
Utilizing Hardware AES Encryption for WSNs
by Felix Büsching, Andreas Figur, Dominik Schürmann, and Lars Wolf
Technische Universität Braunschweig | Institute of Operating Systems and Computer Networks
Felix Büsching | buesching@ibr.cs.tu-bs.de | Phone +49 (0) 531 391-3289

Motivation
Encryption is essential in many Wireless Sensor Network (WSN) appli-
cations. Several encryption frameworks exist which are mostly based
on software algorithms. However, nearly every up-to-date radio trans-
ceiver chip is equipped with an integrated hardware encryption en-
gine. Here we show the benefits of utilizing an integrated hardware
encryption engine in comparison to pure software-based solutions.

AES Throughput
The optimized software solution is nearly twice
as fast as SW-AES-1. The assembler implementa-
tion outperforms both Contiki implementations,
but, it is not working with any other software. The
hardware utilization, which again runs in Contiki,
outperforms any SW implementation by far.

Advanced Encryption Standard - AES
 ▪ ... is a variant of Rijndael with a fixed block size of 128 bits.
 ▪ ... is based on a substitution-permutation network, which shall op-
erate fast in both software and hardware.

 ▪ ... is a block cipher with various modes of operation.

Operation Modes of Block Ciphers
Different operation exist for different purposes. Electronic Code-
book (ECB) and Cipher-block
chaining (CBC) are the most
common modes. In ECB each
block is encrypted separately.

In CBC each plain-text
block is XOR-ed with
the previous cipher-text
and afterwards being
encrypted.

Implementations
Four different AES algorithms were implemented for INGA Wireless
Sensor Nodes. While the first algorithm (1) SW-AES-1 was realized for
Contiki in C in a straight forward way, the (2) SW-AES-2 implementa-
tion was improved by a static lookup table.
To compare our C implementations with a software reference, we uti-
lized (3) RijndaelFast, an optimized assembler implementation for the
Atmel ATmega family. We see this external implementation as a the-
oretical limit, knowing that this performance could never be reached
when using an operating system like TinyOS or Contiki.
Most of the currently available radio transmitters and have an integrat-
ed hardware AES unit. These units can usually be addressed by special
registers via SPI bus. When using an
operating system like Contiki or Ti-
nyOS, the corresponding hardware
drivers have to be implemented – we
did this for Contiki running on INGA
and by that created the (4) HW-AES
implementation.

Institute of Operating Systems
and Computer Networks

Key

Plain Text 1

Block
Encryption

Cipher Text 1

Key

Plain Text 2

Block
Encryption

Cipher Text 2

Key

Plain Text n

Block
Encryption

Cipher Text n

Key

Plain Text 1

Initialization Vector

Block
Encryption

Cipher Text 1

Key

Plain Text 2

Block
Encryption

Cipher Text 2

Key

Plain Text n

Block
Encryption

Cipher Text n

1,
75

5.
5

41
3.

9

40
.6

28
.1

1,
75

5.
5

30
0.

2

38
.2

11
.0

1,
08

5.
6

41
3.

9

40
.6

28
.1

1,
08

5.
6

30
0.

2

38
.0

11
.0

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

1600.00

1800.00

2000.00

HW-AES ext. AES
(Assembler)

SW-AES-2 SW-AES-1

Th
ro

ug
hp

ut
 (k

bi
t/

s)

ECB encryption

ECB decryption

CBC encryption

CBC decryption

UDP Throughput
We measured the UDP throughput between two
nodes: without encryption, with hardware support
and with our two software AES implementations.
While software AES significantly cuts down the
throughput, with hardware AES nearly the “nor-
mal” throughput can be achieved.

44.9

61.6

95.7
105.5

42.9

58.4

88.1
97.3

21.6
24.7 28.7 28.7

17.7 19.8 22.0 22.5

0

20

40

60

80

100

120

64 128 512 1024

Th
ro

ug
hp

ut
 (k

bi
t/

s)

UDP Payload (byte)

No encryption

HW-AES

SW-AES-2

SW-AES-1

Code Size
The memory utilization [bytes]
of our implementations can
be divided in RAM and ROM
(for data and functions).

The utilization of hardware
AES only consumes 518 bytes
of ROM for the implementa-
tion of the drivers.

Conclusion: Use hardware
AES, wherever possible!

Resources
Our AES implementations, the AES hardware
drivers, and the INGA Wireless Sensor Node
are open source:
http://www.ibr.cs.tu-bs.de/projects/inga

Institute of Operating Systems
and Computer Networks
http://www.ibr.cs.tu-bs.de/projects/inga

RAM ROM
Data Funct.

SW-AES-1 32 522 2514
SW-AES-2 32 2058 2462
HW-AES 0 0 518

