSSI information
from the CC2420 using the RSSI_VAL register that
contains the RSSI averaged over the last 8 received
symbols. We obtain this value during the creation of the
ACK frame and incorporate it into the three unused bits
in the FCF as mentioned in Section III.

Although SPI interfaces operate only byte-wise and
do not have the notion of blocks, block-wise reading
is still an advantage since the processing overhead on
the microcontroller can be reduced by reading blocks
and returning them to the driver. Otherwise the overhead
from function calls costs too much time and reduces
efficiency. However, using a larger block size also in-
creases the amount of data that is possibly left in
the RXFIFO when the frame is completely received.
While data being read during the packet receive process
does not contribute to the ACK time, reading data still
remaining in the RXFIFO after the reception of the
frame has been completed, will increase the time to
send an ACK. The trade-off here is between processing
overhead on the microcontroller and the time necessary
for reading residual bytes after the complete frame has
been received.

We configure the CC2420 to use hardware address
recognition and disable the CC2420 AutoAck feature. To
realize the block-wise reading of the incoming packet,
the FIFOP threshold is set to a preconfigured block
size (see also section V-B). After the first bytes of a
frame have been received, the FIFOP interrupt fires and
the interrupt service routine then sends a signal to the
driver process which will eventually be polled by the
scheduler. The process starts by reading the first 4 bytes
including the length field, the FCF and the DSN. With
this information, the ACK frame can be created and is
subsequently copied into the TXFIFO of the CC2420.
The read process now goes into the reading loop until
all bytes of the frame have been read (or the CC2420
signals an error).

The reading loop waits for the FIFOP pin to go up
and then reads a complete block from the RXFIFO. If
less bytes than the block size are left in the RXFIFO, the
driver resorts to byte-wise reading of the residual data.
Once all bytes from the RXFIFO have been read out,
the driver can verify the CRC checksum. The CC2420
radio replaces the FCS with a flag indicating whether the
CRC checksum was successfully verified, so the actual
calculation of the CRC does not have to be done in
software. Based on the CRC flag, the driver decides to
either send the prepared ACK frame or to flush the TX
buffer.

V. EVALUATION

In order to evaluate the usability of software-generated
acknowledgements in a WSN deployment, we look at 4
points:

1) The influence of reading block sizes onto the

timing

2) The influence of packet sizes onto the timing

3) Number of unrecognised acknowledgement frames

4) Energy consumption

A. Experimental Setup

The general setup for all the following measurements
are two T-Mote Sky sensor nodes in close vicinity
(distance < 1m). One node is configured to send 60
unicast packets per second to the second node using

Contikis Rime [1] stack. The second node acknowledges
these packets either using the CC2420 AutoAck feature
or using our software-generated acknowledgment frames.
The Contiki stack was configured to use the CSMA MAC
layer with retransmissions enabled and both nodes were
rebooted prior to each measurement run. Unless other-
wise noted the following measurements were conducted
in a university lab with active IEEE 802.11 hardware
in the surroundings; possible influences can neither be
excluded nor quantified. For the purpose of this mea-
surement we have soldered wires onto the SFD, the FIFO
and the FIFOP pin of the CC2420 and connected them
to digital inputs on an Agilent MSO8064A oscilloscope
as shown in Figure 2. In our evaluation on the receiving
node we monitored the SFD pin to get accurate timing
data for received and sent frames.

The time between the end of the send process of the
original frame and the end of the receive process of
the ACK frame at the sender node can be measured by
looking at the SFD pin. In receive mode it goes high
after the Start of Frame Delimiter has been received
and goes low again after the complete frame has been
received or address recognition failed. In transmit mode
it goes high after the SFD has been transmitted and goes
low again after transmission of the frame is completed.
We have measured the time between the edges of the
SFD signal using the configurable trigger functionalities
of the Agilent MSO8064A. The integrated measurement
functions have been used to gather mean, max and min
values and write them to a file. As the oscilloscope has a
finite buffer and calculates mean, max and min only over
the contents currently residing in the buffer, depending
on the packet size, the following results are based on
200-600 ACK frames being measured.

Packet loss has been measured in software. The sender
node counts the number of outgoing packets and the
number of incoming ACKs while the receiver node
counts the number of incoming packets. We can then
calculate the number of lost or unrecognised ACK frames
using Packetsgens — Packetsppeceived While excluding
the number of lost data frames.

B. Block Sizes

Our first concern was the optimal block size for
reading information from the radio via SPIL

Figure 3 shows the block size in bytes on the x-
axis and the acknowledgement time in ps on the y-
axis. The three data lines indicate radio packet sizes of
18, 66 and 128 bytes including the FCS. The maximum
permissible time macAckWaitDuration is marked in red.
The measurement set up is described in Section V-A. As
expected, the acknowledgement time for a block size of
1 is significantly higher than macAckWaitDuration for all
packet sizes due to processing overhead. Smaller packet
sizes generally have higher acknowledgement time than
larger packets which can be explained by the fact that
reading data over SPI is faster than receiving data over
IEEE 802.15.4. The time that is necessary for address
recognition and the overhead of Contiki are independent
of the packet size, so that the driver can catch up for

2000 Radio Frame Size 18 Bytes -- --]
Radio Frame Size 66 Bytes — & —

Radio Frame Size 127 Bytes

macAckWaitDuration

1800

1600

1400

1200 v

Acknowledgement Time [pts]

s
1000 \

TR k.- P ERRE 2
e =
\ . m---m-_l

800 ¥

— =

600
Block Size [bytes]

Figure 3: Acknowledgement time for different block
sizes with software generated ACKs.

larger packets while there is not much potential for
catching up for smaller packet sizes. Interestingly, larger
packets have the lowest ACK time for a block size of 2
since the overhead is low and a maximum of 2 bytes can
wait in the buffer once the receive process is finished.
Small packets have lower ACK times for larger blocks
which can also be explained by the driver catching up
during the SPI transfer. By taking the arithmetic mean of
the ACK times for the three packet sizes, block sizes of
4 and 6 bytes have the lowest ACK time with the average
for 6 bytes being marginally lower. Since smaller radio
frames experience a higher ACK time than larger radio
frames, especially for small block sizes, we think that
an SPI read block size of 6 byte is the best trade-off
between overhead and ACK time.

C. Radio frame sizes

To evaluate whether software-generated acknowledge-
ments meet the time constraints of IEEE 802.15.4 (see
section III-A), we have measured the acknowledgement
time for different radio packet sizes. Also, we have
measured the respective times for hardware-generated
acknowledgements to have a comparison baseline. We
have used the Contiki Rime stack to generate radio
frames of 16 - 126 bytes plus 2 bytes FCS.

Figure 4 shows the radio packet sizes in bytes on
the x-axis and the acknowledgement time in us on the
y-axis. The boxes plot the minimum, the arithmetic
mean and the maximum while the whiskers depict the
standard deviation; the maximum permissible ACK time
is marked by the red line. The measurement set up is
described in Section V-A and these measurements use a
block size of 6 bytes. As previously seen, the software
ack time for 18 byte frames is higher than the ACK
time for larger packet sizes. In general, the software
ACKs are relatively stable with some small glitches and
a marginal standard deviation. The hardware generated
acknowledgements show no variation or dependence on
the frame size whatsoever and are perfectly stable. As
expected, software generated ACKs are between 140 pus
and 225 ps slower than the hardware generated pendant

900

850

800

750

700 I — ' B2

650

600

Acknowledgement Time [us]

550

500

18 34 50 66 82 98 114 127
Radio Frame Size [bytes]

Hardware ACKs

macAckWaitDuration

Figure 4: ACK times for hard- and software generated
ACKs

Packet size | 18 bytes | 34 bytes | 66 bytes | 128 bytes

HW ACKs 0.00 % 0.00 % 0.00 % 0.00 %
SW ACKs 0.08 % 0.08 % 0.08 % 0.01 %
(a) Lost Acknowledgement Frames

Power Cons. | Avg. | Run 1 | Run 2
HW ACKs 0.7450 mWh | 0.7322 mWh | 0.7578 mWh
SW ACKs 0.7231 mWh | 0.6912 mWh | 0.7550 mWh

(b) Power Consumption

Table I: Comparison between software and hardware
generated acknowledgements using a contention-based
MAC

but still lie within the time bounds.

D. ACK detection rate

Software-generated ACKs are likely more fragile
than their hardware-generated pendants since they rely
on Contikis cooperative multitasking. Consequently,
we wanted to investigate how many acknowledgement
frames are actually being recognised by the sender. In
this test we used the Contiki Rime stack to generate
10000 packets on the sender side. We have performed
runs with varying radio packet sizes. The results show
the arithmetic mean of 3 runs per size. The measurement
was performed in the basement of an office building with
active IEEE 802.11 hardware. Influences of any kind
cannot be excluded.

Table Ia shows the ratio of unrecognised or lost
acknowledgements in percent for different radio packet
sizes using hardware and software generated acknowl-
edgements. The ratio only counts data packets which
were successfully sent by the sender and received by
the receiver but for which the sender did not receive
an ACK in time. The table shows that generally not
a single hardware-generated ACK frame was lost or
not recognised while between 0.01 and 0.08 % of the
software-generated acknowledgement frames were lost.
We cannot say, what caused the loss of ACKs in these
particular cases, but it is likely that timing is the problem.
This thesis is supported by the fact that the largest packet

Avg. | Min. | Max.
0.027 % | 0.022 % | 0.032 %
0.060 % | 0.052 % | 0.063 %

Table II: Unicast Packet Loss using a TDMA MAC

Hardware ACKs
Software ACKs

size exhibits significantly lower ACK losses which could
be caused by the radio driver catching up time that was
previously lost.

E. Packet loss

The GINSENG project uses a TDMA-based Medium
Access Control [6] based on IEEE 802.15.4 radios that is
specifically optimised for industrial process automation
and control. In-time delivery of messages and the overall
delivery reliability are of major importance in such
networks.

We have also evaluated our software-generated ac-
knowledgement approach using the GINSENG TDMA
MAC system in the basement of an office building
with active IEEE 802.11 hardware. The testbed uses
15 nodes and a sink node and the following results
are accumulated values from all nodes in the network.
We have conducted 5 measurement runs of one hour
each, separately for hardware- and software-generated
ACKs with an average of 132506 unicast frames being
generated during each run. Our monitoring system counts
a packet as lost when no ACK frame is received in time
but we did not have any means to distinguish the loss of
a data from the loss of the respective ACK frame.

Table II shows the average, minimum and maximum
packet loss during all 10 measurement runs. The number
of lost packets when using hardware ACKs averages
at 0.027 % and can be seen as a baseline that may
be caused by interference with other transmitters or
by TDMA timing problems. Software-generated ACKs
introduce additional packet losses which average at 0.060
%. When we subtract the number of lost packets when
using hardware ACKs from the number of lost packets
for software ACKs, the loss rate averages at 0.033 %
which is well within the range found in the previous
measurement.

FE. Power consumption

To see whether the power consumption of software-
generated ACKs is different from the hardware-generated
pendant, we measured power consumption for both
cases. We have conducted two runs with 1000 packets
of 34 bytes each that were transferred from sender
to receiver. We have measured the power consumption
of the receiver by monitoring a step-up converter as
explained in [4] that was inserted into the USB power
supply lines of the T-Mote Sky. The measurement was
started after the first packet was sent and stopped after
the second to last packet was sent.

Table Ib shows the average power consumption as well
as the individual results for the two runs. Considering
the accuracy of the measurement method, no real differ-
ence in the power consumption between hardware- and
software-generated acknowledgements can be seen.

Nevertheless, we have observed that Contiki’s
software-based online energy estimation [2] reports ap-
proximately 14 % increased transmit energy consump-
tion when using our approach. This is caused by the fact
that by default, the estimation mechanism only counts
frames that are sent in software. Since ACKs in Contiki
are generated in hardware, the energy estimation does
not “see” them. Consequently, our approach enables
more accurate energy accounting compared to hardware
acknowledgements when using Contiki’s built-in energy
estimation.

G. Limitations

A severe limitation of the block-wise approach lies
in the way an incoming frame is signalled to the
driver process. An incoming interrupt is converted into
a Protothreads interprocess signal [3] and the frame
is eventually read out of the RXFIFO (and finally ac-
knowledged) whenever the operating system scheduler
decides to schedule the driver process. Since Contiki uses
cooperative multitasking strategies, one cannot guarantee
that ACK frames are always generated in-time. This
depends on the overall work load of the sensor node
and can be avoided by creating the ACK frame directly
in the interrupt service routine. However, this would
involve changing the design of the radio driver and was
not considered in this paper. Also in order to achieve
fast ACK respone times, the current reading routine
basically performs busy-waiting while receiving, which
will limit the the computational resources available to
other Contiki tasks.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented an approach to gener-
ate IEEE 802.15.4 acknowledgement frames in software
on the T-Mote Sky sensor nodes while complying with
the timing constraints set by the IEEE 802.15.4 standard.
By reading the packet from the RXFIFO while it is still
being received and by using a block-wise reading tech-
nique we were able to lower the processing overhead to
send ACKs in time. By obtaining link quality information
during the reception of a frame and not waiting for the
packet footer, our approach is able to lower the critical
time until the ACK is transmitted even further.

In the evaluation we have found a block size of 6 bytes
to be the best trade-off between processing overhead and
ACK time. We have also evaluated the ACK time for
different packet sizes and found that software-generated
acknowledgements stay within the time bounds for all
our measurement runs. However, we have found that
software ACKs are not as reliable as hardware ACKs
because up to 0.07 % of software generated ACKs are
not recognised by the receiver. Finally, we have shown
that software ACKs do not increase power consumption
compared to hardware ACKs but improve the accuracy of
Contiki’s built-in online energy estimation mechanism.

Additional work has to go into more efficient ways
of encoding link quality feedback information into the
three available bits. Further analysis has to show why
the software-generated ACKs have a slightly higher
probability of being lost.

Acknowledgements

This work has been partially supported by the Eu-
ropean Commission under the contract FP7-ICT-224282
(GINSENG) and by the NTH School for IT Ecosystems.

REFERENCES

[1] Adam Dunkels. Rime — A Lightweight Layered Com-
munication Stack for Sensor Networks. In Proceedings
of the European Conference on Wireless Sensor Networks
(EWSN), Poster/Demo session, Delft, The Netherlands,
January 2007.

[2] Adam Dunkels, Fredrik Osterlind, Nicolas Tsiftes, and
Zhitao He. Software-based on-line energy estimation for
sensor nodes. In Proceedings of the 4th workshop on
Embedded networked sensors, EmNets *07, pages 28-32,
New York, NY, USA, 2007. ACM.

[3] Adam Dunkels, Oliver Schmidt, Thiemo Voigt, and
Muneeb Ali. Protothreads: simplifying event-driven pro-
gramming of memory-constrained embedded systems.
In Proceedings of the 4th international conference on
Embedded networked sensor systems, SenSys *06, pages
29-42, New York, NY, USA, 2006. ACM.

[4] Prabal Dutta, Mark Feldmeier, Joseph Paradiso, and
David Culler. Energy Metering for Free: Augmenting
Switching Regulators for Real-Time Monitoring. In
Proceedings of the 7th international conference on Infor-
mation processing in sensor networks, IPSN *08, pages
283-294, Washington, DC, USA, 2008. IEEE Computer
Society.

[5] Shan Lin, Jingbin Zhang, Gang Zhou, Lin Gu, John A.
Stankovic, and Tian He. ATPC: adaptive transmission
power control for wireless sensor networks. In Proceed-
ings of the 4th international conference on Embedded
networked sensor systems, SenSys ’06, pages 223-236,
New York, NY, USA, 2006. ACM.

[6] Petcharat Suriyachai, James Brown, and Utz Roedig.
Time-critical data delivery in wireless sensor networks.
In 6th IEEE International Conference on Distributed
Computing in Sensor Systems (DCOSS ’10). IEEE, June
2010.

[7] Texas Instruments Incorporated. 2.4 GHz IEEE 802.15.4 /
ZigBee-ready RF Transceiver. http://www.ti.com/lit/gpn/
cc2420.

[8] The Institute of Electrical and Electronics Engineers, Inc.
Part 15.4: Wireless Medium Access Control (MAC) and
Physical Layer (PHY) Specifications for Low-Rate Wire-
less Personal Area Networks (WPANSs). IEEE 802.15.4-
2006, September 2006.

[9] TinyOS Wiki. CC2420 Hardware and Software Acks.
http://docs.tinyos.net/index.php/CC2420_Hardware_and_
Software_Acks.

[10] Shuo Xiao, A. Dhamdhere, V. Sivaraman, and A. Bur-
dett. Transmission Power Control in Body Area Sensor
Networks for Healthcare Monitoring. Selected Areas in
Communications, IEEE Journal on, 27(1):37 —48, 2009.

