

Effective but Lightweight Online Selftest for Energy-Constrained WSNs

SenseApp 2018

Ulf Kulau, Daniel Szafranski and Lars Wolf, 01.10.2018

Technische Universität Braunschweig, IBR

Soft Errors

What are Soft Errors?

What are Soft Errors?

- Unexpected state changes in digital circuits
 - Bit-flips, stuck-at errors, ...
- Occur randomly and temporary
- Can lead to malfunction of components
- Overall system is often not affected
 - \rightarrow Very hard to detect

What are Soft Errors?

- Unexpected state changes in digital circuits
 - Bit-flips, stuck-at errors, ...
- Occur randomly and temporary
- Can lead to malfunction of components
- Overall system is often not affected
 → Very hard to detect
- Causes
 - In space applications: cosmic rays
 - Undervolting
 - Large temperature variations
 - Faulty units, ageing and wear, ...

Effects of soft errors in computer systems

Effects of soft errors in computer systems

- Soft errors can occur in any component
 - Program Counter (PC) → unpredictable program flow
 - ullet Arithmetic logic unit (ALU) o incorrect calculations
 - ullet RAM ightarrow data corruption
 - Peripheral components, ...

Effects of soft errors in computer systems

- Soft errors can occur in any component
 - Program Counter (PC) \rightarrow unpredictable program flow
 - ullet Arithmetic logic unit (ALU) o incorrect calculations
 - ullet RAM o data corruption
 - Peripheral components, ...
- Can propagate and lead to unpredictable malfunction of the entire system

Effects of soft errors in WSNs

- Disadvantages
 - Malfunction of WSN nodes
 - Can significantly decrease the overall energy efficiency of WSNs

Kulau et.al., Energy Efficiency Impact of Transient Node Failures when using RPL, WoWMoM, 2017

Effects of soft errors in WSNs

- Disadvantages
 - Malfunction of WSN nodes
 - Can significantly decrease the overall energy efficiency of WSNs
 - Kulau e
- Kulau et.al., Energy Efficiency Impact of Transient Node Failures when using RPL, WoWMoM, 2017
- Advantages
 - Safe indicator of an malfunctioning MCU due to undervolting
 - Can be used to detect unreliable WSN node
 - Kulau et.al., IdealVolting Reliable Undervolting on Wireless Sensor Nodes, ACM Transactions on Sensor Networks (TOSN). 2016
- \rightarrow Soft error detection is both, necessary and beneficial

Project goal: Effective but Lightweight Online Selftest for Energy-Constrained WSNs

Reliability

Reliability

- \rightarrow High soft error detection rates
- Low overhead
 - Focus on most error-prone components
 - ightarrow Increase energy efficiency
- Genericity
 - Use a software implementation instead of addidtional hardware
 - \rightarrow usable on different MCUs

Online Selftest - Basics

- Well-known Algorithm-Based Fault Tolerance (ABFT)
 - Used for fault tolerance in complex computer systems
 - Error correction requires huge overhead

- Well-known Algorithm-Based Fault Tolerance (ABFT)
 - Used for fault tolerance in complex computer systems
 - Error correction requires huge overhead
- Online Selftest for energy-constrained MCUs
 - ALU is one of the most error-prone components
 - ightarrow Based on checksum based fault tolerant matrix multiplication
 - Checksum is implemented as a sum function
 - Small dimensional matrices
 - Online capable implementation
 - Focus on error detection instead of correction

1) Starting with 2 Matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times r}$

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix} \in \mathbb{R}^{m \times n}, \qquad B = \begin{pmatrix} b_{1,1} & b_{1,2} & \cdots & b_{1,r} \\ b_{2,1} & b_{2,2} & \cdots & b_{2,r} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n,1} & b_{n,2} & \cdots & b_{n,r} \end{pmatrix} \in \mathbb{R}^{n \times r}$$

2) Adding column and row sums to A and B

$$A_c = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \\ a_{m+1,1} & a_{m+1,2} & \cdots & a_{m+1,n} \end{pmatrix} \in \mathbb{R}^{(m+1)\times n}, \qquad a_{m+1,j} = \sum_{i=1}^m a_{i,j} \qquad \text{with} \qquad j = [1,...,n]$$

$$B_{c} = \begin{pmatrix} b_{1,1} & b_{1,2} & \cdots & b_{1,r} & b_{1,r+1} \\ b_{2,1} & b_{2,2} & \cdots & b_{2,r} & b_{2,r+1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ b_{n,1} & b_{n,2} & \cdots & b_{n,r} & b_{n,r+1} \end{pmatrix} \in \mathbb{R}^{n \times (r+1)}, \qquad b_{i,r+1} = \sum_{j=1}^{r} b_{i,j} \qquad \text{with} \qquad i = [1, ..., n]$$

3) Multiplication and results review

$$A_c \cdot B_c = C_c = \begin{pmatrix} c_{1,1} & c_{1,2} & \cdots & c_{1,r} & c_{1,r+1} \\ c_{2,1} & c_{2,2} & \cdots & c_{2,r} & c_{2,r+1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ c_{m,1} & c_{m,2} & \cdots & c_{m,r} & c_{m,r+1} \\ c_{m+1,1} & c_{m+1,2} & \cdots & c_{m+1,r} & c_{m+1,r+1} \end{pmatrix}$$

No soft errors

$$\forall j \in [1, ..., r+1] : c_{m+1,j} = \sum_{i=1}^{m} c_{i,j}$$

$$\forall i \in [1, ..., m+1] : c_{i,r+1} = \sum_{i=1}^{r} c_{i,j}$$

At least one soft error

$$\exists j \in [1, ..., r+1] : c_{m+1,j} \neq \sum_{i=1}^{m} c_{i,j}$$

$$\exists i \in [1, ..., m+1] : c_{i,r+1} \neq \sum_{j=1}^{r} c_{i,j}$$

Implementation Optimization

- Alternating row and column multiplication
- ullet Checksums can be verified online o reduce the overhead
- Square matrices (n = m = r) are used to simplify implementation

Online Selftest - Example

1) Starting with 2 Matrices A, $B \in \mathbb{R}^{3\times3}$

$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 3 & 0 \\ 3 & 1 & 2 \end{pmatrix} \in \mathbb{R}^{3\times3}, \qquad B = \begin{pmatrix} 0 & 4 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 4 \end{pmatrix} \in \mathbb{R}^{3\times3}$$
 (1)

2) Adding column and row sums to A and B

$$A_{c} = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 3 & 0 \\ 3 & 1 & 2 \\ 6 & 5 & 2 \end{pmatrix} \in \mathbb{R}^{4\times3}, \qquad B_{c} = \begin{pmatrix} 0 & 4 & 1 & 5 \\ 1 & 2 & 3 & 6 \\ 1 & 3 & 4 & 8 \end{pmatrix} \in \mathbb{R}^{3\times4}$$
 (2)

3) Multiplication and results review

$$A_c \cdot B_c = C_c$$

3) Multiplication and results review

$$A_c \cdot B_c = C_c$$

No soft errors

$$C_c = \begin{pmatrix} 2 & 13 & 9 & 24 \\ 3 & 10 & 10 & 23 \\ 3 & 20 & 14 & 37 \\ 8 & 43 & 33 & 84 \end{pmatrix} \in \mathbb{R}^{4\times4}$$

Online Selftest - Example

3) Multiplication and results review

$$A_c \cdot B_c = C_c$$

No soft errors

$$C_c = \begin{pmatrix} 2 & 13 & 9 & 24 \\ 3 & 10 & 10 & 23 \\ 3 & 20 & 14 & 37 \\ 8 & 43 & 33 & 84 \end{pmatrix} \in \mathbb{R}^{4x4}$$

At least one soft error

$$C_c = \begin{pmatrix} 2 & 13 & 18 & 24 \\ 3 & 10 & 10 & 23 \\ 3 & 20 & 14 & 37 \\ 8 & 43 & 33 & 84 \end{pmatrix} \in \mathbb{R}^{4\times4}$$

Online Selftest - Example

3) Multiplication and results review

$$A_c \cdot B_c = C_c$$

No soft errors

$$C_c = \begin{pmatrix} 2 & 13 & 9 & 24 \\ 3 & 10 & 10 & 23 \\ 3 & 20 & 14 & 37 \\ 8 & 43 & 33 & 84 \end{pmatrix} \in \mathbb{R}^{4\times4}$$

At least one soft error

$$C_c = \begin{pmatrix} 2 & 13 & 18 & 24 \\ 3 & 10 & 10 & 23 \\ 3 & 20 & 14 & 37 \\ 8 & 43 & 33 & 84 \end{pmatrix} \in \mathbb{R}^{4\times4}$$

Online implementations allows to finish after first row calculation

Automatic test equipment

How to provoke soft errors?

- Under normal conditions, soft error only occur rarely
 - For evaluation purposes, they have to be provoked
 - Undervolting is used for this purpose
 - Lower supply voltage increases risk of soft errors

How to provoke soft errors?

- Under normal conditions, soft error only occur rarely
 - For evaluation purposes, they have to be provoked
 - Undervolting is used for this purpose
 - Lower supply voltage increases risk of soft errors
- Test machine
 - Automatic testing platform for various MCUs
 - 100 test-iterations per voltage step
 - Multiple instances of common 8-bit MCUs were used
 - Atmel ATmega1284P
 - Microchip PIC18lf27j13

Automatic test equipment

Implementation of our automatic test equipment

Evaluation of our automatic test equipment

- Two voltage ranges: 3.3V 1.2V and 2.3V 1.2V
- Resolution: 2mV and 1mV
- Mean error in voltage regulation: 0.004V
- Mean error in current measurement: 0.0052mA

Power consumption during the selftest for different matrix sizes *n*

■ Atmel ATmega1284P ($T = 20^{\circ}$ C)

• Microchip PIC18lf27j13 ($T = 20^{\circ}$ C)

Evaluation for different matrix sizes

• Atmel ATmega1284P ($T = 20^{\circ}$ C)

• Microchip PIC18lf27j13 ($T = 20^{\circ}$ C)

Evaluation for different matrix sizes

■ Atmel ATmega1284P ($T = 20^{\circ}$ C)

- MCU shows unreliable behaviour for V_{MCU} < 1.8V
 - soft errors
 - timeouts
- Amount of detected soft errors increases with lower voltage
- Amount of detected soft errors increases with higher matrix sizes

- MCU shows unreliable behaviour for $V_{MCU} \le 1.377V$ soft errors
 timeouts
 Amount of detected soft errors increases with lower voltage
 Weaker relationship between the amount of V_{MCU}
- soft errors and higher matrix sizes

• Microchip PIC18lf27j13 ($T = 20^{\circ}$ C)

- Online Selftest
 - with matrix size n = 5

- Online Selftest
 - with matrix size n = 5
- Software TMR
 - exemplary function

- Online Selftest
 - with matrix size n = 5
- Software TMR
 - exemplary function
- Modified Class B Test
 - focus on SRAM
 - iterate through the entire SRAM, toggle and check every bit

Atmel ATmega1284P (20°C)

Microchip PIC18lf27j13 (20°C)

Evaluation

Memory requirement - Atmel ATmega1284P

- Class B uses the least memory usage
- Software TMR uses slight more memory
- Selftest needs the most memory, but still only 1.2% of ATmega1284P's program memory

Evaluation

Execution time and energy requirement - Atmel ATmega1284P

- Class B shows (by far) the longest execution time
- Software TMR offers the lowest execution time
- Selftest slightly worse then Software TMR, much better then Class B
 - ightarrow very reasonable overhead

Soft errors

■ Soft errors in computer systems

Summary

Soft errors

Soft errors in computer systems

Online Selftest

- Software based method to detect soft errors.
- Focus on the most error-prone component: ALU
- Use of fault-tolerant matrix multiplication, online capable implementation

Summary

Soft errors

Soft errors in computer systems

Online Selftest

- Software based method to detect soft errors
- Focus on the most error-prone component: ALU
- Use of fault-tolerant matrix multiplication, online capable implementation

Evaluation

- Compared against well-known methods for error detection (TMR, Class B)
- Online Selftest showed the highest detection rates and medium overhead
 - ightarrow best compromise for Energy-Constrained WSNs

Soft errors

Soft errors in computer systems

Online Selftest

- Software based method to detect soft errors.
- Focus on the most error-prone component: ALU
- Use of fault-tolerant matrix multiplication, online capable implementation

Evaluation

- Compared against well-known methods for error detection (TMR, Class B)
- Online Selftest showed the highest detection rates and medium overhead
 - ightarrow best compromise for Energy-Constrained WSNs

Thank you for your attention! Questions?

Ulf Kulau, Daniel Szafranski

kulau@ibr.cs.tu-bs.de, d.szafranski@tu-bs.de

Texas Instruments MSP430F2013 Results ($f_{CPU} = 16Mhz$, $T = 23^{\circ}C$)

Atmel ATtiny85-20PU Results ($f_{CPU} = 8Mhz$, $T = 19^{\circ}C$)

