
DroidCluster: Towards Smartphone Cluster Computing
- The Streets are Paved with Potential Computer Clusters -

Felix Büsching, Sebastian Schildt, Lars Wolf
Technische Universität Braunschweig

Institute of Operating Systems and Computer Networks (IBR)
Mühlenpfordtstraße 23, 38106 Braunschweig, Germany

Email: {buesching | schildt | wolf}@ibr.cs.tu-bs.de

Abstract—What is the processing-power of an omnibus? Can
a train compute a climate model? Today’s smartphones are
becoming more and more powerful and have a performance
similar to former high-end workstations. This power can also
be used in a joint and cooperative way by building local and
mobile ad-hoc clusters. In this paper we will show that setting
up a smartphone cluster is not only possible, but it is also a
reasonable thing to do, considering the sheer amount of mobile
devices and the applications that could benefit from it.

Keywords-Cluster Computing; Smartphone; Mobile Cluster

I. INTRODUCTION

Cluster- and Grid-Computing are well-known and fre-
quently investigated topics. There has been plenty of re-
search work during the past 30 years and when looking
at Cloud-Computing nowadays, there is still recent and
ongoing work in that area.

In mobile computing, there is obviously a trend to
miniaturize and save energy, but at the same time mo-
bile devices are also becoming more powerful. In fact,
nowadays smartphones have the computational capabilities
of high-end workstations from a few years ago. The SGI
Indigo-2 from the middle of the 1990ies was considered a
high-end graphical workstation. The Indigo-2 used a MIPS
based processor, whose architecture is very similar to the
MIPS cores used in many embedded systems today. In
the Indigo-2’s highest configuration the CPU reached 195
MHz. Performance metrics that are easily surpassed by even
entry level smartphones. And when yesterday’s clustered
workstations could compute climate models or simulate
nuclear explosions, clusters of today’s smartphones could
do so as well.

Many successful scientific projects such as the pioneer
Seti@home , Einstein@home , the World Community Grid
or the distributed.net projects have shown, that for certain
workloads, volunteer computing is a viable alternative to
buying or renting big compute clusters. The main mo-
tivation for these projects, are lower costs compared to
classic compute clouds [1]. While the main idea was to
tap into the computing power available in private hands,
these days mobile devices such as tablets and smartphones
are about to overtake PC’s in market penetration. In this
paper we argue, that current mobile computing platforms
are becoming powerful enough, and are widespread enough,

that they should be considered as viable compute resource
for computation intensive tasks such as the work offloaded to
volunteer computing projects today. As all these devices are
also equipped with WiFi, which offers plenty of bandwidth
at reasonably good latencies, all the ingredients for forming
capable ad-hoc computing clouds are there.

In the remainder of the paper, we start in section II by
suggesting some scenarios where it is reasonable to use
the computational resources of mobile devices. Section III
gives an overview about the current state and development
of technology for mobile computing. We present a feasibility
study, implementing and evaluating a small MPI cluster us-
ing ordinary Android mobile phones, in section IV. Finally,
in section V, we finish with some concluding remarks.

II. APPLICATIONS

Not only are mobile computing platforms getting faster,
but smartphones and tablets are on their way becoming the
primary (or only) computing device for many people. The
market penetration for mobile phones in general is much
higher than for PCs. In 2010 shipments of smartphones
surpassed PC shipments [2] for the first time.

In the following we present some visionary applications
for mobile clouds which can be established in an ad-
hoc and on-demand way to solve computation problems in
cooperation. Additionally, the existing volunteer computing
projects mentioned in the introduction could definitely be
ported to mobile devices as well.

A. Rolling Clouds

Consider a train as an example where the ad-hoc for-
mation of a mobile computing cloud will make sense:
Most passengers have mobile phones, and they can use the
carriage’s sockets to charge them, so that energy drain is
not an issue. For example a Siemens Velaro D high-speed
train has a total capacity of 460 passengers. A second class
carriage has 76 seats. Within a carriage mobile devices can
easily form a closely coupled computing cloud working on
principles such as MPI [3] using WiFi. Due to communica-
tion constraints, a computing cloud encompassing a whole
train should be built on an architecture for loosely coupled
distributed systems, similar to what current public distributed
computing platforms such as BOINC [4] use: Dispatch tasks

mailto:buesching@ibr.cs.tu-bs.de
mailto:schildt@ibr.cs.tu-bs.de
mailto:wolf@ibr.cs.tu-bs.de
http://www.ibr.cs.tu-bs.de

to devices (or in this scenario closely-coupled sub-clouds)
and aggregate results in a backend. The WiFi infrastructure
already built into modern trains for providing passengers
with internet access can be used to facilitate communication
between carriages.

In the near future, when you embark on a train journey,
you will plug in your mobile phone. While your mobile
phone is charging it will form a mobile cloud with the
devices of fellow travelers. An oncoming train will transmit
environmental data from a public sensing system installed at
this train’s destination. The ad-hoc computing cloud will use
this data to calculate a fine grained forecast of local weather
and ozone concentrations at your destination. Before you
leave the train you put on your raincoat because your device
warned you to expect heavy cloudbursts.

B. Corporate Environments

The smarter our phones become, the less the battery seems
to last: Each day millions of office workers enter their
cubicle, switch on their PC, and plug in their private phone.
As an employer you can either tolerate this, and pay for the
electricity, or prohibit it. The problem with prohibiting is: It
is hard to enforce, and surely not good publicity if you fire
an employee for “stealing electricity”.

Now, as an employer, you can fight back: Every private
device that contributes back to the company’s computing
cloud, is allowed to be charged. In a software shop, it would
be quite easy to deploy distcc onto the mobile devices.
distcc is a distributed compiler framework: When compiling
a big software project, compilation units are dispatched
to different compile nodes and the object files are later
aggregated on the host that initiated the build. If you compile
a big project, it does not matter, that a mobile phone maybe
needs 5 seconds to compile a file, that the developer’s
workstation can compile in 0.5 seconds: As the whole build
process takes longer than 5 seconds you can still save
time by distributing to many different nodes. Thus, your
employees will not steal electricity, instead they will bring
their own private equipment to increase their productivity.

C. Cooperative Cracking

Moxie Marlinspikes tool WPACracker uses a 400 CPU
cluster running in the Amazon cloud. At Black Hat DC
2011 Thomas Roth successfully demonstrated another Cloud
Cracking Suite (CCS) that is able to crack WPA-encryption
in a reasonable time. Combing the computation power of
mobile devices locally brings the needed power to crack
WLAN encryption on site. Using a sufficiently large number
of smartphones combined with the ability to share their
resources and to coordinate a distributed attack will signif-
icantly lower the time for any brute-force based intrusion.
Please note that this might be illegal in some countries.

III. MOBILE COMPUTING HARDWARE EVOLUTION

Mobile devices follow the technological development of
common general purpose PC platforms, only at a much faster
pace. As a rule of thumb all architectural improvements from

general purpose computing arrive in the mobile market, as
soon as current technology allows them to be implemented
within the power envelope available to mobile devices. Only,
in the mobile space development is faster. These days, due
to the boom in the smartphone and tablet sector, mobile
platforms are evolving faster and decreasing the lead of
general purpose architectures.

The LG P500 used for the demonstration in this paper
has been a Midrange Smartphone as of 2011. It includes
a 600 MHz Qualcom MSM7227 CPU based on an ARM
11 core. In 2012 the midrange already moved up to ARM
Cortex A8 based designs at around 1 GHz. The A8 is a
dual issue in-order architecture including the NEON SIMD
extensions and a much improved FPU. Today’s high end
mobile devices implement the Cortex A9, which allows
for dual-core and quad-core SoC configurations and is a
superscalar dual-issue fully out-of-order design. The A9’s
successor, the A15, will reach the market soon, including
further architectural improvements. The market for mobile
computing SoCs is highly competitive: Not only is there a
fierce competition on the SoCs based on ARM cores, but
also on the cores itself: ARM architectural licensees offer
compatible core architectures competing with ARM’s Cortex
designs. Qualcomms upcoming Krait architecture will be a
ARMv7 compliant core competing against the Cortex A15
based designs. Apart from the ARM world the PPC and
MIPS family of SoCs are also still very much alive

That CPUs architectures coming from the embedded
and mobile markets are a viable fit for high performance
computing environments, is also demonstrated by Calxeda’s
”EnergyCore“, which is an ARM based quadcore SoC
with an integrated 80GBit fabric switch targeted for many-
core clusters [5]. This technology is implemented by HP’s
Redstone research platform, which integrates 2800 Calxeda
cores into a a single rack. [6].

In contrast to common PC platforms from 10 years
ago, current smartphones also include capable GPUs. All
contemporary mobile GPUs support Open GL ES 2.0, which
is the OpenGL variant for embedded systems. The 2.0
variety requires programmable shaders, which have been
the first step to enable GPGPU on common PC platforms.
Furthermore, cutting edge mobile GPU solutions such as
Imagination Technologies PowerVR SGX series or ARM’s
own MALI T600 series even support OpenCL. This allows
leveraging experiences form GPGPU computing on the
desktop and applying it to mobile platforms.

We measured the performance of various Android devices
available in the lab using a LINPACK benchmark available
in the Android market1. Table I summarizes the results.
While the absolute values are not so interesting, we want
to point out, how the changes in performance reflect the
rapid architectural innovations that we can currently witness
in the mobile SoC market.

This short overview of the current state of mobile devices
shows that the computing power available in small mobile
devices already surpassed the computing power of high-end

1https://market.android.com/details?id=com.greenecomputing.linpack

https://market.android.com/details?id=com.greenecomputing.linpack

workstations from a few years ago and is rapidly moving into
the area dominated by current low end and (in the graphics
area) mid-range stationary computing.

IV. FEASIBILITY STUDY

To demonstrate that it is feasible to build an Android
cluster with currently available hardware and software, we
built a small proof-of-concept cluster with 6 Android nodes.

As evaluation software we chose to run LINPACK as it is
a standard benchmark for HPC systems, which are usually
composed of many compute nodes running concurrently.
While it is of course possible to build a compute cluster out
of ARM nodes [6], our goal is to be minimally invasive:
We do not want to heavily modify or even replace the
installed Android systems. If distributed computing solutions
get deployed on mobile systems, it will be important that
they can run alongside the Android system and not interfere
with the devices primary function.

To distribute the calculation, we use a LINPACK im-
plementation based on a MPI library. Message Passing
Interface (MPI) [3] is a standard describing the message
exchange in parallel computations in distributed systems.
MPI applications consist of communication processes that
are executed parallel on distributed cores or systems. The
parallel processes are usually working on the same problem
and are exchanging messages, e.g. via TCP.

LINPACK benchmarks [7] are frequently used to measure
a system’s floating point computing power, although the
original LINPACK is first of all a routine library for solving
systems of linear equations. Today, LINPACK is the standard
benchmark for the TOP500 list, which aims to gather the
most powerful (known) computer systems in the world.

A. Test Environment

Last year, we equipped a student lab with six cheap LG
P500 Android phones. Regarding the computational power
this is considered a low end phone today: It is equipped with
a 600MHz MSM7227 processor (see table I) and 512MiB
RAM. Therefore the performance results measured in this
study are not expected to be impressive, but rather show the
principal feasibility and scalability distributing LINPACK on
this less than ideal environment.

The installed Android system has only been modified
minimally: To enable the installation of the needed testing
tools, root access to the smartphones was obtained by
running the z4root tool. Then we created a Debian ARM
installation in a folder on a SD Card using debootstrap.
The rooted phone allows to get shell access and then chroot
into the base Debian system installed by debootstrap. Please
note, that by using this method we do not interfere with any
software already installed on the phone. The Android system
can be used just normally. The Debian userland runs under
the same kernel the phone has been booted with.

In the Debian system we installed a MPI library and HPL
which is the actual MPI based LINPACK implementation.
We also installed an SSH server, so the phones could be
comfortably configured over the network (even with all the

Android #1
MPI Master

2 3 MPI Slaves4 5 6

USB-Connection (a)

Control PC

Wireless Access Point

WiFi-Connection (b) USB Hub

Figure 1. System Overview

advances in the smartphone sector, using a real keyboard is
still a bit more comfortable than typing shell commands on
a 2" virtual keyboard).

B. Test Setup
While normally for MPI applications you want to use low

latency links between nodes, for a mobile phone the only
realistic available option is WiFi. With a single access point
and without any additional routers this would theoretically
allow clustering up to 1024 nodes (this is due to limitations
in IEEE 802.11’s network allocation vector, probably you
would run into problems much earlier...). As the used version
of Android did not support the IEEE 802.11’s ad-hoc mode,
we setup a separate access point which was used by the
mobile phones. In a real scenario, this access point could
also have been provided by an Android device, as all
Android phones capable of WiFi tethering can operate as
access point.

As WiFi connections are not the most reliable links pos-
sible, especially considering the institute’s highly crowded
2.4 GHz band (the P500 does not support 5GHz WiFi), for
reference we also included the next best solution: When
attaching the phones via USB to a PC, a virtual ethernet
interface for each phone will be established on the host. We
used this USB-ethernet connection and manually set up the
routing on the PC. Thus, all phones in the cluster were able
to communicate with each other by a wired connection. The
setup of the DroidCluster can be seen in figure 1.

We run the LINPACK benchmark over the WiFi and
the USB links for 1 to 6 nodes. The used HPLinpack
configuration file can be requested by the authors.

C. Results
Figure 2 shows the averaged results of the LINPACK

runs. It can be seen that with our HPL configuration a
single LP500 reaches 5.81 MFlops. This is in line with the
performance expected for this architecture when comparing
it with the performance reached by the third party LINPACK
benchmark for the P500 listed in table I.

The experiment shows, that despite the less than optimal
links, the cluster scales reasonably well up to 6 nodes.
While the USB links scale slightly better than the WiFi
link, the WiFi cluster still reaches 75% of the optimal value
(assuming unrealistic linear scaling) for 6 nodes. The small
ditch for 5 nodes in the USB configuration is due to the fact
that the HPL benchmark ran with normal priority, as the goal
was not to take over the whole system, but run the compu-
tation alongside the normal system’s operations. Therefore

Table I
LINPACK PERFORMANCE OF DIFFERENT ANDROID SYSTEMS

System CPU MHz ARM Core Android Version MFLOPS 4
Huawei U8120 Qualcomm MSM7225 528 ARM11 2.3.7 3.7
LG P500 Qualcomm MSM7227 600 ARM11 2.2 4.0
HTC Legend Qualcomm MSM7227 600 ARM11 2.3.7 7.5
Samsung Galaxy S Samsung Exynos 3110 1000 Cortex A8 2.3.7 17.7
HTC Nexus One Qualcomm QSD 8250 1000 Qualcomm Scorpion 4.0.3 31.0
Medion Lifetab P9514 Nvidia Tegra 2 2x1000 Cortex A9 3.2 54.4
Samsung Galaxy Nexus Texas Instruments OMAP 4460 2x1200 Cortex A9 4.0.2 75.0

0

10.04

15.05

19.48

23.22

29.04

0

5.81

10.15

14.16

18.02

22.01

26.15

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6

USB-Bridge

WLAN

ideal

Nodes

M
FL
O
PS

Figure 2. Combined computation power (Mega-FLOPS) of clustered
smartphones (1 to 6 phones) running Linpack and MPI.

tasks normally running on the Android can influence the
computation task.

Also note that a tightly coupled approach such as MPI
to distribute a task puts the most stress on the links. For
many use cases a more lightly coupled approach where you
send larger tasks to nodes and wait for the results is surely
possible and promising; and this is expected to yield even
better scaling characteristics.

V. CONCLUSIONS

The current evolution in mobile computing platforms
follows the developments in the desktop world, only at a
much faster pace. Innovation for mobile computing plat-
forms is driven by a highly competitive market and by the
fast adoption of tablets which are situated between mobile
and desktop computing and therefore are always pursuing
the highest performance. Mobile computing platforms today
surpass the computational power of workstations from a few
years ago. This combined with the fact that desktop and
server hardware is vastly outnumbered by mobile devices
deployed today, leads to the conclusion that we should find
ways to fully utilize these computational capacities.

We implemented a small feasibility study showing that
Android systems today are PC-like enough so that it is easily
possible to deploy standard tools and mechanisms from
the stationary computing world to successfully distribute
computational tasks. We have shown that even using this
rather crude methods, it is possible to integrate Android
devices into a distributed cluster in a way that does not
interfere with the running Android system and applications.

We fully expect that in the future distributed computing
frameworks better adapted to the special challenges in the
mobile computing world will be developed. A limitation
is that it is mostly not a good idea to run CPU intensive
applications on battery, but as we have shown there are ap-
plications which can be used when the devices are charging
anyway.

We also think mobile ad-hoc clouds are environmentally
friendly: While running computations uses some extra en-
ergy it also means the hardware is utilized more. The amount
of energy a device consumes during its lifetime is negligible
compared to the energy put into it for production. As mobile
platforms continue to evolve, it is to be expected that the
“computation per watt” that can be harvested from these
machines will soon be as high as for stationary computers.
Then we have the situation where, for certain applications,
a bunch of mobile devices can replace a stationary server by
donating their combined idle times, which is a real benefit
in an environmental as well as in a cost sense.

ACKNOWLEDGMENT

This work has been supported by the NTH School for IT
Ecosystems.

REFERENCES

[1] D. Kondo, B. Javadi, P. Malecot, F. Cappello, and D. P.
Anderson, “Cost-benefit analysis of Cloud Computing versus
desktop grids,” in 2009 IEEE International Symposium on
Parallel & Distributed Processing, May 2009, pp. 1–12.

[2] J. Menn, “Smartphone shipments surpass PCs,” Financial
Times, Feburary 8th 2011.

[3] MPI: A Message-Passing Interface Standard - Version 2.2.
Message Passing Interface Forum, 2009.

[4] D. Anderson, “BOINC: A System for Public-Resource Com-
puting and Storage,” in Fifth IEEE/ACM International Work-
shop on Grid Computing. IEEE, 2004, pp. 4–10.

[5] Calxeda Incorporated, “Calxeda Launches the
EnergyCoreTMProcessor; Delivers 10 Times the Performance
for the Same Power,” Press Release, November 2011.

[6] Hewlett-Packard, “HP Shapes the Future of Extreme Low-
energy Server Technology,” Press Release, November 2011.

[7] J. J. Dongarra, P. Luszczek, and A. Petitet, “The LINPACK
Benchmark: past, present and future,” Concurrency and Com-
putation: Practice and Experience, vol. 15, no. 9, pp. 803–820,
2003.

	Introduction
	Applications
	Rolling Clouds
	Corporate Environments
	Cooperative Cracking

	Mobile Computing Hardware Evolution
	Feasibility Study
	Test Environment
	Test Setup
	Results

	Conclusions
	References

