Regression Testing Framework for WSNs
(Demo Abstract)

Wolf-Bastian Pottner, Daniel Willmann, Felix Biisching, and Lars Wolf
Technische Universitit Braunschweig,
Institute of Operating Systems and Computer Networks,
Miihlenpfordtstraie 23, 38106 Braunschweig, Germany
[poettner|dwill |buesch|wolf]@ibr.cs.tu-bs.de

Abstract—Quality assurance of software for WSN nodes is
both: important and cumbersome. Testing software in simulators
is possible, but the reality is only reproduced up to a certain
extent. Therefore, tests on real nodes cannot be replaced by
simulators. Especially when multiple nodes are involved, running
tests with reproducible results on real nodes becomes a challenge.
Software has to be compiled for each node, all nodes have to
be flashed and reset to establish the same initial state for all
tests. In this demo we show a system that continuously monitors
source code management systems (such as GIT or SVN) to
trigger tests for new revisions. Multiple predefined tests are run
with a defined initial state and the system collects results in
terms of performance numbers and success rates. Furthermore,
call graphs are automatically generated to allow for locating
performance bottlenecks in the software.

I. INTRODUCTION

Program code for Wireless Sensor Network (WSN) nodes
is becoming more and more complex. Since debugging com-
plex code on embedded platforms is cumbersome, proper
quality assurance mechanisms have to be installed to ensure
a high code quality. To make matters worse, many WSN
deployments do not have means to update code in the field,
essentially making them a fire and forget solution. If the
software fails in the fields, the nodes have to reprogrammed
which is often connected to significant effort and potentially
long timespans of unavailability. We argue, that continuous
testing of WSN software during development is indispensable
to ensure a high code quality.

Contiki OS [1] uses a simulator-based regression testing
approach [2]. Using simulated nodes has the advantage that
tests can be easily run in parallel to speed up time for
testing and that networks with many nodes can be simulated.
However, simulators reproduce the real world with limited
accuracy and therefore are only one tool for testing, debugging
and performance evaluation. Especially generating accurate
information about execution time of programs is problematic
on simulated nodes. In [3] we have shown, that call graphs
for code running on actual nodes can be generated to allow
in-depth understanding of where a program spends most of its
time.

In this paper we present our approach to regression testing
of code for WSN nodes that does the following:

e Automatically trigger tests based on Source Control
Management (SCM) changes

e Perform tests with defined initial state for reproducible
results

e Arbitrary number of tests per change
e Keep track of results and performance figures

e Generate call graphs for test runs

II. CONCEPT

To fulfil the goal stated in the introduction, we make use of
the open source Continuous Integration (CI) server Jenkins'.
In Jenkins we define “jobs” that are executed when a change
is committed to the SCM. Jenkins allows fine grained control
to make sure that only tests that are relevant for a specific
SCM change are triggered. Jenkins allows to run multiple tests
in parallel if enough “slaves” (PCs with nodes attached) are
available. Finally, Jenkins can run certain longer-running tests
with a greater interval, e.g. once a week if a change in the
SCM occurred. In our system, Jenkins jobs trigger a python
script that conducts a certain test as described in the next
section.

A. PC-based Test Framework

Our test framework running on the PC is written in python
and conducts a single test. The tool ensures defined initial
states for all nodes by making sure that all nodes have the
latest software or a dummy image. While the test tool can
be started by Jenkins, it can also be used stand-alone for
repeated tests while writing software. The outcome of a test
consists of logfiles as well as performance numbers and a
binary flag indicating if the test was successful or not. Tests
are specified in the form of code to conduct the actual test
as well as two configuration files. One file is test-specific
and defines which code is flashed onto which node. This
configuration further allows to parameterize the tested code via
compiler flags and can enable a timeout after which the test is
aborted if no result has been returned. Finally, the test-specific
configuration determines which source code files are compiled
with instrumentation enabled. In addition, a computer-specific
configuration file specifies which nodes (type and role) are
connected to which ports of the computer, where the source
code resides in the file system and where the logs shall be
stored.

The python script (illustrated in Figure 1) then compiles
the source code for each involved node, whereas first of
all the program is compiled without instrumentation. If files
are selected for instrumentation, the modification time of
those files is changed and the program is recompiled with

Thttp://jenkins-ci.org/

Generate
Firmware

Flash
Firmware

More
Devices?

(5
Reset | N

Devices @
v (-

______ Log —— —
| Data

Log

directory (& Brciling

data?

No

Fig. 1: Flowchart of a single test (simplified)

instrumentation enabled. The GNU make utility will then
automatically recompile the files with newer modification time
and link those together with the files that have been previously
compiled. Afterwards, a simple dummy-program is compiled
for all nodes that are specified in the configuration but are not
used in the current test. This program ensures, that no old code
fragments on unused nodes disturb the radio communication
of the nodes that are involved in the test.

After compiling the code, the binary images are flashed
onto all nodes, one after the other. After flashing all nodes,
the nodes are reset and logs of the nodes (transported via
serial port) are stored. The python tool skims the stream of
outgoing data for certain markers that are used for signaling.
Those markers include:

e Reboot: Node has rebooted, test is automatically
aborted and counts as FAIL

e Call Graph Information: Information is collected and
passed on to a script that generates a call graph in pdf
format

e Performance Numbers: Information is collected and
passed on to Jenkins for trend graph generation

e Pass/Fail: Reports if a node judges the test to be
successful or unsuccessful

The test is completed successful if all involved nodes report
a “pass” within the time limit. If at least one node either
reports a fail, reboots or reports nothing within the time limit,
the test is failed. After the test is completed, the python tool
collects log files of all the nodes, binary images flashed onto
the nodes as well as the call graph files and stores them in the
log file directory. Optionally, the tool generates an XML file
containing the performance number for Jenkins.

In [3] we have shown that instrumenting code has a vari-
able impact on performance. Furthermore, we have seen that
certain tests would only complete when they are either instru-
mented or not instrumented because instrumentation changes
the timing behavior. We therefore run each test with and
without instrumentation to measure the raw performance and
to be able to find certain timing-related bugs and misbehavior.

B. Node-based Test Software

On the nodes we use Contiki OS; however, the solution
presented here is not limited to Contiki. Nodes print out
a distinct string during the boot process to allow detecting
reboots. Furthermore, nodes can print out regular logs over the
serial port while the test is running. If none of the markers is
used, those information is ignored by the python script and
simply written to a logfile. Our profiling infrastructure [3]
requires that the programmer explicitly triggers the output
of the collected profiling information over the serial port.
Furthermore, the programmer of the test case has to explicitly
decide whether a test is a success or not and call the respective
functions. The programming interface is illustrated in Figure 2.

void TEST_FAIL(char *x reason);

void TEST_PASS () ;

void TEST_REPORT(char *x description ,
uint32_t value, uint32_t scale, char x
unit) ;

Fig. 2: Interface of the test framework on the nodes

III. EXPERIENCES

We use the regression testing framework presented in this
paper to ensure the correct function of uDTN [4]. uDTN is a
bundle protocol [5] implementation for Contiki OS (essentially
a network stack) consisting of more than 10.000 lines of code.
To test uDTN we currently use 15 regression tests that are
automatically executed on every SCM change. We use the test
framework on the one hand to make sure all tests complete
successful as expected and on the other hand to continuously
monitor the performance impact of changes. To analyze the
change of performance over time, all performance figures
reported by the tests are automatically plotted by Jenkins as
shown in Figure 4. If a drop in performance becomes apparent,
we look at the log files of the test as well as the call graph to
determine the source of this drop. We furthermore use the
python framework for repeated tests while developing and
optimizing software. Since the tool will flash all involved
nodes, mistakes such as old software version on certain nodes
or glitches of the build system when changing the compiler
flags are prevented.

uDTN-serializer-test.c
process_thread test process()
(unprofiled) ~ _A=-me__ -

R 3 sites 3 sites AN 1 site 3sites T =l 1 site

T 4.761ms/call 0.529ms/call . 0.244ms/call 7.812ms/call Tl 5.127ms/cal

T 3.66-6.35ms 0.49-0.73ms N 0.24-0.24ms 7.57-9.03ms - 4.39-5.86ms
e 6 calls 6 calls N 2ecalls 6 calls e —

uDTN-serializer-test.c

e 1 site
L 3.906mafeall my_create_bundle()
e 220.5 2ms min: 3.662ms max: 6.348ms
Y 2 calls 12.207ms
/, 6 calls
/

v 1 site 1 site 9 sites 1 site
s 0.326ms/call 0.203ms/call [0.063ms/call 1.628ms/call
0.24-0.49ms 0.00-0.24ms |0.00-0.24ms 0.73-2.93ms

6 calls 6 calls 54 calls 6 calls

bundle.c
bundle_add_block()
min: 0.000ms max: 0.244ms
1.221ms
6 calls

bundle.c
bundle_set_attr()
min: 0.000ms max: 0.244ms
3.418ms
54 calls

storage_mmenm.c

4.150ms
6 calls

/

Isite ~T=~o_ 1 site _-=7" 1site / 1site
N 0.366ms/call ‘\\~‘\ 0.488ms/call “4// 0.488ms/call ,’ 0.326ms/call
So. 0.24-0.49ms S 0.49-0.49ms - 0.49-049ms | 0.24-0.49ms
S 2calls Ss—o____ 2call Bealls [3aalls

storage_mmem.c
storage_mmem_update_statistics()
min: 0.244ms max: 0.488ms
1.709ms
5 calls

storage_ mmem.c

storage mmem_make_room()

min: 0.244ms max: 0.488ms
0.244ms

3 calls

storage_mmem_save_bundle()
min: 0.732ms max: 2.930ms

uDTN-serializer-test.c
my static_compare()
min: 0.244ms max: 0.244ms
0.488ms
2 calls

uDTN-serializer-test.c
my_compare_bundles()
min: 7.568ms max: 9.033ms
37.109ms
6 calls

storage_mmen.c

6 sites storage_mmem_read_bundle()

2 sites

0.427ms/call . 0.051ms/call
0240 75ms min: 0.488ms max: 0.732ms /000 24ms
12 calls 1.465ms 192 calls

6 calls

bundle.c
bundle_get attr()

min: 0.000ms max: 0.244ms

9.766ms

192 calls

1 site
0.285ms/call
0.24-0.49ms

6 calls

2sites o 1 site
0.407ms/call >~ 0.244ms/call
0.24-0.73ms SSsl_ 0.24-024ms
6 calls So__ 3calls

bundle.c
bundle_increment()
min: 0.244ms max: 0.488ms
1.953ms
9 calls

bundle.c
bundle_decrement()
min: 0.244ms max: 0.732ms
5.127ms
20 calls

Fig. 3: Excerpt from the call graph of a uDTN test for the bundle serializer

throughput-uninstr receiver-throughput (bundles/s)

80

704 . ame . a

[S —

50

40+

304

20

10

0

oo mowomomowomom oW o ¢ o: G i : G & & i & i i & i :i i :
S I A R R R R R N N N N N N N N N N SN
F - I I I I I I I I I I I I I I
£ EEEEEEEE T EE S E 3 S S S S S S S S S E S S S SIS T TSR
R R TR R = R R R = R e]
[A v ML B = - B = s R R R R - i B e e =
TR R R R R R R E R EEEE]
A== A= R R i i i R R R i R R R R R
££TTTTETTY T rarrrrbrbrbrrrrbrrrrrrrik
S J N W~ mn o o

MR- .

¥ x EEEF EEE %

Fig. 4: Throughput in bundles per second over multiple builds
in Jenkins

uDTN is based on Contiki and should therefore be able
to run on (almost) any platform that is supported by Contiki.
However, regularly interoperability problems occur due to byte
ordering or memory alignment issues. In our test environment
we use TMote Sky [6] as well as INGA [7] nodes to allow
automated interoperability testing of DTN running on both
nodes. In Figure 4 we exemplarily show the throughput
in bundles per second over multiple builds (and associated
revisions) in Jenkins.

IV. IN THIS DEMO

In this demo we show a live sensor node running instru-
mented and non-instrumented code using the test framework
discussed in this paper. We show how a call graph is generated
from code running on the node on the example of a DTN test
case and how the call graph can be used to optimize the code.

In the test case, the bundle serializer of uDTN is tested locally
(i.e. without interaction with other nodes) and an excerpt of
the call graph is shown in Figure 3.

For the demo we will need:

e Table (for laptop)
e Wall outlet (for laptop)

e Space for a poster

REFERENCES

[1] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a Lightweight and
Flexible Operating System for Tiny Networked Sensors,” in Proceedings
of the First IEEE Workshop on Embedded Networked Sensors (Emnets-

I), Tampa, Florida, USA, Nov. 2004.

A. Dunkels, “Contiki Regression Tests: 9 Hardware Platforms, 4 Pro-
cessor Achitectures, 1021 Network Nodes,” http://contiki-o0s.blogspot.de/
2012/12/contiki-regression-tests-9-hardware.html, Dec 2012.

W.-B. Péttner, D. Willmann, F. Biisching, and L. C. Wolf, “All eyes on
code: Using call graphs for WSN software optimization,” in Eight IEEE
Workshop on Practical Issues in Building Sensor Network Applications
2013 (IEEE SenseApp 2013), Sydney, Australia, Oct. 2013.

G. von Zengen, F. Biisching, W.-B. Péttner, and L. Wolf, “An Overview
of uDTN: Unifying DTNs and WSNs,” in Proceedings of the 11th
GIITG KuVS Fachgesprich “Drahtlose Sensornetze” (FGSN), Darm-
stadt, Germany, 9 2012.

K. Scott and S. Burleigh, “Bundle Protocol Specification,” RFC 5050
(Experimental), Internet Engineering Task Force, Nov. 2007. [Online].
Available: http://www.ietf.org/rfc/rfc5050.txt

Moteiv Corporation, “Tmote Sky Datasheet,” http://www.snm.ethz.ch/
pub/uploads/Projects/tmote_sky_datasheet.pdf, 2006.

F. Biisching, U. Kulau, and L. Wolf, “Architecture and evaluation of inga

- an inexpensive node for general applications,” in Sensors, 2012 IEEE.
Taipei, Taiwan: IEEE, oct. 2012, pp. 842-845.

(2]

(3]

(4]

(51

(6]

(71

