
Institute of Operating Systems
and Computer Networks

AIRCoN-Stack - Introducing Flexibility to Wireless Industrial
Real-Time Applications

von Zengen, Georg and Garlichs, Keno and Wolf, Lars C.

Authors post-print published on 2020-07-22
Originally published in Proceedings of the 2018 Workshop on Networking for Emerging Applications and
Technologies
Publisher version available at https://dl.acm.org/citation.cfm?id=3229578
DOI: 10.1145/3229574.3229578

(c), 2018. This is the author’s version of the work. It is posted here by permission of ACM
for your personal use. Not for redistribution. The definitive version was published in Procee-
dings of the 2018 Workshop on Networking for Emerging Applications and Technologies, 2018
http://doi.acm.org/10.1145/3229574.3229578

Abstract:
Wireless networking is a key technology to enable smart production scenarios. It expands the design

space for solutions in factory design tremendously. Currently, applications suitable for wireless connec-
tions are limited to monitoring purposes due to lacking reliability. This is especially critical when the
network needs to adjust to new application needs, environmental conditions or network topologies. In
such cases real-time conditions required for certain tasks might break. To overcome those limitations we
present AIRCoN-stack. It was specifically designed to perform real-time operations while parts of the net-
work are changing. It uses TDMA with a combined radio- and CPU-scheduler to keep the task execution
jitter between nodes in the network as low as possible. We evaluate all components of our network stack
in a real-world setup to prove its capabilities.

AIRCoN-Stack - Introducing Flexibility to Wireless Industrial
Real-Time Applications

Georg von Zengen, Keno Garlichs and Lars C. Wolf
Institute of Operating Systems and Computer Networks

Technische Universität Braunschweig
Braunschweig, Germany

{vonzengen,garlichs,wolf}@ibr.cs.tu-bs.de

ABSTRACT
Wireless networking is a key technology to enable smart production
scenarios. It expands the design space for solutions in factory design
tremendously. Currently, applications suitable for wireless connec-
tions are limited to monitoring purposes due to lacking reliability.
This is especially critical when the network needs to adjust to new
application needs, environmental conditions or network topologies.
In such cases real-time conditions required for certain tasks might
break. To overcome those limitations we present AIRCoN-stack. It
was specifically designed to perform real-time operations while
parts of the network are changing. It uses TDMA with a combined
radio- and CPU-scheduler to keep the task execution jitter between
nodes in the network as low as possible.We evaluate all components
of our network stack in a real-world setup to prove its capabilities.

CCS CONCEPTS
• Networks → Cyber-physical networks; Network protocol de-
sign; Mobile networks; • Computer systems organization →
Real-time operating systems;

ACM Reference Format:
Georg von Zengen, Keno Garlichs and Lars C. Wolf. 2018. AIRCoN-Stack
- Introducing Flexibility to Wireless Industrial Real-Time Applications. In
NEAT’18: ACM SIGCOMM 2018 Workshop on Networking for Emerging Ap-
plications and Technologies , August 20, 2018, Budapest, Hungary. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3229574.3229578

1 INTRODUCTION
In future factories, machines will be organized in far more flexible
compounds than today [9]. An example of this flexibility might
be to re-order the tasks assigned to a certain machine or to add
machines. As reorganizing the cables in a factory is rather expen-
sive, wireless technologies are promising to lower the costs of more
flexible production plants. With wireless technologies new chal-
lenges like packetloss and more complex medium access methods
arise. These can cause a higher variance in the transmission delay
– called jitter – compared to wired networks.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
NEAT’18, August 20, 2018, Budapest, Hungary
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5907-8/18/08. . . $15.00
https://doi.org/10.1145/3229574.3229578

By now, industrial standards allow to have either changing con-
ditions for the network – like WirelessHART [10] – or to close
control loops – like Wireless Interface for Sensors and Actua-
tors (WISA) [12]. Changing conditions like interfering networks,
adjustments in the network’s application or even changes in the net-
work’s topology cause a reorganization. As most of industrial wire-
less standards are based on Time Division Multiple Access (TDMA)
in order to guarantee certain data delivery deadlines, such a reor-
ganization in most cases requires new TDMA-schedules [8, 10, 12].
These schedules need to be transferred to all nodes in the network
and afterwards applied in the network. Transferring and applying
new schedules can cause jitter if the order of tasks in the schedules
is changing.

Jitter is particularly a problem in applications realizing closed
loop controllers utilizing wireless links. Parameterizing controllers
is even more complicated if the exact timing new measurements
arrive with is unknown. Therefore the jitter must be kept as low as
possible.

Combining wireless technologies with flexible machinery com-
pounds that need closed control loops using these technologies,
therefore, is a tough challenge. This is especially true when tak-
ing into account that a manufacturer does not want to stop the
whole production for only minor adjustments. To support such
scenarios we present our Adaptive Industrial Real-time Controller
Network (AIRCoN)-stack which is capable of seamlessly switching
configurations to adapt to changes in the network’s environment,
topology and application.

After discussing existing work in Section 2, we present the design
of our AIRCoN-Stack in Section 3 which provides the required
flexibility. We implemented our design on top of Free Real Time
Operating System (FreeRTOS) that runs on an STM32 discovery kit
with STM32F407VG MCU (STM32). The DecaWave DW1000 UWB
transceiver [3] was used as a communication module. With that
implementation we performed our real world evaluation, presented
in Section 4. Section 5 concludes the paper and gives an outlook to
further research on this topic.

2 RELATEDWORK
Industrial Standards One approach to bring wireless communi-
cation systems into process automation is ISA100.11a [8] which is
based on the IEEE 802.15.4 [2] standard but incorporates TDMA to
provide real-time abilities. The standard is not yet supposed to be
used in factory automation processes because it has a maximum
delay up to 100ms [7].

WirelessHART is part of the well-known Highway Addressable
Remote Transducer (HART) and provides a self organizing mesh

NEAT’18, August 20, 2018, Budapest, Hungary Georg von Zengen, Keno Garlichs and Lars C. Wolf

network that connects field devices wirelessly while still being
very robust. Like ISA100.11a, it is based on IEEE 802.15.4 with an
additional TDMA protocol but with fixed 10ms slots to substitute
the original token passing mechanism of HART. WirelessHART
does at least support mobile handheld devices for diagnostics. Yet, it
is not designed to support closed loop controllers while the network
topology is changing [10].

WISA is an industrial standard which was designed to close
control loops wirelessly using IEEE 802.15.1 [1]. WISA is very well
suited for fixed production cells with many nodes, requiring a very
low and reliable delay and jitter. A issue is that while changing the
TDMA schedule, real-time properties might break.

Other research The Mobility-Aware Real-Time Scheduling for
Low-PowerWireless Networks (MARS) system by Dezfouli et al. [4]
is one of the first real-time schedulers that is aware of mobility and
able to handle it. The presented system is based on the hierarchical
networkmodel ofWirelessHART [10] with one gateway and several
non-mobile infrastructure nodes wirelessly connected to it. The
mobile nodes exchange data with these infrastructure nodes, which
then forward the packets towards the gateway. To handle mobility,
a mobile node gets a slot at each of the infrastructure nodes at the
time it joins the network (on-join reservation). Therefore, it does
not matter to which infrastructure node a mobile node transmits
data. This is rather inefficient due to the waste of slots currently
not used by the node and this lowers the scalability.

Thaskani et al. [13] published a mobility tolerant TDMA-based
Medium Access Control (MAC)-protocol for Wireless Sensor Net-
works (WSNs) in 2011. Their MAC-protocol clusters the nodes and
can handle intra-cluster as well as inter-cluster mobility with the
drawback of several seconds delay in case of topology changes. This
introduces jitter which is too large by several orders of magnitude
for most industrial real-time applications.

In 2012, Ferrari et al. [5] published their Low-power Wireless
Bus (LWB) which builds upon "Glossy" [6]. It can handle node
mobility and has a very high delivery probability achieved by the
use of both TDMA and flooding. The LWB is targeted more towards
classical WSN applications, not to industrial automation scenarios
[5].

The GINSENG project [11] bases on the IEEE 802.15.4 physi-
cal layer and was designed for refinery surveillance. The so called
GinMAC protocol uses a single-channel TDMA schedule with a
predetermined sender and receiver for each slot. Changing the de-
ployed schedule during operation is not supported.

All the presented work does not consider the jitter of packet
delivery, whether it is introduced by packet loss, routing decisions,
rescheduling, or the processing of the packets itself. This negligence
of the jitter in networks that are designed to be used in closed loop
controllers leads to serious problems during their implementation
and operation.

3 AIRCON-STACK
As we have shown in Section 2, there is currently no real-time com-
munication protocol that meets the requirements to control factory
automation processes and supports flexible network topologies,
application needs, and environments at the same time. Thus, we

ApplicationApplicationApplication

Clock

AIRCoN-Net

UWB-PHY Layer

New Schedules

Transmission
Data

Data

Time

Time Slot
Synchronization

Execution
Time Slot

Task and Radio
SchedulerSynchronization

Synchronized

AIRCoN-Stack

Figure 1: AIRCoN-Stack design overview with the informa-
tion flows between its components

propose AIRCoN-Stack which is capable of this. In this section we
give an overview of AIRCoN-Stack’s design and how it tackles all
the previously explained challenges.

Figure 1 shows an overview of the architecture of AIRCoN-Stack
with its components and the information flow among them. The
following subsections describe the individual components.

3.1 Application Layer
The application layer consists of FreeRTOS tasks. They read sensor
values, control actuators and exchange data with tasks running on
other nodes. The users can freely implement them as they please.
The only restriction is related to timing. As stated earlier, AIRCoN-
Stack is based on TDMA to ensure real-time data delivery. Thus,
the tasks have to finish execution in their assigned time slots in
order to send their data in time.

3.2 Scheduler
At what time those application tasks are executed is determined
by the scheduler. Although FreeRTOS already comes with its own
real-time scheduler, an additional one was implemented on top of
it. This had to be done due to the fact that the original scheduler
works solely based on different priorities of the tasks. It always
schedules the task with the highest priority which is currently in
READY-state (i.e., it is ready to execute and not waiting, e.g., for I/O
or a timer to expire). While that might be suitable for use-cases
where the nodes operate in isolation, it is clearly not when form-
ing a real-time network with multiple nodes competing for access
to the radio channel. Thus, it was decided to couple the network
scheduling and the processor scheduling. This way both schedules
are TDMA-based and timely data transmission is guaranteed along-
side timely execution of the respective task generating the data
prior to transmission. A coupled example schedule can be seen in
Figure 2. It shows two rounds of the same schedule which in this
case consists of three slots. Note that the CPU is not used during

AIRCoN-Stack - Introducing Flexibility to Wireless Industrial Real-Time Applications NEAT’18, August 20, 2018, Budapest, Hungary

AIR0

CPU0 CPU1 CPU2 CPU0 CPU1 CPU2

AIR2 AIR1 AIR2 AIR0 AIR1

t0

start 0
start 1

start 2 start 1
start 0 start 2

t1 t2 t3 t4 t5 t6

worst-case runtime transmisson time

Figure 2: Example AIRCoN-Stack schedule of three tasks
and two rounds. The execution times of the tasks are shown
in red while the duration of the packet transmission is
marked orange.

the transmission of a packet and can execute the succeeding task.
Thus, there is no problem if the red and orange bars in Figure 2 are
overlapping in time.

If a task is supposed to transmit in slot AIR1 (i.e. at time t2), the
AIRCoN-Scheduler schedules that task for execution in the slot
CPU1. This way the transmitted data is always as recent as possible
while keeping the age of the data constant.
The scheduling in AIRCoN makes use of the vanilla FreeRTOS
scheduler and lets it handle context switches, Inter Process Com-
munication (IPC) etc. All tasks wait blocking for a notification. The
scheduler notifies only the task that is to be executed. After having
completed its execution round, the task waits blocking again.

The AIRCoN-Scheduler works the same way and is unblocked
by a notification sent by an Interrupt Service Routine (ISR) invoked
by a timer which was set to the beginning of the respective slot.
Upon being unblocked, the scheduler determines the task that is
ought to be executed and its planned transmission timestamp for
that slot according to the schedule. Figure 3 shows the timing of the
scheduling procedure. When implementing an application task, it
is necessary to estimate the absolute worst-case runtime. The task
will always be scheduled (tI I) at least that time before tIV – the
transmission time. This ensures timely execution and avoids jitter
because the tasks are always executed with the same frequency –
independent of the possibly varying execution time of the scheduler.

This may in turn result in different tI I I if the task’s execution
times differ. In order to still ensure the exact transmission time-
stamp, the “delayed transmission” feature of the radio transceiver
is utilized. The scheduler provides the task with its scheduled trans-
mission timestamp which will pass this on to the transceiver when
transmitting data. The radio will then ensure the transmission to
be precisely timed at the given timestamp (c.f. Section 3.4).

The goal for AIRCoN-Stack is to support changes of every prop-
erty of the network configuration. Hence, it is crucial to be able to
switch the schedules during runtime with the least additional jitter
possible. This schedule switching needs to happen at the same time
on all nodes of the network because otherwise the transmissions
of different nodes might overlap and therefore interfere with each
other. This has to be avoided by all means. AIRCoN-Stack uses a
message in its management protocol to specify at what time all

Scheduler Taski

tI tII tIII tIV

ISR ISR

Timer INT ISR:
set next timer to t ∈ {tI , tI I }
unblock respective task

Figure 3: Procedure of Taski in its slot. At tI the scheduler
calculates the following slots, tI I is the defined transmission
time tIV minus the worst-case execution time of Taski .

nodes switch the schedule. This message specifies the transition
time and the schedule to switch to. This cannot be done during an
ongoing schedule cycle but only at the end of a round and thus, in
the example from Figure 2, t0, t3 and t6 are valid transition times.

3.3 Time Synchronization
In order to make network-wide TDMA work, a precise time syn-
chronization is crucial. Thus, in an earlier work a precise time
synchronization protocol was developed [14]. It uses one node as
the clock master. It frequently broadcasts synchronization beacons
which the slaves use to adjust their clocks. For more details, please
kindly refer to the cited paper.

3.4 UWB-PHY Layer
Not only the time synchronization beacons, but all the packets
in our network are transmitted and received using DecaWave’s
DW1000 [3] radio transceiver which implements the IEEE 802.15.4
Ultra Wide Band (UWB) physical layer. UWB was chosen because
of its robustness against narrow-band interference which is very
common in factory automation scenarios due to electro magnetic
emmissions originating from welding machines, generators etc.

The drivers to use the DW1000 with FreeRTOS on our hardware
had already been developed for one of our previous works [15].

The transceiver was originally developed for indoor localization
purposes which require extremely accurate clocks to calculate the
time of flight of packets. Therefore, the transceiver comes with an
internal clock providing a 15.65 ps resolution to timestamp received
packages. Moreover, it has the feature to send a packet exactly at a
previously configured time. Both these features are heavily made
use of for the time synchronization. The latter is also used for
the transmission of packets exactly at the beginning of a slot as
indicated in Section 3.2. The details of that “delayed transmission”
feature have been explained in [14].

3.5 AIRCoN-Net
As Figure 1 shows, there is one central unit in AIRCoN-Stack orga-
nizing all the communication done by the system: AIRCoN-Net. It
connects all the previously described units and is implemented as a
FreeRTOS task as well. It controls all transmissions and receptions
in the real-time network. This section shows how packets received
by the transceiver are passed to the applications and vice versa.

Whenever a slot is scheduled to use the Central Processing
Unit (CPU), it is allowed to transmit a packet to the network. To

NEAT’18, August 20, 2018, Budapest, Hungary Georg von Zengen, Keno Garlichs and Lars C. Wolf

Node1 Node2 Node3 Node4
19.996

19.997

19.998

19.999

20.000

20.001

20.002

20.003

F
ra

m
e

le
ng

th
[m

s]

(a) Node1 as Master

Node1 Node2 Node3 Node4
19.996

19.997

19.998

19.999

20.000

20.001

20.002

20.003

F
ra

m
e

le
ng

th
[m

s]

(b) Node2 as Master

Node1 Node2 Node3 Node4
19.996

19.997

19.998

19.999

20.000

20.001

20.002

20.003

F
ra

m
e

le
ng

th
[m

s]

(c) Node3 as Master

Node1 Node2 Node3 Node4
19.996

19.997

19.998

19.999

20.000

20.001

20.002

20.003

F
ra

m
e

le
ng

th
[m

s]

(d) Node4 as Master

Figure 4: Results of execution interval accuracy with different master nodes.

do so, the packet is passed to AIRCoN-Net. Besides the payload
and the destination’s MAC address, some additional information
needs to be provided so AIRCoN-Net can construct an AIRCoN-
MAC frame according to the format defined in Table 1. That newly
constructed frame is then encapsulated in an IEEE 802.15.4 frame to
stay compliant to the standard. This is important to be able to lever-
age hardware features like frame filtering which every common
IEEE 802.15.4 transceiver provides. After the encapsulation, the
frame is passed to the radio driver which instructs the transceiver
to transmit it at the provided time (c.f. Section 3.4).

The protocol field in Table 1 defines whether the packet is for
an application using AIRCoN-Stack or a packet used for purposes
like clock synchronization. The message type is mostly used in
management packages. Specified message types are:
• Schedule-change-request:Requests other nodes to change
the current schedule to the one defined in this message.
• Sync-beacon: Periodically sent by the master of the clock
synchronization.
• Sync-delay-request: Request to the master to start propa-
gation delay measurement.
• Sync-delay-response: Response of the master to the sync-
delay-request.

The addressing of different applications on the same node was
inspired by protocols like TCP or UDP and like those, AIRCoN-
Stack uses port numbers to address applications. The source port is
a unique number for every application, the destination port is not
unique. This part is inspired by publish-subscribe systems. Even
if this seems uncommon first, it enables AIRCoN-Stack to deliver
the same data to different applications without any additional over-
head in form of multiple transmissions. This can be very useful if
different control tasks on one node need the same data. However,

Table 1: The message format of AIRCoN-MAC

Bits Content
0-3 Protocol
4-7 Message Type
8-15 Source Port
16-23 Destination Port
24-End Payload

Node 0 Node 1 Node 2 Node 3

GPIO GPIO GPIO GPIO

BeagleLogic

Figure 5: Evaluation setup with 4 nodes connected to the
BeagleLogic to measure task executions timings

it comes at the price of a more complicated, centralized buffer man-
agement because received data has to be buffered until all addressed
applications processed it. This can lead to unpredictable processing
times which are to be avoided because they increase the jitter in
the communication and might break the real-time requirements.
To overcome this, AIRCoN-Stack utilizes ring buffers with a fixed
length for each destination port. In this buffer it is always the old-
est packet that is overwritten by a new one. This way the system
designer can implicitly control the amount of time given to the
applications to process received data by changing the amount of
buffers in the ring. The system cannot fail due to a lack of memory
caused by applications not freeing their buffers.
In order to subscribe to data sent to a specific port, the applica-
tions register for that destination port and are getting notified by
AIRCoN-Net about newly received data which they can then read
from the central ring buffer.

4 EVALUATION
In our evaluation we used a network of four nodes: one master
with three slaves. The example application is to simultaneously set
a pin high at all three slaves 5ms before the master does the same.
This mimics an application where sensors must be read at the same
time on different devices and the master uses the collected data to
control a process. To ease the measurement of the timing accuracy
we used a pin and let all clients act in the same slot. To measure
the timings we use BeagleLogic1 which was connected to all nodes,
as shown in Figure 5 and measured at a sample rate of 100MSps.

1https://github.com/abhishek-kakkar/BeagleLogic

AIRCoN-Stack - Introducing Flexibility to Wireless Industrial Real-Time Applications NEAT’18, August 20, 2018, Budapest, Hungary

In all evaluations we used schedules consisting of four slots of
5ms, so a frame is 20ms long.

4.1 Single Node Timing Accuracy
In the first evaluation we measured the time between two exe-
cutions of the same task on one node. This shows how accurate
the temporal distance between two executions of the same task is.
That is important to assess the suitability of our system for control
tasks. To mitigate hardware influences we performed this evalu-
ation within four different master-slave configurations, so every
node was used as the master for one evaluation. The results of these
evaluations are displayed in Figure 4. Most obviously the master
has the best timing accuracy in all master-slave combinations. Fur-
ther, the whole network had the best accuracy with Node1 as the
master with about 1 µs and worst with Node4 as master with 6 µs
Jitter. These differences are due to manufacturing tolerances of the
crystals used to clock the nodes. As the results are represented as
boxplots, the vast majority of execution intervals is represented
as the bars close to 19.999ms. This is due to the few outliers that
compress the whole box with whiskers into a single bar. In this
evaluation the outliers are more important, as they help to estimate
the maximum jitter, that is 6 µs. But still, the majority of execution
intervals have a jitter below 1 µs. Taking into consideration that our
CPU runs at 168MHz the maximum jitter is about 1000 cycles and
the majority is below 168 cycles, the jitter results most likely from
clock-synchronization-packet loss, floating point accuracy errors in
time-base conversion and context switches. The difference between
the ideal frame-length of 20ms and the measured 19.999ms is a
static offset that might be removed by adding a static amount of
cycles to every slot. As we want to give a realistic baseline, we
decided against applying such optimizations.

4.2 Network Timing Accuracy
As a second evaluationwemeasured the time between the execution
of our task on the master and the slaves. This was motivated by
the need to quantify the jitter between different nodes. Taking the
controller example, it shows which jitter is to be expected between
the measurement and the actual control task. For this evaluation we
chose Node1 as the master as it had the best results in the previous
evaluation. All other parameters are the same as in the evaluation
in Section 4.1.

In our schedule – schedule 1 in Table 2 – the master has the
evaluation task in slot 2 and the slave in slot 1 because it is easier
to trigger the measurement that way. For better readability we
subtracted the slot length of 5ms from the delay in the following
figures, therefore the displayed delay gets negative in some cases.
Figure 6 shows the jitter with a static schedule, that means, there
are no changes in the transceiver configuration or the schedule.
As expected, the jitter is almost the same as in Figure 4, with up
to 2 µs. The fact that network-wide jitter is a little below most of
the measurements in Figure 4, is because we measured all nodes
in the same frame, therefore jitter introduced by synchronization
is mitigated. The evaluation shows that we are able to keep the
maximum jitter and delay within 336CPU cycles in the whole
network for a static setup.

Node2 Node3 Node4

-4.0

-2.0

0.0

2.0

D
el

ay
[u

s]

Figure 6: Network timing accuracy measurement without
schedule or transceiver configuration changes.

Node2 Node3 Node4

-4.0

-2.0

0.0

2.0

D
el

ay
[u

s]

Figure 7: Network timing accuracy measurement with
transceiver configuration changes.

Table 2: The two alternated schedules for each master and
slave, showing the position of the evaluation tasks

Slots 1 2 3 4

Schedule 1 Master — Eval Sync —
Slave Eval Sync — —

Schedule 2 Master Sync — — Eval
Slave — — Eval Sync

Our network stack was designed for networks with changing
applications and time variant topologies. Therefore we performed
two more evaluations: one where the transceiver’s radio channel
is changed periodically to emulate an adaption to changing envi-
ronment. In the second one we periodically changed the order of
the tasks in the schedule to emulate changing topologies or appli-
cations. While changing the order of the tasks in the schedule, the
evaluation task on the master and slave always stayed in the same
slot relative to each other. Only the absolute position of the tasks
was changed as shown in the two schedules in Table 2. Figure 7
shows the delay between the master and the slaves with chang-
ing transceiver configurations. As jitter is up to 5 µs, there is a
significant difference to Figure 6. This jitter is introduced by block-
ing Serial Peripheral Interface (SPI)-transfers to reconfigure the
transceiver chip and reading/writing the Schedule-change-request-
packet. As on our prototype hardware the SPI-Bus is only able to
use 10MHz, communicating with the transceiver takes the majority

NEAT’18, August 20, 2018, Budapest, Hungary Georg von Zengen, Keno Garlichs and Lars C. Wolf

Node2 Node3 Node4

-4.0

-2.0

0.0

2.0

D
el

ay
[u

s]

Figure 8: Network timing accuracy measurement with two
alternating schedules switched every 200ms.

of the 5ms slot. We expect lower jitter on a PCB designed for higher
frequencies. To evaluate the capability to handle changing topolo-
gies and applications we switched the schedule every 10 frames
(i.e. 200ms). We used the two schedules shown in Table 2. They
were alternated. As the evaluation tasks at master and slave are in
consecutive slots in both schedules, the jitter should not increase
significantly. In Figure 8 the results of this evaluation are shown.
Compared to the other evaluations, there is no significant differ-
ence. This shows, that AIRCoN-Stack is able to change schedules
without introducing additional jitter.

Concluding the evaluations, we have shown that our system
is able to keep the jitter within a range of 6 µs even if changing
environments demand a reconfiguration of the radio transceiver
– e.g. changing the radio channel – or if the application or the
network topology changes and a new schedule needs to be applied.

5 CONCLUSION
Research and industry started to come up with wireless field buses
to cope with requirements of more and more flexible assembly lines.
While being an improvement, they are still lacking the adaptabil-
ity to change communication configuration (e.g., TDMA-schedules
or radio channels) while maintaining real-time communication.
Hence, we presented AIRCoN-Stack: a network stack for indus-
trial applications that is able to perform seamless configuration
changes. Due to this ability, changing application needs, environ-
mental conditions, or network topologies can be handled without
interrupting real-time tasks using the changing network facilities.
We evaluated these abilities in a real-world testbed and measured a
total maximum jitter of 6 µs on a single node. For task execution
jitter on different nodes our network stayed within 5 µs even while

changing schedules and transmitter configurations.
For future work, we are planning to automatically identify situa-
tions requiring network configuration changes. All nodes involved
then send airtime requests to a central scheduler which then com-
putes a new schedule incorporating as many requests as possible
and distributes it to the nodes. The network can then switch to the
new schedule using the means we developed in this work.

REFERENCES
[1] IEEE Standard for Information Technology - Telecommunications and Infor-

mation Exchange Between Systems - Local and Metropolitan Area Networks
- Specific Requirements. - Part 15.1: Wireless Medium Access Control (MAC)
and Physical Layer (PHY) Specifications for Wireless Personal Area Networks
(WPANs). IEEE Std 802.15.1-2005 (Revision of IEEE Std 802.15.1-2002), 2005.

[2] IEEE Standard for Local and metropolitan area networks–Part 15.4: Low-Rate
Wireless Personal Area Networks (LR-WPANs). IEEE Std 802.15.4-2011 (Revision
of IEEE Std 802.15.4-2006), 2011.

[3] DecaWave Ltd. DW1000 User Manual - How to use, configure and program the
DW1000 UWB transceiver. https://www.decawave.com/support/download/file/
nojs/948, 2018. last accessed: 03.04.2018.

[4] B. Dezfouli, M. Radi, and O. Chipara. Mobility-aware real-time scheduling for
low-power wireless networks. In Computer Communications, IEEE INFOCOM
2016-The 35th Annual IEEE International Conference on, pages 1–9. IEEE, 2016.

[5] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele. Low-power wireless bus. In
Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems,
pages 1–14. ACM, November 2012.

[6] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh. Efficient network flooding and
time synchronization with Glossy. In 10th International Conference on Information
Processing in Sensor Networks (IPSN), pages 73–84. IEEE, April 2011.

[7] International Society of Automation. ANSI/ISA-100.11a-2011 Wireless systems
for industrial automation: Process control and related applications. https://www.
isa.org/ store/products/product-detail/ ?productId=118261 last accessed 03.04.2018.

[8] ISA100 Standards Committee. ANSI/ISA-100.11a-2011 Wireless systems for
industrial automation: Process control and related applications, 2011.

[9] H. Kagermann, W. Wahlster, and J. Helbig. Recommendations for implementing
the strategic initiative INDUSTRIE 4.0. acatech – National Academy of Science
and Engineering, April 2013.

[10] A. Kim, F. Hekland, S. Petersen, and P. Doyle. When HART goes wireless: Under-
standing and implementing the WirelessHART standard. In IEEE International
Conference on Emerging Technologies and Factory Automation, pages 899–907,
September 2008.

[11] T. O’donovan, J. Brown, F. Büsching, A. Cardoso, J. Cecílio, J. D. Ó, P. Furtado,
P. Gil, A. Jugel,W.-B. Pöttner, U. Roedig, J. S. Silva, R. Silva, C. Sreenan, V. Vassiliou,
T. Voigt, L. Wolf, and Z. Zinonos. The GINSENG System for Wireless Monitoring
and Control: Design and Deployment Experiences. ACM Transactions on Sensor
Networks, 10(1):4:1–4:40, Dec. 2013.

[12] R. Steigmann and J. Endresen. Introduction to WISA. ABB, July 2006.
[13] Thaskani, S. and Kumar, K.V. and Murthy, G.R. Mobility tolerant TDMA based

MAC protocol for WSN. In 2011 IEEE Symposium on Computers Informatics (ISCI),
pages 515–519, March 2011.

[14] G. von Zengen, K. Garlichs, Y. Schröder, and L. C. Wolf. A sub-microsecond
clock synchronization protocol for wireless industrial monitoring and control
networks. In 2017 IEEE International Conference on Industrial Technology (ICIT)
Special Sessions, Toronto, Canada, Mar. 2017.

[15] G. von Zengen, C. Wulf, Y. Schröder, and L. C. Wolf. Real time capable uwb
wireless network sniffer: Poster. In Proceedings of the 17th ACM International
Symposium on Mobile Ad Hoc Networking and Computing, MobiHoc ’16, pages
389–390, New York, NY, USA, July 2016. ACM.

