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Abstract—Delay Tolerant Networking (DTN) enables transfer
of data where conventional network protocols fail to deliver
data because no continuous end-to-end connectivity is available.
While the Bundle Protocol (BP) has been established as the
standard DTN protocol in many application areas, Wireless
Sensor Networks (WSN) often use proprietary protocols with
a subset of the BP features.

In this paper we use an exemplary application to demonstrate
how the BP can be beneficial for many WSN-based projects.
We show, how low-power sensor nodes can transport bundles
by exploiting existing movement in the environment. More
importantly we show, how 8-bit WSN nodes can seamlessly
interact with standard BP implementations running on standard
PCs.

Our application, a sensor that is installed on the roof of a 15-
story building, is using an elevator to transport bundles carrying
measured values to our lab. We analytically compare the BP to
existing protocols for WSNs, evaluate our application scenario
and give insight into principal limitations.

I. INTRODUCTION

In many areas of communication, a protocol that is designed
specifically for a single purpose is better suited for that single
application than a more general standardized protocol. Espe-
cially in extremely resource-constrained networks of sensor
nodes, this has led to the development of a multitude of dif-
ferent communication protocols and specialized mechanisms
that are all well suited for only a small number of applications.
In contrast, we use the Internet Protocol (IP) in conjunction
with TCP or UDP for almost all applications in the Internet,
mainly because these protocols are “good enough” and the
effort of developing a specialized solution is not justified by
the benefits of such.

In general, standard protocols have the disadvantage that
they are not optimized for a specific use-case and, therefore,
have a higher overhead compared to specialized protocols.
On the upside however, using standard protocols significantly
lowers the entry barrier to set up a network, because imple-
mentations are readily available. That also allows seamless
integration of sensor networks using standard protocols into
existing back-end networks, since protocol stacks for those
systems exist as well. Furthermore, standard protocols usually
have already solved common problems and researchers can
start with application design, without having to implement the
next purpose-built communication protocol.

As of today, IP can be considered the de facto standard
for communication in Wireless Sensor Networks (WSN) when
seamless integration with existing backend networks (that
are usually based on IP) is required [1]. However, a sig-
nificant amount of application scenarios for WSNs do not
offer continuous end-to-end connectivity, but have to rely on
store-and-forward network techniques to deal with intermittent
connectivity. Furthermore, our experience has shown, that
in many applications, the WSN is not isolated, but data is
transported to central point(s) and fed into back-end systems.
Delay tolerant networks (DTN) have been widely accepted as
a way to deal with intermittent connectivity and huge delays.
The Bundle Protocol (BP) can be considered the de facto
standard for DTNs [2].

In this paper, we claim that the BP should be the de
facto standard for delay tolerant communication not only in
DTNs, but also in Delay Tolerant Wireless Sensor Networks
(DT-WSN). While this incurs manageable overhead (see Sec-
tion III-B), it also allows for seamless integration with existing
BP-based DTNs (see Section III-A). We show, that tiny sensor
nodes can handle the processing burden and that the commu-
nication overhead is in the same dimension as existing, non-
delay-tolerant protocols. We further show our Data Elevator
application in which we have used our BP implementation
for common sensor node platforms in conjunction with a BP
implementation for PCs to monitor the outside temperature.
Data Elevators is a store-carry-and-forward scenario, in which
an elevator is used as a data mule to transport data from the
roof into our laboratory. We evaluate our application scenario
and provide insight into the network capacity that can be
achieved using an elevator. Finally, we argue that the same
implementation can be beneficial for existing DTN projects in
the literature.

The technical key contributions of this paper are:
• A BP Convergence Layer for IEEE 802.15.4-based net-

works that negates the need for an overlay network.
• A hardware independent design of µDTN, our BP imple-

mentation, for heterogeneous wireless sensor networks.
• A BP implementation for 8- and 16-bit Microcontrollers.
• Interoperability with BP-compliant standard DTN imple-

mentations for PCs.
• Network capacity model for DT-WSNs.
• Evaluation of the Data Elevator use case.



The remainder of the paper is structured as follows: In
section II related publications regarding DTN in general,
application scenarios for DTN in WSNs, and existing related
implementations is given. Section III outlines the general
benefits of the BP and discusses why it is also suitable
for WSNs from both, a technical and an application driven,
points of view. Our implementation of the BP for WSNs
is briefly explained in section IV. In section V the ”Data
Elevator“, an application for Disruption Tolerant Networking
is presented and evaluated in section VI. We conclude the
paper in section VII.

II. RELATED WORK

In this section we discuss related research efforts. We first
concentrate on conceptual publications within the scope of DT-
WSNs. We then look at application scenarios, which require
Delay Tolerant Networking and could benefit from our work.
Finally, we discuss implementations of DTN concepts for
sensor nodes and explain why our approach is different.

A. Conceptual Work

Shah et al. [3] exploit mobility of objects to transport data
in sparse sensor networks by using the objects as data mules.
The paper introduces a three-tier architecture in which fixed
sensor nodes sample data, mobile mules transport data and
fixed access points with WAN connectivity receive data and
transport it into a data warehouse. Fall [4] has published the
idea of delay tolerant networking as a way to deal with in-
termittent connectivity. The paper states, that sensor networks
use a yet-to-be-standardized sensor transport protocol and it
implies that communication with sensor network devices will
be handled over a serial port. The poster [5] outlines, how
the concepts of DTN can be beneficial for WSNs. Special
emphasis is put on the fact, that a standardized architecture
is necessary to avoid a separate implementation of a subset
of DTN features for each individual application. Furthermore,
the poster proposes to use the usual bundle layer stack on
sensor nodes, thereby forming an overlay network and using
existing routing and transport protocols. Cerf et al. [6] have
published a specification for the architecture of DTNs. This
document can be considered the basis of many DTN solutions,
especially the BP that implements a significant set of the
specified functionality. In 2007, Scott and Burleigh [7] have
published the “Bundle Protocol Specification” as a standard
protocol to be used in DTNs. While the document specifies
data formats and various other protocol details, the BP is
intended to be used as an overlay network on top of existing
protocol stacks. The RFC explicitly lists “Sensor network
nodes” as implementation target but states that routing is
towards a hard-coded default route and that protocol logic
should be realized in ASICs.

We conclude, that a variety of different DTN solutions exist.
However, all of them either see the BP as an application-
layer protocol and form an overlay network or do not use
a standardized protocol at all. In contrast, our approach is to

apply the standardized BP in WSNs and avoid the overhead
of existing layers 3 and 4.

B. Application Scenarios

As a multitude of application scenarios for DT-WSNs exist
we only give an outline of some of the major contributions as
examples for a whole class of use cases.

The aim of ZebraNet [8] is to track wildlife in Kenya by
attaching GPS-equipped nodes to animals. Nodes wirelessly
exchange data to allow researches to recover as many infor-
mation pieces as possible by discovering only a subset of
the animals. The authors state that delay of data is irrelevant
but a high delivery rate of samples is important. The goal of
SeNDT [9] is to monitor water quality and noise emission
using sensor nodes and to use a store-and-forward network to
collect data. SeNDT uses an implementation of the Licklider
Transmission Protocol (LTP) on top of an IP stack and is
implemented for the Linux operating system. LUSTER [10]
aims at monitoring environmental parameters to be used by
ecologists and uses a multi-layer approach with two separate
elements related to our work. In the sensor network, LUSTER
uses an overhearing-based logging system in which log nodes
overhear radio transmission and save data to persistent local
storage. Furthermore, LUSTER uses a DTN approach for
backend connectivity over intermittent links, which allows a
back-end to query nodes for data that was lost during the
downtime of the link. Seal-2-Seal [11] is a delay tolerant
protocol to log contacts between animals in the wild. It has
been implemented for Contiki and evaluated in simulations.
Vineyard Computing [12] presents a WSN, in which sensors
on a vineyard periodically sample temperature and data mules
(i.e. workers, dogs, etc.) carry nodes to collect the data.

From this overview we learn, that the necessity for delay
tolerant communication in WSNs exists. However, all of the
presented approaches are either based on non-standardized
protocols that are purpose-built or are implemented using
significantly more powerful PCs running the Linux operating
system.

C. DTN Implementations

For computers running the Linux operating system, a num-
ber of different open source BP implementations such as IBR-
DTN [13], DTN21 and ION2 exist. While the individual goals
and specific features differ, they all share in common that the
target platform has to be significantly more powerful than a
tiny sensor node.

DTNLite [14] is an implementation of the concepts of DTN
for TinyOS. Data is stored in non-volatile memory on nodes
and is transported in a store-and-forward manner towards a
single sink, while custody transfer is used to support end-
to-end reliability. The implementation supports convergence
layers and relies on the Matchbox file system to store data
on nodes. DTNLite forms an overlay network and relies on
existing multi-hop routing protocols, but does not implement

1http://sourceforge.net/projects/dtn/
2https://ion.ocp.ohiou.edu/



the BP. Furthermore, the authors assume that all packets share
the same destination.

ContikiDTN [15] is an implementation of the BP for
Contiki. The authors claim interoperability with the DTN2
reference implementation and ContikiDTN implements the
TCP Convergence Layer using Contiki’s uIP stack. The author
has provided simulated evaluation of ContikiDTN, but source
code is not available. In contrast to our approach, ContikiDTN
forms a BP overlay network and hence carries the overhead
of using the BP in a TCP data stream.

SCAR [16] is a context-aware routing protocol for delay-
tolerant store-and-forward sensor networks. Nodes distribute
sampled information to neighbors that are considered the “best
carriers” for information towards the sink, taking into account
location, mobility and battery level. While SCAR is designed
to transport general-purpose application data, it does not use a
standardized protocol and can be considered a routing protocol
in terms of BP.

III. BUNDLE PROTOCOL IN IEEE 802.15.4-BASED
WIRELESS NETWORKS

In this section we provide and overview over the technical
features of the BP in general, outline the communication
and computational overhead and present our network capacity
model for DT-WSNs.

A. Technical Perspective

The BP is an address-centric, message-based experimen-
tal protocol for environments with intermittent connectivity,
high bit-error rates and large delays. Designed to form an
application-layer overlay network over existing internets, it en-
ables end-to-end connectivity where no continuous end-to-end
connection between two endpoints ever exists. The protocol
data units (PDU) are called bundles and the protocol supports
hop-by-hop and end-to-end reliable data transmission using
custody transfer. Bundles have a lifetime and will be deleted
by all nodes after expiration. Furthermore, BP stores bundles
on nodes when they can currently not be routed, making use
of scheduled or opportunistic contacts. Bundles can consist
of a Primary Bundle Block (PBB, i.e. a header), a Bundle
Payload Block and multiple extension blocks. Although the BP
is designed to form an overlay network, bundles still have to
be routed from node to node. While routing is an essential part
of a DTN, there is no single routing protocol associated with
the BP. As for MANETs, a multitude of routing approaches
exist that are compatible with the BP.

The BP is well suited to be used in resource-constrained
DT-WSNs, because the protocol specification is very flexible
and allows to be used in a variety of use cases. Furthermore,
binary header fields are encoded using Self-Delimiting Nu-
meric Values (SDNV) that are of variable length and always
as small as possible (on a per-byte basis) for their current
content. To be able to communicate over various underlying
network technologies, BP uses so-called Convergence Layers
(CL). CLs are responsible to send and receive bundles to and
from nodes within range, while the communication on the

lower-layers is dependent on the employed protocols. To avoid
the overhead of addressing nodes via string-based Endpoint
Identifiers (EID), Compressed Bundle Header Encoding [17]
(CBHE) has been specified. CBHE addresses nodes via SD-
NVs and is well suited for sensor networks, because the length
of the addressing fields adapts to the address of the node.

The strongest assumption of the BP is, that all nodes have
access to accurate real world time. While this may be true
for traditional DTNs, wireless sensor nodes typically do not
have synchronized clocks. The Bundle Age Block [18] can
be used in situations in which nodes to not have access to
a timing source and allows to track the age of bundles and
expire them, after the lifetime has elapsed.

In the remainder of this paper, we use the term BP for
the BP using bundles with a CBHE-encoded Primary Bundle
Block and including the Bundle Age Block.

B. Communication Overhead

In many WSNs, IEEE 802.15.4 [19] is used for wire-
less communication, offering a maximum frame length of
127 bytes. Since each transmitted bit costs precious energy,
minimizing the overhead of communication protocols saves
energy and storage and decreases the amount of PDU that
have to be fragmented.

In order to compare the overhead of different communi-
cation protocols for WSNs, we have looked at a typical use
case. We assume unicast communication between two nodes
over multiple hops using the IEEE 802.15.4 short addressing
mode. We assume payloads that do not require fragmentation
of PDUs and neglect overhead produced by routing protocols.
While we originally intended to compare the overhead of
existing DTN solutions for WSNs, we were unable to get ahold
of source code and/or specification documents. Consequently,
we are comparing commonly used WSN protocols that are
freely available.

Figure 1a shows a comparison of the header length for vari-
ous communication protocols in WSNs, whereas header length
translates into protocol overhead in the scope of this com-
parison. With the settings mentioned above, IEEE 802.15.4
has a fixed header length of 9 bytes. Since all protocols
mentioned in the following reside inside an IEEE 802.15.4
frame, this overhead applies to all those protocols. The RIME
communication stack is an isolated solution, being available
only in Contiki, thus, it is listed here as baseline for sensor
network protocols and does not offer backend connectivity.
In multi-hop mode, RIME has a protocol header of 19 bytes
including the IEEE 802.15.4 frame.

Uncompressed IPv6 [20] has a fixed header length of
40 bytes and while UDP adds another 8 bytes of overhead
TCP adds 20 bytes. 6LoWPAN [1] allows to compress the
IPv6 and UDP header depending on the employed features
and compression mechanism. Using the IPHC compression
method, the length of the IPv6 and UDP header can be reduced
to 14 bytes in total for our scenario plus 9 bytes for the IEEE
802.15.4 header. Since no header compression for TCP headers
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Figure 1: Computational Overhead of the Bundle Protocol compared to 6LoWPAN.

is specified in 6LoWPAN, the total length of 6LoWPAN, TCP
and IEEE 802.15.4 header is 38 bytes.

The length of the Primary Bundle Block and the Payload
Block Header in the BP using CBHE is 21 bytes. When
bundles are transferred via UDP or TCP in 6LoWPAN, the
total length of headers including the IEEE 802.15.4 header is
44 bytes for UDP and 61 bytes for TCP CL. When transmitting
bundles inside IEEE 802.15.4 frames without using 6LoWPAN
or Rime, a 1 byte header for multiplexing has to be added. This
brings the total header length for BP inside IEEE 802.15.4
frames to 31 bytes.

Based on these numbers, we can see that the combination
of UDP / 6LoWPAN offers the lowest overhead of proto-
cols with backend connectivity. Nevertheless, BP with the
IEEE 802.15.4 CL has a slightly higher overhead but offers
additional functionality in the light of network disruptions.
While application-layer DTN using UDP over 6LoWPAN
is very well possible, this would incur additional overhead.
Furthermore, header compression techniques similar to those
in 6LoWPAN can bring down the overhead of the BP to
comparable numbers.

C. Computational Overhead

Full-featured protocols from the PC world are usually
complex and require significant effort to parse on tiny nodes.
While IP and 6LoWPAN have been widely accepted as being
manageable with today’s nodes, the BP poses new compu-
tational challenges. For example, header fields are encoded
as SDNVs, which require extensive bit shift operations to
reconstruct the original number. Furthermore, the header is of
variable length and parsing is not as straightforward as for the
original IP specification. Since the speed of parsing protocol
messages is implementation dependent, we show exemplary,
that the BP is manageable to today’s sensor nodes.

To evaluate the overhead of SDNV encoding and decoding,
we have used INGA [21] nodes to measure how long the
respective operations take. While our implementation is not
optimized yet, the numbers are given here just to show an
impression of the speed. Figure 1b shows the number of
encode and decode operations that can be performed per
second. As expected, the duration depends on the length of the

en- or decoded data, whereas longer numbers take longer to
process. We can see, that between 11316 and 24774 operations
can be performed per second. Even when processing all 16
SDNVs of a bundle, this would still allow for 707 bundles per
second, which is more than IEEE 802.15.4 can handle.

Furthermore, we have compared the time it takes to parse
an incoming PDU. This time is important, since it limits the
maximum throughput that can be achieved. We have compared
6LoWPAN/UDP in Contiki’s default settings using HC06
header compression with CBHE encoded BP. Again, we want
to give an impression of the speed. Figure 1c shows the time
it takes to process incoming PDUs of varying payload sizes.
We can see here, that 6LoWPAN is slightly faster than BP for
smaller payload sizes but reaches the same speed for larger
payloads.

We can conclude that today’s sensor nodes are able to
handle the BP and that from a computational perspective BP
is comparable to 6LoWPAN.

D. Network Capacity Model

Implementation details aside, the capacity of a DTN mainly
depends on the minimum capacity of all involved links. The
capacity of a link in a opportunistic DTN is a function
of the duration and frequency of contacts between nodes
and the throughput. Since the amount of data that can be
exchanged between nodes usually is fixed per time interval,
longer contacts mean more exchanged data. Furthermore, a
higher number of contacts also increases the capacity, because
with more contacts, data can be exchanged more often. In
effect, the data path between individual hops of a DTN can
be modeled as a bottleneck that can only transmit a certain
amount of bundles per time. Our model consists of a sender
and a receiver node with limited storages and certain link
capacities and is expressed in the following paragraph.

Ci,j = Contactsi ·Durationi ·BundleRatei (1)
Ti = min(SSend,i, Ci,j) (2)

SSend,i = min(SSend,i−1 − Ti−1 +Ni, SCap,Send) (3)
SRecv,i = min(SRecv,i−1 + Ti, SCap,Recv (4)
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Figure 2: Block diagram of µDTN’s architecture.

The capacity Ci,j of a link j in equation (1) is the total
number of bundles that can be transferred in time interval i.
Ci,j can be calculated based on the number and duration of
contacts as well as the rate at which bundles can be exchanged.
The amount of bundles that can be transferred (Ti in equation
(2)) in time interval i is the minimum of the link capacity
and the number of bundles waiting in the storage of the
sender SSend,i. SSend,i in equation (3) can be calculated using
SSend,i−1, the bundles that have been transmitted during the
last interval Ti−1 and the bundles that have been created in the
current interval Ni. Since the storage of the sender is limited,
SSend,i is the minimum of the theoretical amount of bundles in
storage and the real storage capacity SCap,Send. The bundles
in the storage of the receiver SRecv,i in equation (4) depend
on SRecv,i−1 and the number of transmitted bundles Ti, but
cannot be higher than the storage capacity of the receiver
SCap,Recv .

The presented model can be used to dimension a DT-WSN
will be shown in Section VI-B. It provides insight into the
amount of storage that is necessary to support a specific sample
interval assuming a certain contact pattern. Furthermore, it
allows dimensioning the network in a way, that the expected
bundle loss stays within application requirements.

IV. BUNDLE PROTOCOL IMPLEMENTATION FOR WSNS

To use the BP in WSNs, we need respective implementa-
tions for a sensor network platform on the one hand and for
a PC BP implementation on the other hand.

A. µDTN: Bundle Protocol Implementation for Contiki

While the overall concept applies for any 8- or 16- bit
embedded system, our implementation µDTN is designed and
implemented for Contiki OS which supports a significant
number of hardware platforms. The implementation has been
successfully tested on INGA and TelosB, two completely
different hardware architectures. µDTN uses a modular ar-
chitecture which allows configuring different implementations
of the various components during compile time. This makes
the design flexible and efficient at the same time to cope with
the tightly limited resources of wireless sensor nodes. During
the design and implementation process, we have given memory
efficiency a higher priority than the actual speed because RAM
is a limited resource on most of the WSN target platforms.

µDTN is split up into different modules as shown in
Figure 2. The “Agent” is the central entity and cannot be
exchanged while other modules may have different implemen-
tations.

1) Discovery Module: The discovery module is responsible
to discover neighboring nodes within range. We have adapted
IP Neighbor Discovery [22] (IPND) because it is flexible
and standardized. The discovery module periodically sends
out beacon frames. Upon reception of a beacon from another
node, the agent is notified. Nodes time out after 5 consecutive
beacons have been lost.

2) Routing Module: The routing module is responsible to
decide which bundles should be forwarded to which neigh-
bor in range. While the selection of a routing protocol is
application-dependent, we have implemented a modified ver-
sion of flooding because it is robust and reliable. The module
creates n copies of a bundle and sends those to all neighboring
nodes except the originator of a bundle, the neighbor from
which the bundle has been received, and nodes to which the
bundle has already been delivered.

3) Storage Module: The storage module is responsible to
store a bundle on a local medium and to read back the bundle
upon request by the agent. µDTN can use the flash memory of
nodes to persistently store bundles or store bundles in RAM.
While the former allows bundles to survive periods in which
nodes are switched off, the latter is faster and allows higher
throughputs.

4) IEEE 802.15.4 Convergence Layer: The BP Specifica-
tion demands that the BP is used as an overlay network,
thereby relying on existing layers 1 to 4. This allows to bypass
nodes that are not equipped with a BP implementation, but also
incurs a significant overhead as seen in Section III-B. Since
we assume that all nodes in a WSN run the same software, we
insert a 1 byte header and transmit bundles directly inside the
payload of IEEE 802.15.4 MAC frames. The header consists
of 2 bits for dispatching, 2 bits for multiplexing and 4 bits for
segment sequence numbers. To handle bundles larger than a
single frame, our approach is to segment those bundles and
reassemble them hop-by-hop.

Due to space limitations, a detailed description of µDTN,
including all modules and a substantial general evaluation has
to be omitted here. More details can be found in [23].

B. IEEE 802.15.4 Convergence Layer for IBR-DTN

To allow for seamless backend connectivity of our BP-
based DT-WSN, we need a BP implementation for PCs using
the same CL. Hence, we have implemented a CL for IBR-
DTN using the linux-zigbee3 IEEE 802.15.4 stack. This stack
supports various hardware platforms, whereas we have used
the Ben WPAN4 USB stick on x86 machines and iMote 2
nodes running Linux.
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V. APPLICATION SCENARIO DESCRIPTION

We claim that many DT-WSN scenarios would benefit from
our solution to apply the BP to WSNs. To give an example of
an application, which can be evaluated with reasonable effort,
we implemented the following exemplary use case.

The Data Elevator is a monitoring scenario in which we
measure the ambient temperature on the rooftop of a 15-
story university building. The temperature data is intended to
be further processed and displayed in our laboratory which
is located in the 3rd floor of an adjacent building. For such
monitoring applications, installing cables through the building
is out of the question and single-hop radio communication
through 13 ceilings of armored concrete using low-power
radios is impossible. Installing antennas on the outer face
of the building may be possible, but comes at high costs
and significant effort. Thus, we use a multi-hop DT-WSN
to transport data from the roof utilizing the movement of an
elevator.

Since air temperature usually changes slowly, a sampling
interval of 5minutes is adequate. No real-time transmission
of sensor readings is necessary, since temperature readings
are mainly needed for statistics. While even significant delays
are acceptable, 100% of the sensor readings have to reach the
sink to have a complete data set to allow short- and long-term
trend analysis.

To implement the monitoring scenario, we have installed 5
nodes as indicated in Figure 3. On the rooftop of building A we
have node #1 which is equipped with a temperature sensor and
sampling data every 5minutes. Nodes #2 to #4 are data relays,

3http://sourceforge.net/apps/trac/linux-zigbee/
4http://en.qi-hardware.com/wiki/Ben_WPAN
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Figure 4: Hardware setup for the real world evaluation of
the ”Data Elevator“ scenario: An ALIX board (a) with an
IEEE802.15.4 ATUSB stick (b) acts as sink. Four INGA nodes
(c) with external LiPo batteries (d) form the DT-WSN.

located on the 15th floor near the staircase, in the elevator cabin
and on the 3rd floor next to the elevator. Node #5 is the sink
running on an x86 PC. It is located in our laboratory on the 3rd

floor in the adjacent building B. Incoming bundles are written
to a database, from where the data is further processed and
visualized.

We have used flood routing (see Section IV-A2) in this
experiment, where the intuitive data path is from node #1 via
nodes #2, #3, and #4 to node #5. However, on several instances
we have observed direct communication between nodes #1 and
#3, and nodes #3 and #5.

A. Implementation of the Data Elevator
The heterogeneous system setup consists of an ALIX 2D25

system board, and several INGA sensor nodes as to be seen in
figure 4. The ALIX board is an x86 system (500 MHz AMD
Geode LX800 CPU), equipped with 256 MByte SDRAM,
running IBR-DTN on Debian Linux and acts as sink node
in our experiment. While the connection to the backbone
network is established via one of the integrated Ethernet ports,
the wireless sensor network is tethered through a Ben WPAN
IEEE 802.15.4 stick, based on an ATmega and communicating
via Atmels AT86RF231 radio transceiver.

The remaining part of the WSN consists of four INGA
nodes, which are also based on Atmels 8-bit ATmega archi-
tecture and communicate via an AT86RF231 radio transceiver.
All INGA nodes are powered by rechargable LiPo batteries.
Besides other sensors, INGA comes with a digital onboard
pressure sensor (Bosch BMP085), which integrates a precise
temperature sensor (16 bit resolution) we utilized for the
temperature measurements on the rooftop.

The temperature of node #1 is sampled every 5 minutes;
for each measurement a bundle of 9 bytes is generated that is
addressed towards sink node #5. Nodes #2 to #4 act as DTN
nodes and mainly store and forward bundles. The RAM-based
storage module can hold up to 100 bundles of measurement
data.

B. Additional Concepts
In scenarios with a higher data rate or long lasting disrup-

tions the storage memory (either RAM or flash) may become

5http://pcengines.ch/alix2d2.htm/
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Figure 5: Ambient Temperature and Bundle Delay over Time of Day on 2012-04-14 (a) and 2012-04-16 (b).

a limiting factor. In this case, the sampling rate should be
adapted to the remaining storage space to avoid the loss of
data. Furthermore, application specific changes in sampling
rate are possible that reduce the rate, for example, over night,
when less samples may be needed. Additionally, the overall
system behavior (including radio duty-cycling and discovery)
can change controlled by battery level or remaining system
energy. Many scenarios transport data to the sink and then run
processing algorithms to extract relevant pieces of information.
For such scenarios, in-network data aggregation can help to
distribute processing in the network and to reduce the amount
of bundles that are transported.

VI. EVALUATION

To evaluate the performance and potential of BP-based DT-
WSNs, we have performed an experimental evaluation. On the
one hand, we want to assess what performance we can achieve
in the Data Elevator scenario. According to our application
requirements, performance primarily means bundle delivery
rate and bundle delay. On the other hand, we want to see
what the potential of such a data mule scenario is. Therefore,
we have looked at the network capacity in the second part of
the evaluation.

We deployed the system as described in the previous sec-
tion. The sensor on the rooftop was covered in a waterproof
box that was sometimes (depending on solar altitude) directly
exposed to the sun. After system startup we performed a
manual time synchronization with the accuracy of about
1 second by generating a time-sync bundle containing the local
timestamp of the node. In the current configuration, Contiki
is using INGA’s internal oscillator and not the more precise
external clock crystal for its clock, which may induce a drift
of the nodes clocks. To compensate for that possible drift
we generate a second time-sync bundle at the end of the
measurements and calculated the offset, which is subtracted
in all presented results.

To gather data regarding the contact time and duration
every node sends additional statistical bundles of 46 byte every
4 hours. We evaluated the system for two whole days (24

hours each) and present the evaluation data for a weekend day
(Saturday, 2012-04-14) and a working day (Monday, 2012-04-
16). As expected, all bundles that have been generated were
successfully delivered to the sink node.

A. Evaluation of the Data Elevator

In Figure 5 temperature and bundle delay are displayed
over the time of the day of the two 24-hour measurements.
Bundle delay is defined as the time between generation of a
bundle (i.e. sampling temperature) and arrival at the sink. The
assumption that a sampling interval of 5minutes is sufficient
for ambient outside temperature data is evident. Due to the fact
that there is only one working elevator for the whole building,
which is in use nearly non-stop on a working day during
daytime, it is also not surprising that the delay at this time
of the day is low. More interesting regarding the capability
to handle huge delays is the nighttime on weekends, where
delays of more than 6 hours (21 600 s) occur.

The maximum bundle delay is 11 930 s (3.3 hours) on the
workday and 23 591 s (6.6 hours) on the weekend day. In the
interval between 8 am and 8 pm, the maximum delays are
667 s during the workday and 6492 s on the weekend. On the
weekend, we have observed a total number of 80 undelivered
bundles (including statistical bundles) being stored in RAM of
Node #2. With a storage capacity of 100 bundles, this is only
20 bundles short of overrunning buffers.

Figure 6 shows a histogram of the bundle delay and the
cumulative distribution function (CDF) for both evaluation
days. The figure shows, that on the working day 59.03%
of all bundles have been delivered within 5minutes. A total
of 27.09% of the bundles experienced delays between 300
and 6000 s, whereas 6.94% of the bundles were delayed by
more than 6000 s. For the weekend day, 50% of the bundles
have been delivered within 1500 s of their creation. However,
32.64% of the bundles experienced a delay of more than
6000 s.

Bundle delay is a function of the movement of the elevator.
On the weekend, the elevator is used less frequently and the
bundle delay is increased significantly. Capacity of bundle
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Figure 6: Bundle Delay Histogram and CDF on 2012-04-14 (a) and 2012-04-16 (b).
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Figure 7: Elevator activity derived from the number of contacts
between node #2 and #3 (15th floor).

storage on nodes has to be provisioned for the worst-case
delays that will happen, otherwise bundles may get lost.

In Figure 7 the activity of the elevator of both evaluation
days is shown. This data was derived from the statistical
bundles that recorded the number of contacts per hour between
the elevator node and node #2 in the 15th floor. As the elevator
usually is located at the lower levels of the building due to
its programming to return to the first floor after idling for
a certain time, the link in the 15th floor is the bottleneck in
the communication path. The recorded frequency distribution
correlates with the delivery delay observed in Figure 5; as
expected the highest frequency occurs during daytime on a
working day and the lowest at night on a weekend. We also
observed that the duration of a contact had no influence on
the success of forwarding bundles, as all contacts were long
enough to transmit the complete storage in all cases.

We can conclude, that reliably transporting temperature
readings from the rooftop using the elevator works as expected.
During our experiment, 100% of the bundles have been
delivered to the sink using the multi-hop DT-WSN.

B. Evaluation of Network Capacity

In Section III-D we have introduced our model for the
capacity of a DTN. The model depends on the number and
duration of contacts, the throughput per time interval, the
bundle generation frequency and the storage capacities. To
evaluate the capacity of our Data Elevator scenario, we have
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modeled the network as a 4 hop (5 node) network. With
µDTN we have measured a hop-to-hop bundle throughput of
72 bundles/s which we have used for our model. Furthermore,
we have collected information from all nodes regarding the
average number and duration of contacts per hour. This gives
us a good basis to apply our model to our network on an hourly
basis as shown in Figure 8. We have used contact traces from
the weekend in order to model the worst-case behavior of the
network.

The Figure shows the number of bundles that would have
been permanently lost due to storage overruns (in contrast
to bundles that have not yet been delivered) over different
sample intervals for varying storage capacities. For the settings
from our experiment (100 bundles in storage, 300 s sample
interval), the model produces a bundle loss of 0% as ex-
pected. However, with a sample interval of 240 s the storage
capacity of 100 bundles is not sufficient and the network
would produce a bundle loss of 1.39%. Increasing the storage
capacity to 500 bundles (which is easily possible using flash-
based storage) would allow to decrease the sample interval
to 60 s without loosing bundles. With a hypothetical unlimited
storage, sample intervals of as low as 10 s can be used without
bundle loss.

It is interesting to note, that in all of the above-mentioned
situations bundles would have been lost due to overrunning
storages and not due to short contacts. In fact, we either
observed long contacts (during daytime) or no contacts at all



(during night time).

VII. CONCLUSIONS

In this paper we have shown, that the BP is suitable for
DT-WSNs even on low-power 8- and 16-bit node platforms,
such as common low-power WSN nodes.

From a network architecture perspective, isolated solutions
are problematic whereas (protocol-wise) homogeneous net-
works are more desirable. Since most DT-WSNs are not
islands from a functional perspective, using the BP in backends
as well as in the WSN is the logical consequence for realizing
an integrated solution. Different to what the BP specification
says, the BP can as well be used as layers 3 and 4 of the
protocol stack, whereas an overlay network is not required.
This allows using the BP with a simple CL directly inside
IEEE 802.15.4 radio frames, thereby significantly reducing
overhead.

We have shown, that the communication overhead of the
BP is in the same dimension as existing non-delay-tolerant
communication protocols but offers the additional functional-
ity of efficiently handling network disruptions. Furthermore,
the BP is comparable to those existing protocols from the
computational-effort perspective, which makes it usable even
on tiny sensor nodes. To provide insight into the capacity
of a DT-WSN, we have developed an analytical network
capacity model, which calculates the theoretical capacity based
on contact traces, storage capacities and bundle generation
intervals.
µDTN is our standard-compliant, full-featured BP im-

plementation for Contiki, which is interoperable with BP-
compliant DTN implementations on Linux, such as IBR-DTN
using the IEEE 802.15.4 CL. It has been successfully tested
on INGA and TelosB nodes and provides interoperability of
heterogeneous hardware platforms.

We have deployed µDTN in the “Data Elevator” use case,
where temperature data is transported to our backend system
in a multi-hop DT-WSN using an elevator as data mule. In
the evaluation we have shown, that 100% of the bundles have
been delivered successfully, whereas the delay depends on the
elevator activity. Even battery-powered wireless sensor nodes
can handle multiple hours of network disruptions using RAM-
based storage. With the use of flash-based storage, the nodes
are able to handle disruptions of several weeks.

Since the BP is the de facto standard in DTN communica-
tion, it is the first choice to be used in WSN scenarios that
require delay-tolerant communication and backend connectiv-
ity. Our results show, that most application scenarios discussed
in this paper would benefit from using the BP, since its
advantages outweigh the drawbacks. We expect, that the same
applies for many existing and future DT-WSN applications.
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