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Abstract—Wireless Sensor Networks (WSNs) that are de-
ployed outdoors suffer from rough environmental conditions.
Moreover, cheap hardware or energy management techniques
like undervolting might lead to inaccurate sensing results and,
thus, unreliable data. Hence we propose a characteristic model
of every sensor node’s data to derive the ’normal’ behavior of
sensors statistically. Beside massively reducing the total amount
of sensed data, this representative model can be used to detect
discordant values and redundancies between nodes.
Theoretical considerations as well as a functionality test of a
server implementation with real WSN nodes show the features
of this approach.

I. INTRODUCTION

WSNs are an important part of upcoming Internet of Things
(IoT) applications as they can be used for environmental
sensing, structural health monitoring or smart agriculture. Here
the mentioned application areas have in common that they
are primarily deployed outdoors. However, recent experiences
in real world applications revealed that the reliability of WSN
nodes suffer from rough environmental conditions. Where a
node works well at normal room temperatures, an increased
temperature could lead to unpredictable errors like resets,
calculation errors or clock drifts [1], [2]. Moreover, it could
not be guaranteed that sensed data is not modified during
its processing on the node itself e.g. when using energy
management techniques like undervolting [3].
A more practical and indeed popular example of a WSN
application, where such issues could arise, is the detection of
a forest fire [4]. When a sensor detects a suddenly increased
temperature value, how does the sink know whether this
’abnormal’ temperature data is caused by a possible fire or a
faulty WSN node?
For this purpose we propose a data clustering approach which
can help to avoid possible costs of wrong decisions. Moreover,
a statistic model of sensor data is more lightweight. When
dealing with hundreds of sensors, a handy model of sensor
data leads to an efficient processing and storage. Besides
a more precise interpretation of the context, clustering of
sensed data offers several advantages. An exemplary use
case presented in this paper is the detection of redundancy
between sensed data. Matching the clusters of several sensor
nodes would give direct information about redundant sensing.
If data sensed by several nodes are very similar, it could be
considered as equivalent. Finally this would allow to alternate
between these sensor nodes to save energy.

II. RELATED WORK

Indeed, data clustering and the used methods to enable
this work are not new. A detailed insight in the advantages of
data clustering is given in [5]. The classification methods, the
Principal Component Analysis (PCA) and distance functions
used in this paper are common techniques to analyze a given
amount of data [6], [7]. In [8] also the k-means algorithm is
considered to cluster the data of WSNs. While the efficiency
of the k-means algorithm is optimized, the special need for
clustering the sensor data is almost vague. A more frequent
use case for clustering in WSN is not focussed on the data but
much more on the structure of the network itself. In terms of
energy awareness, the nodes of a WSN are clustered to build
up hierarchical structures for lower duty-cycles, or optimize
the transmit power of the nodes [9], [10], [11].
Nevertheless, clustering methods are also considered for data
aggregation in WSNs [12], [13]. One use of data clustering
is that correlation between data can reduce the overall traffic
of the WSN. This intention is comparable with the presented
approach of finding redundant data to share the resource of
energy for a given task.
Actually, in [14], [15] also clusters are used to detect outliers
of WSN data, where the proceeding of [14] is comparable with
the cluster-in-cluster mapping of Section V. Sequential time
slots are defined and distances of cluster centres of different
slots are compared.

III. CLASSIFICATION OF DATA – CLUSTERING

In general the classification of elements is defined as the
possibility to arrange these objects by their characteristics.
These characteristics are defined by a n-dimensional feature
vector, indeed, in this work we deal with 2-dimensional
feature-spaces D2 only. A group of elements with similar
characteristics is called a cluster, where the elements within
a cluster show a low standard deviation to each other. Hard
clustering postulates that an element belongs to only one
cluster. However, in this paper we deal with soft clustering,
so that an element can belong to more than one cluster. Thus,
soft clustering allows overlapping clusters.

A. Classification using k-means Algorithm

Not every clustering algorithm is sufficient to cluster
continuously sampled data. For example the classification of
elements using the Gaussian Distribution is not sufficient as it
leads to oversized clusters.
For this purpose the k-means algorithm is applied as it is a
common method to classify given elements [6].
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Figure 1. Principle execution of the k-means algorithm to classify elements.

The series of pictures of Figure 1 shows the principle of k-
means classification algorithm. Firstly, the algorithm generates
several potential clusters Cj with a random center Cj(cx, cy).
The quantity of generated clusters within the feature space D2

is variable and can be increased or decreased according to the
specific use case. In Figure 1(a) three clusters, C1, C2 and C3

are generated exemplarily.
Subsequently, for each element ei ∈ D2 the distance to
the clusters Cj is calculated. The distance between an ele-
ment and a cluster is given by a distance function d(ei, Cj)
which is equivalent to the classification criterion. Within a 2-
dimensional feature space, it was shown that the Euclidean
distance is an adequate method to classify the elements [7].

deuc(ei, Cj) =

∥∥∥∥(xe − cxye − cy

)∥∥∥∥ (1)

The Euclidean distance deuc is a useful tool to get the distance
between an element ei and a cluster Cj . Indeed, the simple
information if an element is far away from a center of a
cluster or not might not be sufficient. To decide whether an
element belongs to a cluster or not, it is hard to define which
distance should be undershot to join a cluster. For this reason
the distance function is slightly extended.

dsqr(ei, Cj) =

∥∥∥∥(xe − cxye − cy

)∥∥∥∥2 (2)

The advantage of the quadratic euclidean distance is that
distances are weighted. Thus, distances of elements which are
far away from a cluster become much greater, whereas small
distances remain small. As a result the elements of the feature
space convert faster to a cluster, which decreases the execution
time of the k-means algorithm.
Now, if the distance d(Cj , ei) of an element undershots an
specific threshold ε, the element ei is assigned to the cluster
Cj . This process is illustrated in Figure 1(b), where the dashed
lines (red) indicate that the threshold was exceeded and the

solid lines (green) that an element fits to a cluster. This step
is repeated while every element of the feature space is either
part of a cluster or not assignable. Afterwards, the mean values
of every cluster Cj are recalculated with the related elements
ei ∈ Cj . In this case, as seen in Figure 1(c), the centres of
the clusters moved towards the elements of the feature space.
Step 2 and step 3 are repeated which leads to the following
optimization criterion:

Minimize

M∑
j=1

∑
ei∈Cj

‖ei − Cj‖2 (3)

with ei(ex, ey), Cj(cx, cy) ∈ D2

According to [16] the k-means algorithm is np-hard, which
would lead to a polynomial runtime. For an adequate termi-
nation criteria, the movement of the clusters gives a good
measure whether an almost optimal classification is reached
or not. Hence, after every iteration cycle the ratio between
the current clusters Cn

j and the previous clusters Cn−1
j is

calculated. Whenever the movement of clusters remains almost
constant, it can be assumed that the optimization is finished.
It should be mentioned, that it is not advisable to define a
fixed number of clusters M . The coverage of elements by these
clusters could be too low, so that a termination criteria might be
violated. A more useful method is to add new random clusters
whenever a predefined coverage criterion is not reached. Thus,
the total amount of clusters which represents the data depends
on the characteristic of the data themselves.

IV. CHARACTERISTIC MODEL

Basically a characteristic model means that this model
is representative for the whole dataset yet more handy. In
the following, based on the k-means classification, a statistic
characteristic model of a dataset can be derived with the aid of
the common PCA method [17]. For this purpose the covariance
matrices of the previously defined clusters are derived to
calculate their eigenvalues and eigenvectors. These eigenvalues
and eigenvectors form an ellipse around the center of clusters,
which means that the resulting ellipse is representative for all
elements within a cluster.
In statistics the covariance describes the connection between
two random values X and Y . The calculation of the covari-
ance is given in the following equation and results from the
expectancy values E[X] and E[Y ] as well as the values X
and Y .

Cov(X) = Cov(X,X) = E((X − E[X])(X − E[X])) = V AR(X)

Cov(Y ) = Cov(Y, Y ) = E((Y − E[Y ])(Y − E[Y ])) = V AR(Y )

Cov(X,Y ) = Cov(Y,X) = E((X − E[X])(Y − E[Y ]))

The covariance matrix holds the pairwise covariances of X
and Y . Hence, with regard to the previously defined clusters,
the covariance matrix is representative for the elements ei
within a cluster Cj . For a particular cluster Cj , the covariance
matrix is given as follows:

CovCj
=

(
Cov(XCj , XCj ) Cov(XCj , YCj )
Cov(YCj

, XCj
) Cov(YCj

, YCj
)

)
(4)

To derive the eigenvalues and eigenvectors of the covariance
matrix, the system of equations CovCj

− λE = 0 has to be
solved. However, the determinant det(CovCj

− λE) leads to
a simple quadratic equation. This equation can be solved e.g.



by the pq-formula to get the eigenvalues λ1,2. Hence together
with the derived eigenvalues the eigenvectors ~e1, ~e2 are given
by:

~e1 =

(
Cov(X,X)− λ1
Cov(Y,X)

)
, ~e2 =

(
Cov(X,Y )

Cov(Y, Y )− λ2

)
(5)

Finally, the normalization of the eigenvectors leads to a sta-
tistical representation of the cluster Cj . As an example, the
following Figure 2 illustrates the description of clusters by
using covariance ellipses.
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Figure 2. Exemplary covariance-ellipses of two clusters.

The definition of a characteristic model based on the
covariance ellipses offers a more flexible integration of new
data. By using a statistical description of a cluster, a range
of tolerance is added to the model per se. If necessary, this
tolerance range can be adapted by the eigenvalues, respectively
eigenvectors.

V. DETECTION OF INVALID DATA

Indeed, the trend of data can change rapidly which leads to
the question if this fluctuations are still covered by the covari-
ance ellipses to avoid misinterpretations. For example, when
measuring the temperature of nodes deployed outdoors, the
radiation of the sun could lead to erratic rises of temperature
values. In consequence when the proposed approach is used
for online monitoring the hitherto static characteristic model
has to be updated continuously.
In the following Cj describes a cluster within the characteristic
model C̄ as defined in the previous Section IV. Whenever
new sampled data enewi (ex, ey) arrive at the sink, it has to be
checked if an element is part of the characteristic model or not.
A simple but naive approach is the point-in-cluster method.

∀enewi

{
enewi ∈ Cj , if enewi within Cj

enewi /∈ Cj , if enewi not within Cj
(6)

With the aid of the ellispe equation this distinction shows a low
computational complexity. In addition the cluster-in-cluster
method utilizes more than one new element for comparison
with the characteristic model. In this case a whole cluster
Cnew

j of new elements enewi ∈ Cnew
i is compared with the

clusters Cj ∈ C̄. For this purpose it is assumed that new data
share a common context so that it is allowed to condense
them to a single cluster. However, these simple methods
do not consider the statistical deviation of the model. The
Mahalanobis-Distance might be a better measure to define the
distance between clusters and new elements [7].

dMaha(Cj , ei) =

√(
cx − ex
cy − ey

)T

Cov−1Cj

(
cx − ex
cy − ey

)
(7)

In contrast to the euclidean distance, the Mahalanobis-
Distance includes the covariance of the cluster. Thus, the
Mahalanobis-Distance gives a measure of how many standard
deviations an element ei is away from the cluster Cj .
At least the Manhattan-Distance is considered. The distance
between two points is given as the sum of the distances of
their Cartesian coordinates [7]. Thus, the Manhattan-Distance
results in an echelon form:

dMan(Cj , ei) =

∥∥∥∥(cx − excy − ey

)∥∥∥∥
1

(8)

Later on in Section V-B the capabilities of the presented
distance methods are evaluated.

A. Updating the Characteristic Model

The characteristic model is always based on the already
sampled data set only. Hence, the ellipses have to be updated
continuously to keep the model up to date and allow validation
of incoming data.
Initially, by using the previously described distance functions,
it can be decided if new data fit to the current model.
Statistically, if new data fit into the current model, they are
added and the model is updated afterwards. This process of
updating the model is illustrated in the following Figure 3:
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Figure 3. Update of the characteristic model by adding new and valid data.

The non-filled dots (red) represent potentially faulty data,
whereas the filled dots (green) symbolize valid data. Valid
data are added to the corresponding clusters and the model
is updated by recalculating the involved covariance ellipses.
Nevertheless, it should be avoided that the model expands too
much over time as it can get far too tolerant or it could evolve
in a wrong direction. Thus, after a period of time the whole
classification should be executed instead of only updating the
same model over and over again.

B. Interim evaluation

To test the quality of the characteristic model, the update
of the model and the usability of the distance functions, an
exemplary dataset was generated. This data correspond to a
one day measurement of temperature values with a sample
rate of 1Hz which leads to 86400 elements. A characteristic
model C̄m of this dataset was derived. Afterwards C̄m was fed
with the same dataset but random noise 0 ≤ ∆Ni was added
iteratively. Thus, the detection rate, respectively the absorption
of the new elements can be checked. In practice, at the first run
no noise was added (∆N0 = 0). Hence, C̄m was fed by its own
underlying dataset. For the second iteration every element was
distorted by a random value between ∈ [0,∆N1]. This noised



data were added to the model C̄m and the detection rate was
checked again. Iteratively, the noise level was increased and
the described process was repeated.
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Figure 4. Detection rate of noisy data and different distance functions. (Note:
Cluster-in-Cluster always < 0.05%)

By using the previously introduced distance functions,
Figure 4 shows the result of this test. The noise is given on the
x-axis as an absolute temperature value, whereas the detection
rate is given on the y-axis. In this case the detection rate gives
a measure how many elements have been added to the model.
It can be seen that the detection rate depends on the used
distance function. Due to the consideration of the covariance,
the Mahalanobis-Distance is more robust against noisy data.
The other distance functions loose their ability to match new
elements with increasing noise.

VI. REDUNDANCY BETWEEN DATA

In some application areas of WSNs the deployment of
nodes might be rather unstructured and random. A few nodes
of the network could be located close together so that these
nodes could alternate their sensing activity to save energy.
Without any knowledge about the network structure, the char-
acteristic models of these nodes can be used to identify such
areas of redundant sensing. We assume two characteristic
models C̄A and C̄B which belong to the sensor nodes A and
B. To get the overlapping areas of C̄A and C̄B the intersection
of models is calculated.

SAB = C̄A ∩ C̄B (9)

As described above, the clusters are described by covariance
ellipses. Thus, equation 9 leads to the problem that the overlap
of two ellipses CA

j ∈ C̄A and CB
j ∈ C̄B has to be calculated.

In the end the resulting area of intersections gives a measure
how similar the sensed data of sensor nodes are. Figure
5 illustrates this principle of finding redundancies between
sensor nodes. In Figure 5(a) the exemplary data set of two
independent sensor nodes is classified. Figure 5(b) highlights
the intersection of the two characteristic models.

VII. FUNCTIONALITY AND EVALUATION

To show the functionality of the presented approach we
implemented a server application which is able to handle
incoming data of several nodes. We initially tested the im-
plementation and derived methods with a small benchmark
consisting of five wireless sensor nodes. For every node which
sends its data to the sink, a corresponding characteristic model
is generated and updated continuously. With a sample rate of
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Figure 5. Classified data and corresponding redundancy of two exemplary
sensor nodes.

1Hz, every node samples the room temperature and sends this
value to the sink immediately. The nodes were deployed within
an apartment and placed on the window sill of different rooms.
Thus, although the nodes were placed indoors, the radiation of
the sun still affects the temperature measurements.

Node 2

Node 3

Node 4
Node 5

Sink

Figure 6. Draft of the test setup and ground-plan of the used apartment with
round positions of the nodes.

With the intention that node 4 and node 5 should sample
similar temperatures, these nodes were wilfully placed in the
same room. Thus, the nodes should sample almost redundant
data so that the detection of redundancy between data can be
evaluated.

A. Classification

To analyse the computational overhead when executing the
k-means algorithm, real temperature data from the test-setup
are classified by the server. A normal laptop with an Intel Core
2 Duo 1,6 Ghz Central Processing Unit (CPU) and 4GB RAM
was used for all evaluations. The following Table I shows the
results.

Table I. RUNTIME OF THE CLASSIFICATION OF REAL MEASUREMENTS
(DAY 3)

Node Samples Runtime Iterations Cluster

2 83162 429ms 17 22
3 83635 521ms 19 22
4 83592 581ms 22 28
5 83635 457ms 23 24

This evaluation was repeated for 7 more days. All in all the
averaged runtime for the classification of ≈ 83500 temperature
data amounts to 504.57ms. Moreover, this evaluation shows
the massive reduction of total sensor data. Arround 83500 data
points can be represented by ≈ 25 clusters.
The final classification of four nodes over five days is depicted
in Figure 7.
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Figure 7. Five consecutive days of temperature measurement, classification and redundancy analysis.
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From five different days of measurement the characteristic
models of the sensor nodes were compared to each other. The
redundancy between the nodes was extracted as described in
Section VI. As already mentioned the nodes 4 and 5 were
placed close to each other to show the effects of redundant
sensing. Figure 8 depicts the percent overlap of the characteris-
tic models of the nodes. The similar environmental conditions
and intersections between the temperature profiles lead to a
remarkable redundancy also between disjunct nodes. However,
the obviously redundant nodes 4 and 5 show a significant
conformity.

VIII. CONCLUSION

In this paper we proposed a characteristic model for
sensor data of potentially unreliable WSN nodes. Based on
a classification using k-means clustering algorithm, this model
describes the nominal behaviour of every node statistically
through covariance-ellipses. Due to a continuous update of
the ellipses, the characteristic model is more flexible and can
be used to detect outliers or off-nominal behaviour which is
essential for unreliable WSNs Moreover, it is more efficient
in handling a huge amount of sensed data as the characteristic
model represents the whole dataset.
When matching several of the characteristic models, potential
redundant sensing can be detected. Thus, redundant nodes can
lower their duty-cycle by alternating their sensing.
To test the derived methods we implemented a server ap-
plication and performed a small test with a real WSN. The
results showed that characteristic models of the nodes can
be derived with a low computational overhead. In addition,
intentionally redundant nodes show many overlapping regions
when comparing this models with each other.

However, beside the proposed general functionality and
documentation of continuous online clustering: When compar-
ing the models of two consecutive days, the similarity between
these days is remarkable. Hence, another advantage for WSNs
applications can be achieved by maintaining the charateristic
model of every sensor node. The models could help to predict
further system states by taking the trend of temperature into
account. Thus, some kind of local weather forecast for every
sensor node can be implemented to avoid unstable states or a
breakdown of the network structure.

REFERENCES
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