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ABSTRACT
Wireless Sensor Networks (WSN) are networks formed by
wireless sensor nodes that generally feature a low-power mi-
crocontroller and an IEEE 802.15.4 radio. Most Delay Tol-
erant Wireless Sensor Networks (DTWSN) in literature use
proprietary protocols that are specifically designed for a sin-
gle purpose. In this paper we explore, how the Bundle Pro-
tocol (BP) can be used on top of the IEEE 802.15.4 PHY
and MAC layers, while avoiding overhead for additional lay-
ers in between. To pursue this, a Convergence Layer (CL)
has to realize certain tasks that usually are dealt with in
layers 3 and 4 of the OSI 7-layer protocol stack. We argue
that flow control has to be an integral ingredient of the CL
and compare the performance of four different mechanisms
using our BP implementation for Contiki.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Store and forward networks

Keywords
Bundle Protocol, DTWSN, WSN, IEEE 802.15.4, Flow Con-
trol, Convergence Layer, low-power

1. INTRODUCTION
Delay Tolerant Networks (DTNs) has been accepted by

the networking community as a way to deal with intermit-
tently connected networks. Although a number of different
protocols and solutions exist, the Bundle Protocol (BP) [10]
can be considered the de-facto standard for delay tolerant
communication. For different underlying network technolo-
gies, the BP uses so-called Convergence Layers (CLs) to
safely transport bundles from one host to another in a single
hop.

According to the BP specification, the duties of a CL are
sending bundles to a subset of nodes within reach and de-
livering incoming bundles to the BP agent, whereas each
CL is specific for a network technology. Several CL specifi-
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cations and implementations for various network technolo-
gies exist. A prominent example is the TCP Convergence
Layer (TCPCL) [1] based on TCP/IP.

IEEE 802.15.4 [3] is a Physical (PHY)- and Medium Ac-
cess Control (MAC)-layer standard for Wireless Personal
Area Networks (WPANs) which is designed to be energy ef-
ficient and enables wireless communication of low-power em-
bedded devices with up to 250 kBit/s. While IEEE 802.15.4
communication stacks for standard PCs are still in the early
stages most wireless sensor nodes (T-Mote Sky [7], INGA,
etc.) feature an IEEE 802.15.4-compliant transceiver.

For efficiency reasons, we aim at using a CL to bridge the
gap between the IEEE 802.15.4 PHY- and MAC layer and
the BP agent while avoiding layers 3 and 4 of the protocol
stack. To function correctly, the CL has to realize certain
features that are normally located on these layers. In this
paper, we focus on flow control mechanisms for hop-by-hop
bundle transmission between two neighbouring nodes.

Such flow control mechanism has to make sure, that fast
senders do not overrun slow receivers, while maintaining a
high throughput and a low energy consumption at the same
time. While a high throughput allows to make efficient use
of potentially short contacts, a low energy consumption is
important for long battery life. This means, that unnec-
essary transmissions and retransmissions should be avoided
and that the signaling overhead has to be kept as low as pos-
sible. Finally, the mechanism must not contradict the IEEE
802.15.4 standard and should be practically implementable
on today’s off-the-shelf hardware.

In the remainder of this paper, we show our contribution
in the following structure: We begin with related research in
Section 2 and outline our motivation and background in Sec-
tion 3. We present four flow control mechanisms in Section 4
and compare them using experimental results in Section 5.
Finally, we conclude the paper in the Section 6.

2. RELATED WORK
Several publications have used DTN techniques in Wire-

less Sensor Networks (WSN) context, without using the
standardized BP. ZebraNet [4] aims at tracking wildlife in
Kenya, Seal-2-Seal [5] tracks contacts between wild animals
and LUSTER [11] aims at monitoring environmental param-
eters to be used by ecologists. All those projects use a pro-
prietary delay tolerant communication protocol and demon-
strate the need for delay tolerant communication in WSNs.

Two published DTN implementations for WSN nodes ex-
ist. DTNLite [8] implements DTN concepts on TinyOS, but
does not use the BP. ContikiDTN [6] uses the BP over
TCPCL in IEEE 802.15.4 networks. To the best of our
knowledge, no existing solution for using the BP in IEEE
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Figure 1: Timing of two nodes exchanging bundles.

802.15.4 networks without the need for existing layers 3 and
4 is available. The DTN2 reference implementation includes
an Ethernet-based CL, that enables wired communication
between neighbouring nodes without using IP and/or TCP.
DTN2 also includes a Bluetooth-based CL and an AX.25-
based CL that both avoid using existing layers 3 and 4.

From our literature study we conclude, there is a need for
delay-tolerant communication in WSNs. We also see, that
approaches to use the BP over IEEE 802.15.4 network exist.
However, those approaches rely on TCP/IP for communica-
tion, which incurs a high overhead both in terms of commu-
nication but also program memory on the nodes. While the
BP has already been used directly on top of layer 2, this was
not the case for IEEE 802.15.4-based networks.

3. BACKGROUND
While IEEE 802.15.4 transceivers can be attached to a

multitude of hardware platforms, we orient ourselves on the
lowest common denominator. In most cases, these are the
microcontroller platforms which are the basis for popular
WSN nodes such as the Tmote Sky. Those systems feature
a CPU with 4 - 16 MHz clock, 10 - 16 kB RAM, 48 - 128 kB
program memory and an IEEE 802.15.4 transceiver. Such
nodes are usually battery-powered, so that energy is scarce
and has to be preserved.

We assume, that bundles are stored in persistent flash
memory. Many WSN nodes are equipped with flash mem-
ory and use flash file systems to store multiple files onto the
flash. Flash access produces certain delays, that are hard-
ware dependent. The flash chip on the T-Mote sky takes
0.5− 5 ms to write a flash page and � 1ms to read a page.
Hence, we assume that the time to write a bundle is vary-
ing over time and dependent on the size of a bundle and is
orders of magnitude longer than the time to read a bundle.
Additional overhead is introduced by flash file systems.

The IEEE 802.15.4 standard uses CSMA-CA for medium
access. Furthermore, the standard uses stop-and-wait for
frame transmissions between two nodes with explicit Ac-
knowledgement (ACK) frames for each data frame. The
specification defines different Inter Frame Spaces (IFSs) de-
pending on the length of a data frame to give the receiver
appropriate time to process the frame. Since the standard
does not include measures for flow control, a sender has to
assume that the receiver has processed incoming frames af-
ter the IFS has elapsed. However, with a short IFS of 192µs
and the long IFS of 640µs, this is orders of magnitude from
the time that is needed to store a bundle into flash. To
overcome this problem, the receiver might buffer bundles in
RAM and use idle times to write the cache into flash. How-
ever, with RAM sizes in the order of some kB, few bundles
can be buffered. These points make it clear, that a flow
control mechanism for the IEEE 802.15.4 CL is necessary.

In the remainder of the paper we use the term bundle as
placeholder for information that is transferred over the IEEE
802.15.4 link, whereas the same techniques are applicable to
fragments of larger bundles.

For our approach we assume, that nodes can decide on a
per-frame basis, whether a link-layer ACK should be sent
or not. Furthermore, we assume, that nodes can piggyback
data onto link-layer ACKs at no cost. These are reasonable
assumptions as we have shown in [9].

3.1 Problem Statement
In Figure 1 we see one node sending two bundles to an-

other node. The sender node takes a certain time tS,1 to
read the outgoing bundle from storage, do internal process-
ing and to copy the data into the buffer of the radio. Af-
terwards, the MAC layer decides when to actually transmit
the frame. If packet transmission is successful, the receiver
sends a link-layer ACK frame and starts to read the bundle
from the radio buffer to store it into the local storage within
time tR,1. In this example, the sender sends a second bun-
dle after a certain interval, whereas the time between end
of the previous ACK transmission and the beginning of the
next data frame is denoted as tD. As mentioned earlier, we
have to assume that the processing and storage time at the
sender tS as well as the respective time at the receiver tR is
variable over time.

In order to give the receiver enough time to process incom-
ing segments, the following conditions must hold: tD ≥ tR
and tD ≥ tS . Altogether, the best throughput can be
achieved when tD,i = max(tR,i, tS,i+1). The goal of flow
control is to minimize tD given the stated constraints. A
sender is able to predict or measure its own delay tS , but
information about tR is needed to adapt tD and to achieve
optimal throughput.

4. FLOW CONTROL MECHANISMS
In this section, we discuss four flow control algorithms to

achieve the stated goals.

4.1 Fixed Delay per Neighbour
The sender uses a fixed tD for each receiver and sends

segments at a constant rate. This approach has a fixed and
limited throughput that is determined by the choice of tD.
However, with a tD that is high enough, this approach is the
optimal approach in terms of energy consumption, because
only data segments are transmitted. Due to the time vari-
ability of tR, the delay has to be chosen in a conservative way
to be able to handle worst-case situations: tD = max(tD,i).

4.2 Application-Layer ACKs
This mechanism uses a dual-ACK strategy on the link-

and the application-layer. On the link-layer, the sender
sends out a frame and waits for the link-layer ACK to signal
successful reception of the frame. If no such ACK is received
within 864µs (defined in the IEEE 802.15.4 specification),
the sender can quickly retransmit the frame without loosing
too much time. When the receiver has successfully processed
the contents of the frame, an additional application-layer
ACK frame is sent to trigger the sender to transmit the
next data segment. Optionally, the receiver can transmit a
NACK frame to reject a segment and to trigger the sender to
transmit the next data segment. We expect this approach to
achieve a significant throughput improvement compared to
the previous approach but also significantly increased energy
consumption due to higher signaling overhead.

4.3 Receiver-Feedback
In this approach, the sender sends a segment to the re-

ceiver. The receiver then estimates the time tR it will take
to process and store this bundle and piggybacks the estima-
tion onto the link-layer ACK that is sent to the sender. To
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(a) Application-Layer throughput when
exchanging 500 bundles with varying
bundle payload sizes and flow control
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Figure 2: Performance Evaluation of Flow Control approaches.

be able to piggyback information onto the link-layer ACKs,
those have to be generated in software. Furthermore, the
sender estimates its own processing time tS for the next bun-
dle and starts preparing transmission of the next segment at
T + tR − tS , whereas T is the current time. This approach
does not need additional signaling overhead but allows for
variable times of tR and tS . It is expected to realize the high-
est throughput, whereas the energy consumption should be
comparable to the first approach, since no additional bytes
are transmitted.

4.4 TCP-inspired
The approach is inspired by the TCP congestion control,

in which the rate is increased as long as link-layer ACK
frames are received and decreased if ACKs are missing to
detect network overload. The receiver node has to selec-
tively acknowledge incoming frames to make sure, that all
acknowledged frames will be processed and to avoid over-
running internal buffers.

We use an initial interval tD and a threshold tth. The
sender sends out a frame towards the receiver. If a link-
layer ACK is received, the sender multiplies tD with factor
fD in case that tD is above the threshold tth. Otherwise, tD
is decremented for every link-layer ACK. If one link-layer
ACK is lost, tth is set to the current tD multiplied with the
factor fL and tD is set to the new threshold tth.

We expect, that this approach will expose a slightly higher
energy consumption than the first, because a certain amount
of frames have to be retransmitted when tD is decreased too
far. Furthermore, we expect a lower throughput compared
to the previous approach due to frames that will be lost
whenever tD goes below tR.

5. EVALUATION
In order to evaluate the suitability of the flow control ap-

proaches for the IEEE 802.15.4 CL, we measure the perfor-
mance and the power consumption of the algorithms on real
nodes. Performance is mainly expressed in application-layer
throughput, but also in the number of transmitted (and re-
ceived) bundles per second. Furthermore, potentially lost
bundles are also relevant to ensure reliable data delivery.

5.1 Setup
In this evaluation, we have used two TMote Sky sensor

nodes running Contiki OS.The sender sends 500 bundles to a
receiver over the wireless link using the IEEE 802.15.4 frame
format and PHY and Clear Channel Assessment (CCA) to

determine if the channel is free. We have chosen this simple
MAC to provide general results, that are not specific for a
particular MAC. We assume, that the results likewise apply
to other MACs. To exclude influences of the environment, all
presented results are the arithmetic mean of 4 measurement
runs. We have measured using varying bundle payload sizes
between 1 and 80 bytes, whereas the actual size of the radio
frame depends on the BP overhead and the variable length
of the Self-Delimiting Numeric Values (SDNVs).

We have implemented the flow control mechanisms for our
BP implementation µDTN, including software-generated
ACKs using the CC2420 radio chip. Furthermore, the nodes
use Contiki’s COFFEE [12] for persistent storage. For the
feedback-based flow control approach, sender and receiver
have measured their respective processing time per bun-
dle and used an exponentially weighted moving average
tR,i = α ·tR,new +(1−α) ·tR,i−1 with an α of 0.4 to calculate
the expected time tR for the following bundles. We have em-
pirically determined the value for α in several experiments.
Our estimation approach is simplified but acceptable for our
experiment, since the major contributor to tR is the storage
component which exposes a linearly rising write time per
bundle.

5.2 Metrics
We measure the throughput at the receiver ignoring lost

or duplicate bundles and we only count the payload of bun-
dles to obtain application-layer throughput values. For the
power consumption, we have used Contiki’s software-based
Energy Estimation [2] mechanism to verify a strong correla-
tion between transmit power consumption and transmitted
bytes. We therefore measure transmitted bytes and only
count bytes that are related to bundle transmission and ig-
nore other frames such as discovery. We count the full IEEE
802.15.4 frame length but we exclude the IEEE 802.15.4 link-
layer ACK frames, which would add another 3 bytes to each
unicast transmission.

5.3 Performance Results
In general, none of the presented approaches permanently

lost frames. In Figure 2a we see the application-layer
throughput that can be achieved when exchanging bundles
with the presented flow control approaches. The fixed-delay
approach has the lowest throughput with a constant lin-
ear increase for larger payload sizes. This is caused by the
conservative choice of tD = 250ms, that was necessary to
cope even with worst-case situations. The TCP-inspired



approach reaches a higher throughput, that is less stable
and shows a minor anomaly for bundles with 70 bytes pay-
load. We have used an initial tD = 250ms with a thresh-
old of tth = 100ms. The decrease factor was fD = 0.5
and the factor used to determine the new threshold after
a missing ACK was fL = 2. Below the threshold, tD was
decremented by 0.244 ms per ACK. The receiver-feedback
approach also shows a linearly increasing throughput, while
the application-layer ACK based approach reaches the high-
est throughput of all.

In general, the results of the different approaches are
close to our expectations. The steady linear increase of
all throughput measurements is caused by the fact, that
the rate of bundles per second is independent of the bundle
payload size. With a fixed rate of bundles, increasing pay-
load sizes lead to increased throughput. This phenomenon
is caused by the file system performance. We have mea-
sured between 1.4 and 8.3 ms for opening an existing file
and between 8.5 and 225.8 ms for creating a new file. Since
the receiver node has to create a new file for every incoming
bundle, COFFEEs performance effectively limits the achiev-
able throughput. The time for writing and reading bytes is
negligible compared to those times. This also explains, why
the overall throughput seems low compared to the 250 kBit/s
of IEEE 802.15.4.

Based on Section 4.3 we have expected the receiver-
feedback approach to expose the highest throughput of all.
Upon further investigation, we have found two reasons, why
the throughput is slightly lower than the application-layer
ACK approach. On the one hand, the estimation of tR has
to be as accurate as possible to allow back to back packet
transmissions. Our EWMA approach is always a bit behind
reality and looses some frames in critical situations that have
to be retransmitted. On the other hand, the feedback from
the receiver to the sender has to be accurate. Unfortunately,
the feedback mechanism allows only one byte to be send
back, which is not enough for a high resolution timestamp.
Those two factors combined lead to the throughput that is
behind our expectations.

5.4 Power Consumption Results
As a representative for the power consumption we have

measured the transmitted bytes as shown in Figure 2b.
As expected, the fixed-delay approach transmits the low-
est number of bytes and can be seen as the baseline here.
However, also the TCP-inspired and the receiver-feedback
approach show a similar number of transmitted bytes. This
means, that both approaches do not introduce additional
signaling overhead and avoid retransmitting bundles. While
this is expected for the receiver-feedback approach, it is
surprising for the TCP-inspired version. The application-
layer ACK approach shows a constant offset in the amount
of transmitted bytes due to the additional application-layer
ACK frames that are transmitted.

In Figure 2c we show the overhead ratio of the four ap-
proaches compared to the fixed-delay version (normalized
to 0 %). We see here, that in fact the receiver-feedback
approach only has marginal additional overhead, whereas
the TCP-inspired approach is slightly higher. This was ex-
pected, since at some point the TCP approach looses seg-
ments, since tD has been decreased too far. The application-
layer ACK approach shows a decreasing overhead ratio, that
is caused by the fact, that the amount of user data is in-
creased while the overhead stays constant.

6. CONCLUSIONS
In this paper we have introduced and compared flow con-

trol approaches for a BP CL for IEEE 802.15.4-based wire-
less networks. We have compared the transmitted bytes (as
representative for power consumption) and throughput to
avoid overrunning slow receivers.

The TCP-inspired flow control approach has a good power
consumption but only mediocre throughput results. The
application-layer ACK approach has the highest through-
put, but also the highest power consumption. The receiver-
feedback approach is the best trade-off between power and
throughput because the power consumption is similar to
the baseline, while the performance is almost similar to the
application-layer ACK approach.

Nevertheless, the receiver-feedback and the TCP-inspired
approach have to be implemented for each radio chip in a
platform specific way. Therefore, we propose to use the
application-layer ACK approach as default and the receiver-
feedback approach for systems that support it.
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[9] W.-B. Pöttner, S. Schildt, D. Meyer, and L. C. Wolf.
Piggy-Backing link quality measurements to IEEE
802.15.4 acknowledgements. In Proc. of
WiSARN-FALL 2011, Valencia, Spain, October 2011.

[10] K. Scott and S. Burleigh. Bundle Protocol
Specification. RFC 5050 (Experimental), Nov. 2007.

[11] L. Selavo, A. Wood, Q. Cao, T. Sookoor, H. Liu,
A. Srinivasan, Y. Wu, W. Kang, J. Stankovic,
D. Young, and J. Porter. LUSTER: wireless sensor
network for environmental research. In Proc. of
SenSys ’07, pages 103–116. ACM, 2007.

[12] N. Tsiftes, A. Dunkels, Z. He, and T. Voigt. Enabling
Large-Scale Storage in Sensor Networks with the
Coffee File System. In Proc. of IPSN 2009, San
Francisco, USA, Apr. 2009.


