
Submission for the Feature Topic on
”XML-based Management of Networks and Services”

in the
IEEE Communications Magazine

(Publication: July 2004)
(Paper No. 352)

Integrating SNMP Agents with
XML-based Management Systems

Torsten Klie and Frank Strauß,
Technical University of Braunschweig

2004-04-15

1



Abstract

XML-based network management systems be-
come more and more popular these days. How-
ever, it has to be taken into account that there is
a broad existing management infrastructure which
is based on non-XML protocols. Today, the most
dominant technology in Internet management is
based on the SNMP framework.

This article presents an approach for a seam-
less integration of management information sup-
plied by SNMP agents into XML-based systems.
This is done by an automated transformation of
SMI MIB definitions into XML Schema defini-
tions, which implies a corresponding transforma-
tion of SNMP management information into XML
documents. Furthermore, we present an SNMP-
to-XML gateway that allows to retrieve such XML
management information at runtime.

Introduction

Internet management as it is done today is heavily
based on the Simple Network Management Proto-
col (SNMP) and Management Information Bases
(MIBs) conforming to the Structure of Manage-
ment Information (SMI). The reason for the suc-
cess of the SNMP Framework is at the same time
its primary disadvantage: SNMP is simplistic with
respect to its data structures and protocol opera-
tions. This allowed early implementations even on
devices with limited resources already in the late
1980s. Now, 14 years later, we are faced with the
third generation of the protocol specification (SN-
MPv3), the second version of the MIB language
(SMIv2), and no less than 185 IETF Standard MIB
modules defined by various working groups, let
alone hundreds of vendor specific MIBs1.

Over time, a number of drawbacks turned up
and have been solved just to some extent: Per-
formance issues with the retrieval of large chunks
of data have partly been addressed by the Get-
Bulk protocol operation which was introduced

1The freely available online publication of theSimple Times
[1] regularly summarizes all SNMP related IETF Stan-
dards.

with the now historic SNMPv2 and is present in
the Standard SNMPv3. Major security issues have
been discussed intensively and finally been solved
with the User-based Security Model (USM) and
the View-based Access Control Model (VACM)
which are also part of the SNMPv3 framework.
The result of this solid standardization work is a
fundamental technology upon which many hard-
ware vendors, software manufacturers, network
operators, and administrators have built manage-
ment systems to manage a wide range of computer
networks. Obviously, these implementations also
represent huge investments.

However, some issues are still open: There
are no standard formats for the storage and pro-
cessing of management data. Transferring large
amounts of data is still relatively inefficient com-
pared to stream based bulk transfers (e.g. TCP)
[2]. Configuration management is yet an open is-
sue and currently heavily discussed in the IETF
NETCONF Working Group [3]. Efficient software
development cycles are hard to achieve based on a
low-level technology such as SNMP.

To some extent, XML and its companion tech-
nologies offer opportunities to solve these prob-
lems [4]. XML supports by its nature a well-
defined encoding and syntax. Although XML is
still a newcomer compared to SNMP, there is a
huge community of XML professionals and also
a large number of software tools (parsers, editors,
validators, database systems, transformation tools,
etc.) that can make the development of manage-
ment applications more efficient.

In the long run, a fully XML-based architec-
ture that affects all entities in a managed net-
work promises the best benefits. In the short
term, the most pressing needs arise on the man-
agers’ side where operators could take advan-
tages of an XML-based processing of their man-
agement information, e.g., event correlation and
rendering of aggregated information based on the
family of Extensible Stylesheet Language speci-
fications (XSL), management of device configu-
rations based on XML and XSL Transformations
(XSLT), ensuring configuration integrity based on
a schema language like XML Schema, etc.

This situation increases the demand for an inte-

2



gration of managed nodes based on SNMP tech-
nology on one side and management systems
based on XML technology on the other side. The
remainder of this article is targeted to an approach
that bridges this gap: First, we explain how some
of the core XML technologies are related and how
they could be applied to typical network manage-
ment tasks. Then, we present and discuss, how
two core XML technologies, namely general XML
documents and XML Schema definitions, can be
mapped from SNMP management data and their
SMIv2 MIB definitions, respectively. We will spot
on the goals that were driven by the XML per-
spective rather than the SNMP point of view. The
major design decisions for this mapping will be
presented. This is followed by the presentation of
an SNMP-to-XML gateway architecture and the
implementations we have made. The gateway ar-
chitecture allows to access management informa-
tion through HTTP requests for XML documents
that comply to the presented mapping. Finally, we
conclude with some experience statements and a
rough outlook on future directions in SNMP/XML
integration.

XML Technologies

Complete and precise specifications of protocols
are a key prerequisite to any deterministic and ro-
bust distributed system. This includes standard
data structures, encoding rules, and protocol op-
erations. Such standards exist for many different
areas: Databases are queried through the query
language SQL and clients use APIs compliant to
ODBC (Open Database Connectivity) or JDBC
(Java Database Connectivity), remote procedure
calls and remote object access can be realized
through various RPC standards or CORBA, etc.

Whereas such technologies evolved over time
and work quite well today, they have been devel-
oped almost independently from each other. They
do not build upon each other and they hardly use
common basic concepts, although many of them
have to address similar questions like byte order-
ing, data framing and data encryption.

In contrast, XML is a core building block upon

which other related technologies are being devel-
oped. This ’toolkit concept’ allows for more effi-
cient development processes of applications. For
example, existing XML parsers can be used to de-
velop XSLT processors and XML Schema based
validators, since XSL and XML Schema them-
selves are XML compliant. XML Schemas can be
defined and used by validating XML parsers to en-
sure XML data integrity. Specific XML compilers
can be built as XSL stylesheets using any existing
XSLT processor. Figure 1 illustrates some of the
rather prominent XML technologies and accord-
ing tools as well as their relationships. Although
this Figure is not complete, it presents the tech-
nologies that are currently most intensively dis-
cussed to be applied for Internet management pur-
poses. Specifications and tutorials for all of these
technologies as well as pointers to detailed liter-
ature and implementations are available from the
W3C web site [5]. The rest of this Section de-
scribes how these technologies can be applied to
Internet management:

• Use XML to represent management data.
SNMP specifies the encoding of management
data in the protocol, but it does not define how
data should be represented when it has to be
stored for further processing. XML can easily
be applied for both. Furthermore, in contrast
to SNMP, even large amounts of data can be
represented and transmitted in a single XML-
based message. This helps to realize atomic
protocol transactions, since the conversation
to one agent no longer has to span multiple
PDUs. Last but not least, XML-based repre-
sentations are widely accepted as a good com-
promise between human readability (to ease
debugging and to allow operators to take cor-
rective actions) and computer readability (to
ensure parsability and integrity).

• Use HTTP to ship management data.When
SNMP was designed, CPU, memory and band-
width consumption were the most influencing
factors. Today, reliability, throughput, ease
of use and overall development costs are con-
sidered much more important. Even low-cost
printers and WLAN access points are equipped

3



with HTTP agents to support easy manual con-
figuration. This protocol infrastructure can eas-
ily be used to allow a more robust transfer of
XML documents. URLs represent a common
notation to address requested data.

• Use DOM and SAX APIs to access manage-
ment data from applications. Once manage-
ment data is available in XML format, it can
easily be processed by any management appli-
cations. Common APIs, such as the Document
Object Model (DOM) and the Simple API for
XML (SAX) make the development of such ap-
plications much more efficient.

• Use XSL to process management data.Ex-
tensible Stylesheet Language Transformations
(XSLT) allow to define rules for transforming
input XML documents into other XML doc-
uments, HTML web pages, plain text files,
or even PDF documents. The accompany-
ing XPath language is used to specify filter-
ing expressions within such transformations.
XSLT and XPath provide a very powerful tool
to process XML-based management informa-
tion, e.g., to generate network maps, statistical
overviews, filtered alarm logs based on corre-
lated events, etc.

• Use XML Schema to define the structure
of management data. Most computer lan-
guages and data models are specified through
formal grammars. While SNMP uses SMI,
which is a domain specific definition language
(an ’adapted subset’ of ASN.1) to define man-
agement data models, XML Schema is a pure
XML standard. It provides an elegant means
for defining the structure, content and seman-
tics of XML documents in specifications which
themselves are XML documents. Using XML
Schema to define XML management data mod-
els helps to ensure the integrity of management
data like, e.g., configuration documents.

Converting SMI MIBs to XML
Schema Definitions

The structure of MIB modules is formally de-
scribed with the SMIv2 language. These MIB

modules define the structure and semantics of the
instance data which is supplied by SNMP agents.
In other words: SMIv2 is the modeling language
that is used to define data models (MIBs) which in
turn define the structure of management data. In
the XML world, the XML Schema language is the
formal modeling language. Schema definitions are
documents written in that language and can define
the structure of XML documents which may rep-
resent management data (see Figure 2).

When designing the mapping, we had two aims
in mind. First of all we wanted the XML doc-
uments to be as convenient for reading and pro-
cessing as possible. We tried to look at manage-
ment data from an XML point of view. Achiev-
ing a clean XML structure makes the conversion
algorithm more complicated compared to most
other approaches that are more destined to a 1:1
SMI mapping and look more like an ’XML-ified
SMI’. The most notable of these other approaches
known to the authors are those from Mazumdar
[6], from Hong et al [7, 8], and from Martin-Flatin
[4]. Some major aspects of these approaches are
compared in Table 1. The second aim was to re-
duce the loss of information during the conversion
process. The generated XML Schema definitions
should contain almost all information of the un-
derlying SMI MIB module. In the following, the
most important characteristics of our mapping will
be described and compared to other translation ap-
proaches.

XML Structure of Management Data

The first step that has to be taken when design-
ing the structure of an XML document is to define
its scope. Several scope restrictions are possible.
For example, each XML document could repre-
sent instance data of one specific MIB module at
a determined agent at a given point in time. The
XML documents of the approach from Hong et al
are designed that way. Another possibility is to
restrict the range to special MIB objects such as
tables and scalar groups. That increases readabil-
ity because only a fragment of the MIB will be
presented such that the structure can be kept very
simple. The XML documents of Mazumdar’s ap-

4



proach are designed that way. We propose a root
element that is independent from specific MIBs,
agents or point in time in order to ensure a more
flexible data range of the documents. The agent,
the SNMPv1 community, and the point in time are
encapsulated in<context> elements at the sec-
ond level. This way, it is possible to store data
from multiple agents or snapshots made at differ-
ent points in time within a single document, be-
cause the root element can store an arbitrary num-
ber of these second level elements. However, the
XML document structure becomes slightly more
complicated than in the other two approaches, be-
cause an additional element level is used.

There are two possibilities of how to deal with
the OID tree of a MIB. The first one is a straight-
forward mapping of all nodes in the MIB to nested
elements in the XML instance document. SNMP
experts should be quite familiar with such a map-
ping because the XML document tree represents
exactly the OID tree they know. The three re-
lated approaches use this kind of direct mapping.
In our opinion, the straightforward mapping leads
to unnecessarily complicated XML instance doc-
uments. Therefore, we designed a ’flattened’ el-
ement hierarchy and tried to avoid deep element
nesting. Groups of scalar objects and table rows
are mapped to elements on the third level (the level
below <context> ) regardless of their position
in the OID tree. This flattened hierarchy is much
more readable than a deep nested element struc-
ture. The OID information of a node is put into
an<xsd:appinfo> clause in order retain it for
applications that rely on it.

Unique naming in SMI is based on
modulename-descriptor pairs. In XML, unique
naming can be achieved using XML namespaces.
Therefore, SMI modules should be mapped to
XML namespaces. Mazumdar’s approach uses
multiple XML Schema definition files which
define a common namespace, one schema file
for every data container. Hong’s approach does
not use namespaces, but every MIB module is
mapped to a single XML Schema definition file.
In our approach, we map each MIB module to a
single XML Schema definition file which defines
its own namespace.

INDEX clauses in a MIB module are used to
specify the objects that uniquely identify table
rows. Columnar objects that are used in anINDEX
clause are not mapped to sub-elements, but to at-
tributes of the table row element. An additional
<xsd:key> construct is created to denote that
this combination of columnar objects serves as a
unique key that identifies an XML table row. In
Mazumdar’s approach, there is just one index at-
tribute which contains a concatenated string of the
index object values. This could cause ambiguity
problems. Hong’s and our approach put the value
of the index variables into attributes. To elimi-
nate redundancy, index objects are only listed as
attributes and not as normal elements in our ap-
proach.

In SMI, there are confusing constructs to rep-
resent nested data structures such as augmentation
tables and tables that share a common prefix list of
index objects with another table. This is a down-
side of SNMP’s simplicity. In XML, there is a
more intuitive and elegant way of expressing simi-
lar relationships: element containment. Therefore,
columnar objects of augmentation table rows are
in our approach added as child elements of the
common parent table row. However, this is only
possible if the augmentation table is part of the
same MIB module, because MIB modules cannot
contain references to (potentially future) augment-
ing MIB modules. The same applies to sub-tables,
which are mapped to child elements of their parent
table element.

Mapping Data Types

Type andTEXTUAL-CONVENTIONdefinitions in
MIB modules are mapped to XML Schema types
which are derived from base types with appropri-
ate<xsd:restriction> clauses. This map-
ping is automated except for the base types, which
are defined in a single hand-crafted XML Schema
definition. The differences between the mentioned
approaches are only marginal with respect to the
base type mapping. For details on our base type
mapping see Table 2.

The value space can be restricted
with <xsd:minInclusive> and

5



<xsd:maxInclusive> for numbers.
Similarly, with <xsd:minLength> and
<xsd:maxLength> it is possible to re-
strict the length of strings. This kind of
mapping is supported by all mentioned ap-
proaches. However, some limitations such
as multiple ranges (e.g. -1 | 60..600 ,
as in DISMAN-EXPRESSION-MIB::exp-
ResourceDeltaMinimum ) cannot be ex-
pressed in XML Schema with simple facets. A
union type with a subtype for each subrange can
solve this problem. However, union types are ’a
dead end’ with respect to further inheritance.

With DISPLAY HINT clauses, MIB authors
specify, how they think the data should be dis-
played. Therefore, we interpret display hints also
for rendering instance data in XML documents.
Thus, if the type defined in the MIB has a dis-
play hint, that hint is used to further restrict the
value space of the mapped XML Schema type.
Integer types, for example, may get an addi-
tional <xsd:fractionDigits> facet, which
specifies the number of decimal places. For
string types, even complex display hints are trans-
lated automatically to<xsd:pattern> con-
structs in the XML Schema definition with reg-
ular expressions that formally restrict the value
space. In this case, the<xsd:minLength>
and <xsd:maxLength> facets are not used,
because the generated regular expression usu-
ally implies length restrictions. Note that these
length restrictions may be different from the one
defined in the MIB because the MIB’s restric-
tion corresponds to the length of the unformatted
octet string whereas the restriction implied in the
<xsd:pattern> facet corresponds to the for-
matted string.

As mentioned above, one of our aims was to
represent management data in a human readable
fashion. Therefore, the text of leaf elements and
index attributes should be represented in an intu-
itive way. Enumeration types and bit sets are writ-
ten as the according names. Strings are written
in ASCII form, if the underlying MIB type has
a display hint that ’suggests’ an according rep-
resentation. If the display hint recommends an-
other representation, the string is rendered accord-

ingly. Otherwise, if there is no display hint, the
type<xsd:hexBinary> is used. This type rep-
resents binary data in hexadecimal form. Thus, in
this case the string will be written in hexadecimal
digits.

To reduce the loss of information, SMI MIB
module information that is not necessarily re-
quired in the XML Schema definition is put
into <xsd:appinfo> clauses so that it remains
available for other applications. This is useful es-
pecially for XSLT-based MIB compilers or MIB
browsers.

Figure 3 shows an example of an XML instance
document conforming to our proposal. The shown
data is defined in theIF-MIB module [9] and has
been retrieved from the agent on a router named
ciscobs.rz.tu-bs.de .

An SNMP-to-XML Gateway

In this Section, we will present the architecture of
a gateway that makes the presented mapping vi-
able in a seamless way.

The manager interface of the gateway is based
on HTTP, where request parameters are contained
in the HTTP query string. Only the data of SET re-
quests is transfered in the body of HTTP POST re-
quests. SOAP would be an alternative, but for the
gateway it would add further protocol overhead
on top of (usually) HTTP without additional func-
tionality. Furthermore, in the presented approach,
documents retrieved from the gateway can directly
be incorporated in XSL transformations without a
SOAP client engine.

Figure 4 shows the architecture of the gateway
and its three major operations:

(a) An XML-based manager that attempts to
read management data, sends an HTTP GET
request to the gateway. The URL comprises
the protocol (http or https ), the gate-
way host and the path to the gateway ser-
vice on the host, and finally an HTTP query
string that specifies the operation (get ) and
an expression to specify the requested man-
agement data. Note that this expression is
an XPath compliant node set expression: it

6



starts with the common root node and a
context sub-node with a set of context at-
tributes to specify agents, access security
credentials, and caching properties. This
is typically followed by a node name and
according attributes to specify a filter for
the requested portion of data supplied by
the agent. To illustrate this, imagine the
following request to retrieve a list of de-
scriptions of those interfaces on the device
talisker.ibr.cs.tu-bs.de that are
currently not in the operational state to which
they have been administratively configured:

lynx -dump ’http://www.ibr.cs.tu-bs.de\
/snmp-xml-gw?get=/snmp-data/context\
[@hostname="talisker.ibr.cs.tu-bs.de"]\
/ifEntry[ifOperStatus!=ifAdminStatus]\
/ifDescr’ > interfaces.xml

When this request is received by the gate-
way’s HTTP engine, the location path of
the XPath expression is interpreted and the
translator’s core unit constructs a sequence
of SNMP GET operations to fulfill the re-
quest. To achieve this, the gateway refers
to its repository of supported XML Schema
definitions which supply the required infor-
mation, e.g., the mapping of node names to
OIDs, element attributes to table indexing in-
formation, labels of enumeration values to
numeric values, etc.

The SNMP responses received from the
agent are converted to XML element infor-
mation items, again with the help of the
XML Schema repository. These fragments
of XML information are added to the trans-
lator’s DOM tree. Once the retrieved data
is complete (or the retrieval timed out), the
DOM tree is filtered based on the predicate
part of the request’s XPath expression. The
requested portion is passed to the HTTP en-
gine to make up an XML document which is
then passed back as the response to the initial
HTTP GET request.

In some situations, XML-based manage-
ment applications access managed objects or

groups of managed objects multiple times to
achieve a single higher-level operation. In
these cases it is usually not required that
the gateway retrieves the same SNMP data
multiple times from the agent. To take ad-
vantage of this circumstance and to improve
performance, the gateway could support the
caching of information retrieved from the
agent and an HTTP client could specify the
maximum tolerated age of requested data,
e.g., through an XPath expression on the
@time attribute of the<context> ele-
ment.

(b) Similar to GET requests, the XML-based
manager can issue HTTP POST requests in
order to control or configure agents through
XML documents. In this case, the URL’s
query string contains just the mode of oper-
ation (set ) in the HTTP query string. The
passed XML document is parsed into an in-
ternal DOM representation. Then the trans-
lator inspects the tree to identify those nodes
for which the underlying MIB object defini-
tions allow SNMP write access. Again, the
XML Schema repository supplies all the in-
formation to do this. Based on these nodes,
the translator constructs SNMP SET requests
and sends them to the agent. SNMP re-
sponses are used to approve the modifica-
tions in the DOM tree or to add error infor-
mation to the DOM tree, if the SNMP SET
operations failed. Finally, the resulting DOM
tree is used to return an XML document as
the response to the initial HTTP POST re-
quest.

Note that the XML document submitted
through the HTTP POST request can be
based on a document previously retrieved
through an according HTTP GET request.
This allows to easily realize management ap-
plications that support simple configuration
modifications in pull-edit-push cycles.

Let’s assume that in the above GET exam-
ple, the operator (or an automated manage-
ment algorithm) decided to administratively

7



take down some of the interfaces. This can
be done by adding the following element to
those interfaces in the retrieved XML docu-
ment:

<IF-MIB:ifAdminStatus>down</IF-MIB:ifAdminStatus>

Then the document gets resubmitted to the
gateway (this Java program just cares about
the correct HTTP content encoding):

java GatewayClient http://www.ibr.cs.tu-\
bs.de/snmp-xml-gw set interfaces.xml

(c) Finally, the gateway can also work as an
SNMP trap sink. When the translator re-
ceives a notification it looks up the concerned
OIDs and values from the XML Schema
repository and constructs a small element in-
formation item per notification. These in-
formation items are processed in two ways.
They can be sent as short XML documents
in HTTP POST requests to XML-based no-
tification receivers. This would require the
gateway to act as an HTTP client. Further-
more, all notification information items are
added to a local XML document that repre-
sents a general notification log. This allows
XML-based managers to elegantly access the
notification log at any subsequent point in
time in the same way as regular management
information is accessed through HTTP GET
requests, i.e., XPath based filtering of noti-
fications is supported and the gateway is not
required to act as an HTTP client in this case.

Implementations

The approaches presented in this article have been
implemented as follows:

The mapping of SMI MIB modules to XML
Schema definitions has been realized as a new out-
put driver added to thesmidump MIB compiler
toolkit. It is available with the regular open source
distribution of thelibsmi [10] that runs on al-
most any conventional operating system.

The presented gateway architecture has been
implemented — except for the support of no-
tifications — as a Java Servlet. It has
been developed and used successfully on the
Linux/Apache/Tomcat platform. The code is also
available through thelibsmi web site.

Limitations and Future Work

Future work that has to be done towards a fully
functional XML-based Internet management can
roughly be divided into short-term transitional
work and long-term work towards purer XML
solutions. The long-term solution for overall
XML-based management systems comprehends
functionality that cannot be realized efficiently if
parts of the manager-agent communication remain
based on today’s SNMP, which is technology that
is known for some limitations, especially with re-
spect to performance. The field of configuration
management is currently the best example that
makes this clear.

With this in mind, the previous Sections of this
article present an approach and a prototype imple-
mentation for a transitional phase, of which some
aspects can still be improved in the near future and
others cannot be solved:

• The processing of notifications has to be imple-
mented.

• Current write operations support only the mod-
ification of existing objects, but not the creation
and deletion of instances.

• Some MIB objects and types have very spe-
cial functional semantics, for which a trans-
lation to data-oriented XML information sets
is not practicable. Examples are objects of
typesRowStatus or TestAndIncr or ob-
jects that change their values upon read access,
like DISMAN-SCRIPT-MIB::smLaunch-
RunIndexNext . This is especially problem-
atic in combination with the gateway’s caching
support.

• Future revisions of the gateway have to support
SNMPv3 security.

• Scalability issues have to be addressed. This
affects parallel and conflicting HTTP requests,

8



huge numbers of managed nodes and objects,
and caching strategies.

Summary

This article gave an overview of core XML tech-
nologies and how they fit in Internet management
systems. It has been explained that the widely
deployed infrastructure of SNMP-based managed
nodes requires an integration effort to allow a
seamless transition. We have presented an au-
tomated mapping of SMI MIB data models to
XML Schema definitions that implies the mapping
of SNMP management data to XML documents.
An essential difference from other mapping ap-
proaches is that the presented mapping is driven
by the goal to tap the full potential of XML and
XML Schema so that the translation output fits
well in future pure XML-based systems without
any inherited burden from SNMP, i.e., the attempt
is driven by the target, not the source.

To prove the mapping concept, we have pre-
sented an architecture and a prototype implemen-
tation for an SNMP-to-XML gateway that trans-
parently translates HTTP requests for XML docu-
ments to SNMP operations.

Some items for future work have been dis-
cussed, but it has to be acknowledged that this ef-
fort is just a transitional step towards pure XML-
based Internet management systems. However, it
allows the integration of legacy devices that will
never support XML based management, and de-
vices with very limited resources into such sys-
tems.

Acknowledgements

An early presentation of this work with little in-
formation on the gateway was published in [11].
The presented gateway implementation has been
done by Jens M̈uller at the Technical University
of Braunschweig. The authors would like to thank
the attendees of the 12th meeting of the Network
Management Research Group (NMRG) in Col-
orado Springs, March 2003, as well as Subrata

Mazumdar, Frank Fock and Jean-Philippe Martin-
Flatin for their helpful comments.

References

[1] J. Scḧonwälder and A. Pras. The Sim-
ple Times. An openly-available online
publication on SNMP, http://www.simple-
times.org/.

[2] R. Sprenkels and J. P. Martin-Flatin. Bulk
Transfer of MIB Data. Simple Times, 7(1),
March 1999.

[3] S. Leinen and A. Bierman. The
IETF Network Configuration
Working Group (NETCONF).
http://www.ietf.org/html.charters/netconf-
charter.html.

[4] J.-P. Martin-Flatin.Web-Based Management
of IP Networks and Systems. Wiley, 2002.

[5] W3C. W3C – The World Wide Web Consor-
tium. http://www.w3c.org/.

[6] S. Mazumdar. XML-Based Man-
agement Interface for SNMP En-
abled Devices. WWW Page, 2001.
http://www.research.avayalabs.com/user/ma-
zum/Projects/XML/.

[7] Y. Oh, H. Ju, M. Choi, and J. W. Hong. Inter-
action Translation Methods for XML/SNMP
Gateway. In M. Feridun, P. Kropf, and
G. Babin, editors,Proc. 13th IFIP/IEEE In-
ternational Workshop on Distributed Sys-
tems: Operations and Management, pages
54–65. Springer, October 2002.

[8] J.-H. Yoon, H.-T. Ju, and J.W. Hong. De-
velopment of SNMP-XML Translator and
Gateway for XML-based Integrated Network
Management.International Journal of Net-
work Management, 13:259–276, 2003.

[9] K. McCloghrie and F. Kastenholz. The In-
terfaces Group MIB. RFC 2863, Cisco Sys-
tems, Argon Networks, June 2000.

9



[10] F. Strauß. Libsmi - A Library to Access
SMI MIB Information. http://www.ibr.cs.tu-
bs.de/projects/libsmi/.

[11] F. Strauß and T. Klie. Towards XML ori-
ented Internet Management. In G. Gold-
szmidt and J. Scḧonwälder, editors,Proc. 8th
IFIP/IEEE International Symposium on In-
tegrated Network Management, pages 505–
518, Colorado Springs, March 2003. Kluwer.

Biographies

TORSTEN KLIE (tklie@ibr.cs.tu-bs.de) is a research
staff member at Learning Lab Lower Saxony, Han-
nover, Germany and a Ph.D. student at the Institute
of Operating Systems and Computer Networks at the
Technical University of Braunschweig, Germany. He
received his diploma (M.Sc.) in business computer sci-
ence from the Technical University of Braunschweig in
2003. His research interests include Internet manage-
ment, distributed systems, XML data modeling, and E-
Learning.

FRANK STRAUSS (strauss@ibr.cs.tu-bs.de) is a re-
search staff member and Ph.D. student at the Institute
of Operating Systems and Computer Networks at the
Technical University of Braunschweig, Germany. He
received his diploma (M.Sc.) in computer science from
the Technical University of Braunschweig in 1999. His
research interests include Internet management, dis-
tributed systems, network security, and operating sys-
tems.

10



HTTP or
other

well−known
protocols

XPath

message

WSDL
service definition

XML Schema
definition

XML
document

XSL
stylesheet

is a

is a

is a is a

can be used to
transport

is used by

XML parser XSLT processor
XML parser
validating

read byread by read by

specifies

through

SAX DOM

accessed
can be

used by used by

validation
reports

statistics, web pages, other
human readable documents

creates creates

SOAP

Figure 1: XML technologies and tools [11].

11



defines the structure of

used to define

SMIv2

MIB

database of
proprietary

SNMP data
:

:

:

XML document

definition
XML Schema

XML Schema
language

management data

data model

data modeling language

invocation of the
MIB compiler

mapping algorithm
implemented as MIB compiler

runtime usage of the
SNMP−to−XML gateway

Figure 2: The mappings of data modeling languages, data models and data.

12



Mazumdar [6] Hong et al [7, 8] Martin-Flatin [4] Klie/Strauß

XML data
model design

driven by usability in
XML applications

driven by SMI MIB
design

driven by SMI MIB
design

driven by usability in
XML applications

separation of
data model and
data

strict (data types,
OIDs and access
modes only option-
ally in the XML
documents)

not strict (parts of
OIDs and full MIB
tree hierarchy in the
XML documents)

not strict (parts of
data type and OID
information in the
XML documents)

strict (no data types,
OIDs and access
modes in the XML
documents)

SMI MIBs are
mapped to...

modular XML
Schema definitions
(one per table and
per scalar group, one
for type definitions,
and one per MIB
which includes the
others)

XML Schema defini-
tions

DTDs or XML
Schema definitions
(usually, one per
MIB)

XML Schema defini-
tions (one per MIB)

implementation
status

MIB compiler im-
plemented, gateway
implementation un-
der way (information
from the project web
site, last updated in
2001!)

MIB compiler and
several gateway
approaches imple-
mented

research prototype
implementation
(’JAMAP’), MIB
compilation not yet
implemented

MIB compiler and
gateway imple-
mented, available as
open source

Table 1: Comparison of SNMP-to-XML mapping approaches.

13



SMI type XML Schema builtin type

INTEGER, Integer32 xsd:int
Unsigned32 , Counter32 xsd:unsignedInt
Counter64 xsd:unsignedLong
INTEGERenumeration xsd:NMTOKEN
OCTET STRING xsd:hexBinary or xsd:string
BITS xsd:list of xsd:NMTOKEN
IpAddress xsd:string with regexp restriction
OBJECT IDENTIFIER xsd:string with regexp restriction

Table 2: The mapping of SMI base types to XML Schema types.

14



<?xml version="1.0" encoding="UTF-8"?>
<snmp-data xmlns="http://www.ibr.cs.tu-bs.de/projects/libsmi/xsd/snmp-data"

xmlns:IF-MIB="http://www.ibr.cs.tu-bs.de/projects/libsmi/xsd/IF-MIB"
[...] >

<context ipaddr="134.169.246.1" hostname="ciscobs.rz.tu-bs.de" port="161"
community="public" time="2003-11-10T16:57:31Z">

<IF-MIB:interfaces>
<IF-MIB:ifNumber>10</IF-MIB:ifNumber>

</IF-MIB:interfaces>
[...]

<IF-MIB:ifEntry ifIndex="2">
<IF-MIB:ifDescr>FastEthernet0/0</IF-MIB:ifDescr>
<IF-MIB:ifType>ethernetCsmacd</IF-MIB:ifType>
<IF-MIB:ifMtu>1500</IF-MIB:ifMtu>
<IF-MIB:ifSpeed>100000000</IF-MIB:ifSpeed>
<IF-MIB:ifPhysAddress>00:03:fd:32:e4:00</IF-MIB:ifPhysAddress>
<IF-MIB:ifAdminStatus>down</IF-MIB:ifAdminStatus>

[...]
<IF-MIB:ifName>Fa0/0</IF-MIB:ifName>
<IF-MIB:ifLinkUpDownTrapEnable>enabled</IF-MIB:ifLinkUpDownTrapEnable>

[...]
<IF-MIB:ifRcvAddressEntry ifRcvAddressAddress="00:00:00:00:03:00">

<IF-MIB:ifRcvAddressStatus>active</IF-MIB:ifRcvAddressStatus>
<IF-MIB:ifRcvAddressType>other</IF-MIB:ifRcvAddressType>

</IF-MIB:ifRcvAddressEntry>
[...]

</IF-MIB:ifEntry>
[...]

<IF-MIB:ifStackEntry ifStackHigherLayer="2" ifStackLowerLayer="0">
<IF-MIB:ifStackStatus>active</IF-MIB:ifStackStatus>

</IF-MIB:ifStackEntry>
</context>

</snmp-data>

Figure 3: An XML instance document conforming to the IF-MIB XML Schema.

15



Agents
Manager

HTTP
Engine

(with
CGI
or

Servlet
Interface)

SNMP
Engine

(Command
Generator

and
Notification

HTTP GET

HTTP POST

TranslatorXML
Parser

DOM

XPath
Interpreter

SNMP Set

SNMP Get

SNMP Trap

Notification Schema Receiver)

SNMP
XML−based

(a)

(b)

(c)

HTTP POST

Log
Cache

Repository

Figure 4: Architecture of the SNMP-to-XML gateway and its three operations: (a) retrieval of manage-
ment data, (b) control and configuration, (c) propagation of notifications.

16


