Institute of Operating Systems
i, and Computer Networks

"% Technische
"L%? Universitit
% Braunschweig

All Eyes on Code
Using Call Graphs for WSN Software Optimization

Wolf-Bastian Péttner, Daniel Willmann, Felix Blisching, and Lars Wolf,

IEEE SenseApp, Sydney, Australia, 21/10/2013

Motivation

uDTN: Delay-tolerant Networking Implementation for Contiki
= Bundle Protocol Stack
= Network throughput was significantly lower than expected

Common Optimization Approaches

. Stand i st F he PO

= Expert knowledge of code to “feel” bottlenecks
= | ot’s of manual hacking to find bottlenecks

= Trail-and-error optimizations

— How can WSN software be optimized in a (more)
deterministic way (using standard nodes)?

Wolf-Bastian Péttner | All Eyes on Code | Page 2 Institute of Operating Systems
and Computer Networks

Why is performance important for WSN software?

Scarce Computational Resources
= Microcontrollers are slow and speed is increasing slowly

= WSN application complexity is rising and will continue to do so
(6LOWPAN, CoAP, RPL/ROLL, etc.)

Energy Consumption
= Energy supply is usually limited and scarce
= Faster execution times allow MCU to sleep longer

— WSN Software optimization is necessary!

Technische

Universitit Wolf-Bastian Péttner | All Eyes on Code | Page 3 Institute of Operating Systems

and Computer Networks

Braunschweig

How to locate performance problems in WSN code?

Need knowledge of where the node spends most if its time!

* Returns a pointer to a newly allocated bundle */
43 struct bundle_slot_t *bundleslot_get_free()
44

5 uintle_t i;
46 INIT_GUARDO);
48 for (i
4 if {

0, sizeof(struct bundle_slot_t)); +

56 return &bundleslots[il;
}

}
59 return NULL;

— Have to instrument the code to collect information about
function calls

Technische

Universitat Wolf-Bastian Péttner | All Eyes on Code | Page 4 Institute of Operating Systems
Braunschweig and Computer Networks

Obtaining performance information for WSN code

Static Source Code Analysis
Does not allow conclusion on performance (in a real environment)

Instruction Set Simulators
Do not capture timing behaviour (especially of hardware components)

JTAG
Requires high read-out rate, halting the CPU and external hardware

Manual Source Code Instrumentation
Very good accuracy but does not scale

Automatic Source Code Instrumentation
Standard instrumentation does not work on microcontrollers (file 1/0)

Technische

Universitit Wolf-Bastian Péttner | All Eyes on Code | Page 5 Institute of Operating Systems
Braunschweig and Computer Networks

Approach in this work

1. Compiler-assisted Instrumentation of Code
Done by the GCC compiler

2. Collect Function Call Information on the Node
Using custom instrumentation functions

3. Transfer Collected Information to Host
On user request, off the critical path

4. Post-process and Visualize Information
Produce call graph image

Wolf-Bastian Péttner | All Eyes on Code | Page 6 Institute of Operating Systems
and Computer Networks

Call Graphs

Caller

uDTN-hash-test.c
process_thread_test_process()

SN)

Callee

2 sites Y A

= T Isite
0488ms/call 0489ms/call
8 calls 10008 calls

hash_xxfastc

hash_xxfast_convenience()
1641.602ms

10008 calls

hash_xxfastc

hash_xxfast_convenience_ptr()
1221ms

8 calls

Instrumentation Function
Collects function call information (not part of the original user code)

Technische
Universitat Wolf-Bastian Péttner | All Eyes on Code | Page 7 Institute of Operating Systems
and Computer Networks

Braunschweig

1. Compiler-assisted Instrumentation of Code

Compiler automatically modifies the intermediate code
Inserts calls to instrumentation functions into each function

Caller and Callee are provided as arguments

void example() {
profile_enter (...);

void example () {
printf ("foo"); > printf ("foo");
} profile_exit (...);

Technische

Universitit Wolf-Bastian Péttner | All Eyes on Code | Page 8 Institute of Operating Systems
and Computer Networks

How to handle function call information?

Common Approach
= Transfer information about individual function calls
= On the critical path

What to do with function call information?
= Keep in RAM: 16 bytes per function call
= Store in flash: 0.4 ms per call (avg), 6 ms max
= Send via serial: 1.74 ms per call

— Delay per call should be minimal, processing off the critical
path!

Technische

Universitit . Wolf-Bastian Péttner | All Eyes on Code | Page 9 Institute of Operating Systems
Braunschweig and Computer Networks

How to handle function call information? (cont’d)

Aggregating call information on the node
= Collect information about individual function calls
= Aggregate all information regarding one call site (0.16 ms avg / call)

Last-In First-Out Call Stack

Sorted call site table

0123 456 7 8 9 10111213 141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Addr. of Caller \ Addr. of Callee

Invocation Count

Min Execution Time ‘ Max Execution Time

Total Execution Time

Wolf-Bastian Péttner | All Eyes on Code | Page 10 Institute of Operating Systems
and Computer Networks

2. Collect Function Call Information on the Node

profile_enter(void * callee, void * caller)
= Record caller, callee and current time
= Create entry on call stack: O(1)

Internal = false

E
,

profile_exit(void * callee, void * caller)
= Record current time
= Obtain latest entry from call stack: O(1)
= Search for call site entry: O(log n)
= Create / update call site entry

Call ‘stack| Get enter time
o _
[Accumulate time difference
Increase call count
Internal = false

Technische
Universitit Wolf-Bastian Péttner | All Eyes on Code | Page 11 Institute of Operating Systems
and Computer Networks

Braunschweig

3. Transfer Collected Information to Host

Printing out call information on user request
= Can be done off the critical path
= Timing is irrelevant

Data Format

Marker | [# of sites | | Duration profiling
seen enabled (ticks)

Profile Max # of
name sites second

0x23c3:0x1ab:7679:307152:32:56
[...]

[0)(12dd] DX30C3}: 7918 {65768 @:
(caller) duratlon

Address Accumulated Max
(callee) | (duration (tlcks) duratlon

[Tlcks per}

Wolf-Bastian Péttner | All Eyes on Code | Page 12 Institute of Operating Systems
and Computer Networks

4. Post-process and Visualize Information

= Convert function addresses to function names
= Aggregate multiple call sites within a function

= Produce image file

digraph G {
label=" 4.899s/7.143s profiled";
compound=True;
splines=spline;
nodesep=0.4;
node [shape=ellipse, fontsize=10];
edge [fontsize=97;
process_thread_test_process [style=filled, fillcolor="
hash_xxfast_buffer [style=filled, fillcolor="¢ddddddeo",
hash_xxfast_convenience_ptr [style=filled, fillcolor="#ddddddoo",
hash_xxfast_convenience [style=filled, fillcolor="#dddddd0o", lab:
process_thread_test_process -> hash_xxfast_convenience_ptr [color:
hash_xxfast_convenience -> hash_xxfast_buffer [color="#650099", s
process_thread_test_process -> hash_xxfast_convenience [color="#9'
hash_xxfast_convenience_ptr -> hash_xxfast_buffer [color="#690095
process_thread_test_process -> hash_xxfast_buffer [color="#690095

Technische

Subtract execution time from outgoing function calls

4.8995/7.143s profiled

Universitat Wolf-Bastian Péttner | All Eyes on Code | Page 13
Braunschweig

Institute of Operating Systems
and Computer Networks

Implementation and Evaluation

Implementation Target Platform
= Contiki OS

= INGA and T-Mote Sky

= GCC Toolchain

— Not limited to either Contiki or specific hardware

Evaluation Setup

= INGA

= MCU: Atmel Atmega 1284p (128 kB ROM, 16 kB RAM, 8 MHz)
= Radio: Atmel AT86RF231 (IEEE 802.15.4)
= Various sensors (accelerometer, gyroscope, pressure, etc.)

= Contiki and uDTN

Wolf-Bastian Péttner | All Eyes on Code | Page 14 Institute of Operating Systems
and Computer Networks

Evaluation Use Cases

Worst-case Situations

= CRC-16 Calculate CRC Checksum over 1 MB
= Fibonacci Recursive calculation of 27 elements
= One-way Throughput test using uDTN

= Pingpong Roundtrip throughput test using uDTN

Typical WSN Use Cases
= Sample-Send Typical WSN use case using uDTN

100 % load
100 % load
100 % load
100 % load

low load

Technische

Universitat Wolf-Bastian Péttner | All Eyes on Code | Page 15
Braunschweig

Institute of Operating Systems
and Computer Networks

Performance Implications of Instrumentation

~ 1800 1.2e+06

S (7]
= 1600 =
o 1 1.0e+06 8
E 00 =
5 1200 8.0e+05 g
S 1000 5
3 6.0e+05 L
X 800 B
S 600 4.0e+05 é
N

T 400 =]
g 2.0e+05 &
5 200 <
4

0.0e+00
CRC-16 Fibonacci One-way Pingpong Sample-Send

No Instrumentation = Function Calls
Instrumentation ===

— Overhead strongly depends on number of function calls

Wolf-Bastian Péttner | All Eyes on Code | Page 16 Institute of Operating Systems

and Computer Networks

iversitd
Braunschweig

RAM and ROM Overhead

RAM Overhead
= 8 bytes per call stack entry; typically 160 bytes
= 16 bytes per call site; typically 720 bytes

ROM Overhead

= 62 bytes for instrumentation functions

= 58 bytes per instrumented function

= Typical: 14 562 bytes for 250 instrumented functions

— RAM and ROM overhead is manageable on modern nodes

Technische

Universitit Wolf-Bastian Péttner | All Eyes on Code | Page 17 Institute of Operating Systems
Braunschweig and Computer Networks

. Wolf-Bastian Péttner
Conclusions poettner@ibr.cs.tu-bs.de

WSN software optimization is difficult but increasingly important

Instrumented code on nodes can be used to produce call graphs
= Call graphs allow to visually identify potential performance
bottlenecks

= Code running on the nodes allows to capture the real execution
environment in great detail

Overhead is manageable on modern nodes E E
= Performance impact depends on the number
of function calls

= ROM and RAM overhead is manageable on E
modern nodes

Wolf-Bastian Péttner | All Eyes on Code | Page 18 Institute of Operating Systems
and Computer Networks

Exemplary Call Graph 1

Technische
Universitat Wolf-Bastian Péttner | All Eyes on Code | Page 19 Institute of Operating Systems
Braunschweig and Computer Networks

Exemplary Call Graph 2

uDTN-hash-test.c
process_thread_test_process()
(unprofiled)

1 site 2 sites
0.488ms/call 0.489ms/call
10.49-0.49ms 0.24-0.73ms

8 calls 10008 calls

hash_xxfast.c
hash_xxfast_convenience()

hash_xxfast.c

1 site hash xxfast_convenience ptr()
0.336ms/call ;
min: 0.488ms max: 0.488ms min: 0.244ms max: 0.732ms
0.24-0.49ms
& culls 1.221ms 1641.602ms
10008 calls

8 calls

1site

1 site
0.336ms/call 0.325ms/call
10.24-0.49ms 0.24-0.73ms

10008 calls

8 calls

hash_xxfast.c
hash_xxfast_buffer()
min: 0.244ms max: 0.732ms
3255.859ms
10024 calls

4.899s/7.143s profiled

Technische
%f Universitat Wolf-Bastian Péttner | All Eyes on Code | Page 20 Institute of Operating Systems
and Computer Networks

& Braunschweig

Sud

Exemplary Call Graph 3

DTN-serializer-est.c

1ate
5 127mtest

DTN serializr-tost.c

.- my_create_bundle()
; i Yicms s
e friTi

. storage mmom.c e
b ogamsical 0031msican
000021 00002ims
srcals

192 call

go_mmom.

bundle add._block() storage mmem save bundle()
i 0. e

i 0.000ms max: 0.244ms
1221ms
G alls

bundis.c
bundle_get_autr()
i 0.000ms max: 0.244

1ste

9.766ms
192 calls

7 0:326msjcan
s
Seals

storage mmem.c
storago mmem updato statistis()
‘min: 0.244ms max: 0 488ms

storage mmen.c
storage mmom make room()

bundie.c

bundie.c
indlo_docroment()

bus bundlo incroment()
min: 0.244ms max: 0.485ms min: 0.244ms max: 0.732ms min: 0.244ms max: 0.488ms
09ms 0:204ms 5.127ms L953ms
Scalls Scalls

20 calls 9calls

Technische

> Universitat
%%¢ Braunschweig

“nscw

Wolf-Bastian Péttner | All Eyes on Code | Page 21 Institute of Operating Systems
and Computer Networks

