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Abstract:
In most Wireless Sensor Network deployments, the energy supply is a major challenge. Especially for

nodes with high computational power or high bandwidth communication interfaces, the required size of
batteries might increase to infeasible levels, even if the option of energy harvesting exists. For many use
cases, some nodes are idling most of the time and transmitting only a few bytes from time to time. In
this paper, we present a two-platform node consisting of a high-power and a low-power platform. Both
platforms are using the same Delay-Tolerant Networking (DTN) architecture and the same protocols. A
novel concept offers the opportunity for both platforms to appear as a single node to communication
partners. The high-power part is running a full-featured Linux operating system, the low power platform
is built around an energy-efficient 32-bit microcontroller and is able to fulfill tasks, which would have
required to wake up the high power node in a conventional setup. Our system can increase the energy
efficiency in WSN scenarios where the demand of bandwidth and computational performance is strongly
fluctuating.
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Abstract—In most Wireless Sensor Network deploy-
ments, the energy supply is a major challenge. Espe-
cially for nodes with high computational power or high
bandwidth communication interfaces, the required size of
batteries might increase to infeasible levels, even if the
option of energy harvesting exists. For many use cases,
some nodes are idling most of the time and transmitting
only a few bytes from time to time. In this paper, we present
a two-platform node consisting of a high-power and a low-
power platform. Both platforms are using the same Delay-
Tolerant Networking (DTN) architecture and the same
protocols. A novel concept offers the opportunity for both
platforms to appear as a single node to communication
partners. The high-power part is running a full-featured
Linux operating system, the low power platform is built
around an energy-efficient 32-bit microcontroller and is
able to fulfill tasks, which would have required to wake up
the high power node in a conventional setup.
Our system can increase the energy efficiency in WSN

scenarios where the demand of bandwidth and computa-
tional performance is strongly fluctuating.

I. INTRODUCTION

A major challenge when installing wireless networks

outdoors is the energy supply if no access to the grid

is available. In those cases, the nodes have to be pow-

ered by batteries. Energy harvesting devices like Photo

Voltaic (PV) panels may increase the lifetime of such

an installation. But still, especially for devices with a

high computational power, the possible run time and thus

availability is limited.

Depending on the actual use case of the networks,

some nodes do not need to be powered up all the

time and may be shut down when not in use. Here,

an additional device to wake up the main platform

is required. In deterministic communication scenarios,

a simple time based schedule may be sufficient, but

dynamic wake-up events may not be possible.

In many dynamic scenarios, it is crucial that a node

can be reached for communication at any time. Thus, a

device is needed which is able to power up the network

node in demand.

Thinking of a Wireless Sensor Network (WSN), one

might imagine a network with different kinds of nodes.

Some of them might have the task to measure and

transmit the temperature, which can easily be done with a

microcontroller. Others require a full-featured operating

system like Linux, if their task is to take and process

a picture at regular time intervals using computer vision

algorithms. Still, most of the time, such a node might just

forward the occasional data packets for other participants

in the network while mostly idling.

Thus, it would not be efficient to keep the system

powered up waiting for a forwarding request. As a

conclusion the full-featured node should only be active

on demand to save energy.

For such situations, we propose a two-platform DTN

[1], [2] node which appears to other participants in the

network as a single node offering different communica-

tion channels like IEEE 802.15.4 and WLAN. Our sys-

tem consists of a low-power, low-energy platform based

on a 32-bit microcontroller and a high-power platform

which is a Single Board Computer (SBC) running Linux

such as the Raspberry Pi1. Both platforms are connected

to each other via USB and run their own implementation

of a DTN software stack. Both are able to operate on

their own, but as a novel feature can cooperate and

appear as a single node within the network.

On the Raspberry Pi running Linux, IBR-DTN [3]

is used in combination with a USB-WiFi dongle. The

microcontroller-based platform presented in this paper

uses our implementation miniDTN which is also pre-

sented in this paper. For communications, different types

of low-power radio may be plugged onto our newly

designed board. So far a LoRa2 and an IEEE 802.15.4
variant are available.

Since both platforms appear as a single node to neigh-

bors, the low-power board is able to detect if a message

received via the low-power radio link is destined for the

high-power SBC or if the low-power link’s bandwidth

is not sufficient to forward a bundle. After booting the

full featured Linux board, already received data and

additional information can be transferred via USB.

The remainder of this paper is structured as follows. In

Section II, we show related work which has been done in

this field, followed by a detailed description of the design

of our implementation in Section III. Besides the hard-

and software, our concept of combining both platforms

to a single node are discussed. Section IV explains the

concepts of communication on which the evaluation in

1http://www.raspberrypi.org
2http://www.lora-alliance.org
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Fig. 1. Schematic diagram of the hardware

Section V is based. The paper is concluded in Section

VI.

II. RELATED WORK

To the best of our knowledge, we are the first to

develop a two-platform node that appears to be a single

node within the network. Several systems have been

proposed which can power up a node to allow a com-

munication contact. Some rely on the fact that different

communication standards are sharing the same radio

frequencies. For instance, an IEEE 802.15.4 radio can

be used to detect the presence of other communication

systems like Wireless Local Area Network (WLAN) [4].

The low-power radio cannot decode the actual data, but if

it recognizes any transmission, the high-power platform

is powered up. While this is reasonable for rural and

remote areas where usually no data transfers take place,

this would cause problems in cities where a lot of devices

using WLAN might be detected. In order to prevent

unnecessary wakeup events, the authors have extended

the approach and added the possibility to transmit a

signature addressing a specific node using the WLAN

interface [5].

Another option, which does not require an additional

full-featured radio, has been proposed by Spenza et al.

[6]. In this work, the authors built an envelope detector

from scratch with discrete electronic components. An

ultra-low-power microcontroller is able to decode a

signal received by the HF part of the circuit similar to

the aforementioned project.

A node which consists of two platforms using di-

verse wireless links and protocols is presented in [7].

Each system consists of a low-power node with an

IEEE 802.15.4 radio and a Linux board with a WLAN

IEEE 802.11n interface. The low-power platform is used

only for control traffic (power up the next hop). The

use case described in their work focuses on a line-

shaped multi hop topology without considering meshed

networks with many paths. Nodes other than source or

sink are solely used for data forwarding. The use case

described is real time end-to-end data transmission for

surveillance cameras, etc.

In the DieselNet project [8], so-called Throwboxes
have been designed. Those devices consist of a battery

and two computing devices, a Soekris SBC running

Linux with a WLAN interface and a TelosB mote with

an XTend radio module which has a communication

range much higher than the WLAN interface. In the

testbed, buses of the public transportation system driving

in the city would send beacon messages containing their

position via the long-range radio. From these beacons,

a movement profile is calculated on the TelosB mote.

Using Markov chains, the probability of a contact via

WLAN can be calculated. If a connection can be estab-

lished, the Linux board will be powered up [8].

A multi-platform approach is implemented in mPlat-
form [9]. Here, the authors present a system which can

consist of multiple processing units connected to each

other by a custom bus system. Thus, for each application

the optimal configuration can be found.

We have presented a similar system consisting of two

boards (Linux and low-power) in [10]. There, each board

has its communication links (WLAN and IEEE 802.15.4)

and protocols. Different to this paper and similar to the

DieselNet approach, only the Linux board was able to

exchange data in a DTN since the low-power link was

used for control and signaling traffic only.

Based on the experiences made with this system, we

extended the functionality significantly. Besides hard-

ware improvements like a more flexible and efficient

charge controller and a much more powerful Microcon-

troller Unit (MCU), the main aspect of our new platform

is the collaboration of both parts. This allows to keep the

Linux board powered off in most cases. The new MCU

offers an integrated USB link as well as an Ethernet

port. These interfaces offer many new possibilities for

operation, such as a gateway node. When not in use,

most components can be turned off to save energy.

III. SYSTEM ARCHITECTURE

In this section, we will describe our contributions,

both in soft- and hardware. The “two-headed” node

Amphisbaena3 consists of two computing platforms, as

shown in Figure 1. The colored blocks are running a

DTN implementation.

A. Hardware Architecture

All components are powered by a battery which may

be charged from a PV panel. The system implements

a Maximum Power Point Tracking (MPPT) charge con-

troller maximizing the energy harvested from the PV

panel. The battery’s state of charge is monitored to avoid

a deep discharge cycle. Currently, we have two different

kinds of radio modules which can be plugged into the

board: an IEEE 802.15.4 radio (Atmel AT86RF233) or a
LoRa module based on a Semtech Sx1272. These radios

offer a low data rate at a small current consumption.

Especially the latter can be used for very long range

3A serpent with two heads from Greek mythology.
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Fig. 2. The Amphisbaena board

communications: A few kilometers are possible, even in

urban areas and with a piece of wire as antenna [11].

We chose a Raspberry Pi as the Linux SBC shown in

Figure 1. It can be turned on or off by the low-power

platform. Both boards are connected via USB to each

other, allowing data transfers and communication. This

link is used for:

‚ Control Messages: Coordinating the cooperation,

synchronizing date and time, notification of upcom-

ing shutdown (which may be interrupted).

‚ Bundle Exchange: Transfer DTN bundles received

by the low-power platform.

‚ Use Radio Link: When awake, the SBC is able to

transmit and receive data via the radio attached to

the microcontroller.

With our node, we target outdoor network installations

where a wired mains power supply is not available. Since

the whole system is powered by a battery, all components

have to be energy efficient and should be turned off when

not in use. Basic communication in the DTN can be

done by the low-power board: Sensor data can be read

and routed to a sink without the need to boot the SBC.

Also, small to medium bundles of other nodes can the

forwarded via IEEE 802.15.4 or LoRa. The Linux board

will only be booted if a task cannot be handled by the

low-power platform or upon request.

A picture of the board is shown in Figure 2. Depend-

ing on the configuration, a single board (PCB and com-

ponents) costs about USD70. Populating the Ethernet

parts for example, adds about USD 10.

PV

Module

Charge

Controller

Battery

(LiFe, LiPo, SLA, ...)
Switching Regulator VCC

μSD

Ethernet
UART,

I2C, SPI
USB

RTC

w/ Battery

STM32F4 Temperature

Radio

IEEE 802.15.4 / LoRa

Load (SBC)

(x2)

Fig. 3. Architecture of the Amphisbaena board. Dashed boxes are
connected externally using wires

A block diagram of the Amphisbaena hardware pre-

sented in this paper is shown in Figure 3. The com-

ponents on the board can roughly be classified into

two groups, a) the power supply including the charge

controller and b) the processing unit. Both are explained

in more detail now.

a) Power Supply: For energy management pur-

poses, the current and voltage delivered by the PV mod-

ule and battery can be monitored by the microcontroller.

A high-side current monitor INA138 is used to meter

the currents. The result is fed into the integrated Analog

to Digital Converter (ADC) of the MCU. The voltage

dividers for scaling the voltages to appropriate values

can be turned off using MOSFETs, which is used to

save energy.

The blocks shown in Figure 3 are:

‚ PV Module: A PV panel is used to harvest electri-

cal energy from sunlight. The open circuit voltage

should not exceed 34V, which is the maximum

input voltage of the charge controller.

‚ Charge Controller: The LT3652HV charge con-

troller IC is able to charge different types of bat-

teries (Li-Ion/LiPo/LiFePO4/Lead-Acid). MPPT is

implemented using this controller.

‚ Battery: Electrical energy is stored in the battery.

Its type depends on the use case, available mechan-

ical space and other factors.

‚ Switching Regulator: An efficient switching reg-

ulator LM43603 is used to supply the board with

3.3V.

b) Processing Unit/MCU: The major part of the

board is the microcontroller and its peripherals. Besides

the communication task, the MCU also controls all

peripherals on the board. Voltages and currents are being

monitored, a MPPT controller is implemented in the

software which maximizes the energy harvested from

the PV panel. All user applications for the low-power

board run on the MCU. An example for a very simple

task could be monitoring a temperature and transmitting

the data using the DTN communication stack.

‚ STM32F4: A 32-bit microcontroller

(STM32F407VGT [12]) is used as the MCU

on the low-power board. It runs with FreeRTOS4

as an operating system and provides several

communication interfaces such as Ethernet, UART

and USB. An RTC with an external backup battery

is used to keep the time and wake the CPU from

deep sleep modes. The Linux board is able to read

the time from this RTC after booting, so no time

synchronization via NTP, GPS or radio controlled

clocks is required.

The MCU has a maximum clock rate of 168MHz,

but can be scaled down on demand.

4http://www.freertos.org
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‚ Temperature: 1-wire sensors (DS18B20) are used

to monitor the temperature on the board, at the

battery and at the PV panel. This makes it pos-

sible to adjust end-of-charge-voltages. One sensor

is mounted on the PCB, additional ones can be

connected via a 3-pin header.

‚ μSD: The micro SD card is used to store config-

uration options (DTN endpoint identifier, Ethernet

configuration, . . . ) as well as DTN bundles.

‚ Load Outputs: Two outputs can be switched on

and off by the MCU. When switched on, external

loads are powered directly from the battery. The

Linux board (Raspberry Pi in our case) is connected
with its own voltage regulator to one of these

outputs. Each output is able to provide several

Amperes for the connected load.

‚ Radio: A daughter board with a radio can be

plugged into the base board. At the moment, two

radios with a compatible pin configuration are

available. Both use the Serial Peripheral Interface

(SPI) bus for communication. The LoRa module

itself does not have an external connector for an

antenna, so we integrated a SMA connector on the

base board. The same type of plug is used on the

breakout board for the Atmel IEEE 802.15.4 radio,

which makes it easy to use in other applications.

With an external antenna, the board can also be

put into a robust metal housing with the antenna

outside.

‚ Additional Interfaces: More peripheral compo-

nents can be attached to the board using several

buses, such as SPI or I2C.

The PCB we built has the dimension of 5x10 cm. The

hardware is designed in a way that most components can

be completely shut off with MOSFETs if they are not

needed. This means that no current is being consumed

when devices are in sleep mode. All connectors for com-

munication (mini-USB, SMA for antennas, Ethernet) are

located on the short edge of the board, screw terminals

for battery, PV panel and the SBC are available on the

opposite edge. Four holes (I 3mm) can be used to

mount the PCB.

B. Software Architecture

1) Embedded: The embedded Delay-Tolerant Net-

work (DTN) implementation called miniDTN runs on

the FreeRTOS operating system and is based on μDTN
[13]. We chose to port the software from the Contiki

OS5 due to the greater availability and thus support of

FreeRTOS on 32-bit MCUs. The Bundle Protocol Agent

is running as a Task in FreeRTOS. This makes it easy

to extend existing applications with our Bundle Protocol

implementation.

5http://www.contiki-os.org

Convergence Layer

802.15.4Ethernet LoRa

MAC/PHYMAC/PHY MAC/PHY

Discovery

Routing

Storage

Agent

Application

Fig. 4. Schematic diagram of the software architecture

Currently two Convergence Layers (CLs) are im-

plemented in miniDTN. Both are datagram based and

compatible with their IBR-DTN [14] counterparts. One

of them is based directly on top of the IEEE 802.15.4

MAC layer (“dgram:lowpan”), while the other one

uses UDP. LwIP6 is used as the IP stack for com-

munication over Ethernet. New CLs for miniDTN can

easily be developed by implementing a simple abstracted

interface.

Nodes may be connected via multiple links to each

other at the same time. A central routing module decides

which link should be used to transfer the data. New

rules can be implemented to support application specific

routing.

A simplified schematic diagram of miniDTN’s soft-

ware architecture is shown in Figure 4. The Agent
is the central component of the implementation. Each

Application has to pass its bundles to the Agent. Bundles
are stored in the Storage, which may either be on

the microSD card or in the RAM of the MCU. The

Routing module submits bundles to the Convergence
Layer to be sent over the air or wire. Neighbors are

discovered via beacon messages on the Convergence
Layer and handled by the Discovery module. Information

is passed to the Routing module, which decides which

Convergence Layer to use.

2) On High-power Node: The operating system run-

ning on the high-power node is a Debian-based Linux.

For communications, IBR-DTN is used, which is a light-

weight implementation of RFC5050 [2]. More informa-

tion on this software can be found in [3], [14] and

online7. The SBC is connected to the embedded board

via USB. Modifications to the IBR-DTN daemon enable

the cooperation of both systems. After starting, control

messages are exchanged which allow to adopt the current

state and data exchange.

C. Cooperation of DTN Implementations

The concept of two a network node consisting of

two individual platforms which appear as a single one

6http://savannah.nongnu.org/projects/lwip
7http://www.ibr.cs.tu-bs.de/projects/ibr-dtn

249249



to the outside offers many opportunities in wireless

networks. Communication partners do not need to know

which service is running on which platform. No explicit

messages have to be exchanged which are used to request

the booting of the Linux board.

Both DTN implementations can exchange control data

and bundles with each other. Both Bundle Protocol

agents know of the services running on the other plat-

form and may forward received data to the other one.

Sensors attached to the low power platform can be

accessed using the USB link from the Linux board which

allows the SBC to fulfill all the tasks which would be

done by the Amphisbaena board itself when the Linux

part is powered off. This means that no data will be lost

and no delays occur by letting the high power platform

to take control.

At the moment, the SBC will be powered up if data

is being received which has to be handled by the Linux

part or if the IEEE 802.15.4/LoRa-link is not powerful

enough for the traffic demand. This can be detected by

a congestion of the radio link or by the requirements of

the data transmissions. This will be discussed in Section

IV. An application may decide if the data should be

transferred saving energy and thus may need longer to

reach its destination, or if it is urgent and the reception

is time critical.

After booting the SBC, a neighbor in the network

would only see that the node with the same ID has acti-

vated a new communication link like WLAN. Later, this

functionality will be extended by actively announcing the

possibility to activate the high power board. This can be

used for routing decisions, especially in a network of

more nodes.

IV. NETWORK PERFORMANCE

When switching between the low-power platform and

the Linux-based SBC in an application, it is impor-

tant what performance at which cost of energy can

be expected in the different modes. This is not only

depending on the communication medium, but also on

the processing speed, storage performance and other

tasks running on the platforms.

In order to be able to make a decision which commu-

nication link to use or to switch to the SBC with a higher

performance, both the time needed for data transfers and

the energy demand need to be known.

We tried to cover most communication scenarios

which might appear in a real world DTN or WSN. In

many situations, a host is sending a small-sized request

to another communication partner, which either sends

a small acknowledgment or a bigger portion of data. To

model these situations, a ping-like application has been

implemented which sends a data packet and specifies (in

this data) the requested size of the answer. As bundle

sizes modeling a request/ACK or payload data, 64Byte

and 1024Byte have been chosen.

The applications used for the data transfers are run-

ning in the user space of each DTN implementation.

Using the existing dtnping application shipped with

IBR-DTN gives better results in means of lower Round

Trip Times (RTTs), but does not depict a real world

scenario since an application developed by a user will

not be compiled into the daemon. The communication

between the daemon and the application itself also takes

some time and processing overhead.

The expected outcome of our measurements is to

create a function which returns the best option for

transmitting data with given characteristics. One can

decide, if the result should be better in terms of energy

demand or time. The clock frequency of the MCU has

an influence, on both the energy and time. Such results

are discussed in Section V.

The cost C in means of time and energy of a single

data transfer is defined as

Cpstx, srx,Mi, fCPUjq “
pE, T qpstx, srx,Mi, fCPUjq

(1)

stx and srx are defining the (expected) amount of data

to be transferred. Mi is the communication medium,

which might be IEEE 802.15.4, Ethernet or WLAN (on

the SBC), fCPUj is the clock frequency of the MCU. E
and T are the energy and time needed for the transfer.

Equation 2 and Equation 3 give the minimum energy

or time needed for the transmission defined by stx and

srx given the communication mediums M0 . . .MM and

available clock frequencies FCPU0 . . . FCPUN of the

Amphisbaena board.

Eminpstx, srxq “ minpEpstx, srx,M0, fCPU0q, . . .
. . .Epstx, srx,MM , FCPUN qq

(2)

Tminpstx, srxq “ minpT pstx, srx,M0, fCPU0q, . . .
. . .T pstx, srx,MM , FCPUN qq

(3)

When switching on the SBC in order to transfer larger

amounts of data or using a more powerful communica-

tion link such as WLAN, the boot time TBoot and the

energy needed for the boot process Eboot have to be

considered. During the boot process, no data exchange

with the SBC is possible.

For all combinations of bundle sizes, communication

media and clock frequencies, measurements have to be

conducted. In our measurements, the set of commu-

nication links of the Amphisbaena board considered,

consists of Ethernet and IEEE 802.15.4, the set of clock

frequencies is 24MHz, 30MHz, 84MHz and 144MHz.

The sequence of data exchange between nodes during

the evaluation is shown in Figure 5. At time T0, a

bundle is created and passed from the application to the
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miniDTN agent. The bundle is parsed by the agent and

sent on wire do the destination at the time T1.

Between T1 and T2, the bundle is received by IBR-
DTN and a simple application parses the data and

generates the answer bundle. After miniDTN received

this bundle, an acknowledgment is sent out on the Bundle

Protocol (BP)’s CL which is not seen in the user space.

Amphisbaena IBR-DTN

T0

T1 Query

BP-ACK

Respons
e

BP-ACK
T2

T3

} }
}

MComm

MComm

MApp

Fig. 5. Communication Protocol. For larger packets, Query or Re-
sponse may consist of several packets on the wire, each of them will
get ACK’ed.

V. EVALUATION

A. Description of Measurements

The general architecture for the measurements is

shown in Figure 6. We want to measure energy con-

sumption of the Amphisbaena board including the MCU

and all peripherals, such as the Radio or Ethernet PHY.

A Control PC is used to configure the bundle sizes and

other parameters like destination and count on the MCU.

U-Reg

MCU

Potato-

Scope
Control

PC

Ethernet

Radio

SD-Card

´`

RS

I

U

VCC

Marker

Fig. 6. Measurement setup

For measuring the energy consumption – that is supply

voltage and current – we use the PotatoScope [15], a

microcontroller-based oscilloscope.

With this integrated measurement solution that offers

to set markers in the code, we are able to directly

measure energy consumption of parts of the software.

Markers are input pins of the PotatoScope that can

be pulled high or low. The state of the markers are

saved along with each sample, allowing for a fine-

grained annotation of the measurement. Measurements

were taken at a sample rate of 100 kHz.

Two markers are implemented in the software called

MComm to signal activity on the wire and MApp cover-

ing the whole communication. These are also shown in

MApp

MComm

T0 T1 T2T3

Fig. 7. Waveforms of markers (not to scale)

Figure 5. The usage of markers for the scenario described

in Section IV is illustrated in Figure 7. At bundle creating

time T0 a rising edge of the Application-marker can

be seen. A falling edge occurs right after receiving the

answer from the other station at T3. During the actual

data transfer over the wire starting at T1 and T2, the

marker MComm is held high. The total energy demand

of a data transfer can be calculated using Equation 4.

ż T3

T0

uptq ¨ iptqdt (4)

The knowledge of the timepoints T0 . . . T3 allow de-

bugging and improving the software since they can be

used to figure out when delays during the transmission

occur. In the lab, it is even possible to connect the

markers of the communication partner, which allows an

even better insight in the communication process.

B. Network Setup

Both, data throughput and latency have been measured

between IBR-DTN and miniDTN for the data bundles

of the sizes and clock frequencies of the MCU given

in Section IV. On both systems the datagram-based CL

[14] dgram:udp or dgram:lowpan have been used.

For evaluating the transmissions on Fast-Ethernet, we

built a dedicated network consisting of the three nodes

(Raspberry Pi and two miniDTN boards) and a switch.

IBR-DTN was running on a Raspberry Pi Model B and

a Core i7-3770-based PC. The latter is for comparison

only, since in our use case, we aim at embedded low-

power SBCs in the network. We did not attach an

IEEE 802.15.4 radio to the PC. DTN implementations

other than IBR-DTN do not support the datagram-based

CL at the moment. Thus, all tests could only be per-

formed with IBR-DTN.
During the wireless measurements, the nodes have

been placed on a desk. Tests have been conducted in an

office environment of our lab where many participants

are occupying the 2.4GHz band using a variety of

different technologies. This may lead to collisions during

data transfers, but packet loss may also happen in real

world deployments due to many factors like interference

or path loss.
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(b) 64x64 Byte over IEEE 802.15.4 to Amphisbaena

Fig. 8. Data Transfer of 64 Byte to Raspberry Pi and Amphisbaena using IEEE 802.15.4

C. Measurement Results

The communication performance is heavily dependent

on the communication link and even the communication

partner. For example, Figure 8 shows the time and

energy consumption of a data transfer of 64Byte from

Amphisbaena to a Raspberry Pi respectively another

Amphisbaena board. As expected, the time of the data

transfer decreases with an increasing clock frequency of

the MCU while the energy demand is also rising. The

higher processing time (60ms to 70ms instead of 15ms

to 25ms) when communicating with a Raspberry Pi is

a result of the Linux operating system and the architec-

ture of IBR-DTN compared to the lightweight miniDTN
implementation running on a real time operating system.

In some cases, the clock frequency of the MCU

does not have a great effect on the time for a data

transmission. This is especially true when using Ethernet

for communicating with a Raspberry Pi. An example is

shown in Figure 9. For all clock frequencies, the RTT is

nearly constant around 63ms while the energy demand is

increasing from 22mWs per data exchange to 33mWs.

The amount of data transferred (64/64Byte in Figure

9(a) and 1024/1024Byte in Figure 9(b)) has hardly any

influence.

Most of the delays observed in Figure 9 are the results

of processing overhead on the Raspberry Pi. This is

proven by measurements of the same data sizes from

an Amphisbaena board to IBR-DTN running on a PC

with a faster CPU (Intel Core i7-3770). The RTT in this

scenario is much lower between 2ms and 5ms for all

clock speeds.

Figure 10 depicts a scenario in which a large amount

of data has been transferred between two Amphisbaena
boards using IEEE 802.15.4. Here we can see that the

RTT reaches its minimum not at the highest clock

frequency but at 84MHz. In this configuration, the

fastest clock speed should not be chosen since it does

not decrease the time any further. Only the energy

consumption increases when switching to 144MHz.

1) Comparison of Energy Demand: Figure 11 shows

the energy consumption of a Raspberry Pi using the

dgram:udp CL when communicating with an Intel

Core i7-3770 based PC. This measurement has been

done to show the baseline for what performance is

possible when using a Raspberry Pi. Comparing only
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Fig. 10. Large data transfers using IEEE 802.15.4 (1024x1024Byte)
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Fig. 11. Energy demand of Raspberry Pi

these figures, it would not make much sense to boot the

SBC which is quite expensive as shown in TABLE I.

TABLE I
ENERGY CONSUMPTION FOR BOOTING SBC UNTIL FIRST

COMMUNICATION IN DTN.

SBC Type Medium Boot-Time Energy

Raspberry Pi Mod B1 Ethernet 49.3 s 69.230Ws

Raspberry Pi Mod B1 WLAN :103.23 s 203.963Ws

Raspberry Pi2 Mod B2 Ethernet 23.0 s 21.927Ws

Raspberry Pi2 Mod B2 WLAN 24.1 s 30.157Ws
1 Running Raspbian wheezy
2 Running Raspbian jessie

: Association with WLAN AP may take very long

For determining the energy demand of the boot pro-

cess, we configured the Linux to start the DTN daemon

as early as possible after booting. The SBC connects

automatically to a network (WLAN, which may take a

very long time for establishing the association with the

access point, or via Ethernet). Directly after starting the

DTN daemon, a bundle is to be sent to another host

which measures the time and energy demand of the boot

process. This gives realistic values for the time it takes

to be able to communicate after booting.

Comparing these values and considering only the

single data transfers, it seems it would never be efficient
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Fig. 9. Data Transfer to Raspberry Pi using Ethernet
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Fig. 12. Transmitting 1000*1024Byte to a Raspberry Pi; data shown
are for single bundles

to boot the SBC. On the other hand, we also transferred

larger amounts of data in a row. For this evaluation,

we did not send application-based ACKs other than the

automatically generated ACKs by the Bundle Protocol.

We transmitted 1000 bundles of 1024Bytes in two

scenarios being 1) from the Amphisbaena board to

a Raspberry Pi using IEEE 802.15.4 and 2) between

two Raspberry Pis using WLAN. For the transmission

between the Linux boards, we used the TCP-CL, which

has not been implemented for miniDTN since it would

not perform well over IEEE 802.15.4. The results are

shown in Figure 12. Here we can see, that the transfer

of each single bundle (1000 in total) with the size of

1024Byte each takes much longer using IEEE 802.15.4,

while the energy demand is in the same magnitude for

both cases.

Using a full featured operating system like Linux on

a SBC would allow to transmit larger bundles instead of

rather small ones like 1024Byte each. This can reduce

the overhead significantly. Transmitting data amounts in

the magnitude of Megabytes is infeasible for low power

links like IEEE 802.15.4 which has a gross data rate of

250 kBit/s [16] and relatively small Packet Data Unit

(PDU) sizes.

2) Markers: As an example, a real world measure-

ment of a data transfer is shown in Figure 13. At about

93.5ms within the measurement the user process starts

to send data. The blue marker MApp shows the time

in which the user process is active, the green marker

MComm indicates that the Ethernet PHY is transmitting

data. In this case, the process takes around 5ms. The

current consumption is shown by the red graph. One

can see that the current rises during the processing and

communication and falls afterwards to the idle level.

Capacitors on the board lead to a delay of the process.

Due to this fact, we transmitted the data without any
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Fig. 13. Data Transfer with markers

TABLE II
CURRENT CONSUMPTION ACCORDING TO DATASHEETS.

Component Current @3.3V Power
MCUactive (168MHz) 43.7mA 144.2mW
MCUidle (25MHz) 5mA 16.5mW

MCUPowerDown
: 4 μA 13.2 μW

IEEE 802.15.4 RadioRX 12mA 39.6mW
Ethernet100Base´T 45mA 148.5mW
micro SD CardR{W 100mA 330mW

Raspberry Pi (@5V) 800mA 4000mW
:Can only be woken up by RTC.

delay in our measurements.

3) Energy consumption of Amphisbaena: TABLE II

shows the current and energy consumption of the in-

dividual components on the PCB. According to the

datasheets, running at the highest possible clock fre-

quency of 168MHz, the MCU’s current consumption is

moderate with 43.7mA. The actual value depends on the

peripherals being used. Depending on the application and

use case, the MCU may be clocked down. For example,

if there are no tasks, the MCU can enter idle mode with

a significantly lower clock rate and be woken up by an

interrupt from the radio.

Accessing an SD card is very expensive in terms of

energy [17], [18]. In order to keep the whole system

available for a long time, it must be ensured that it should

only be accessed when needed.

As seen in TABLE II, the energy consumption for the

worst case (Radio TX, 100Base-T Ethernet, SD transfer)

is around 670mW at 3.3V. Fortunately, in most wireless
scenarios, the Ethernet link would probably be not in

use. Generally, the schedule for all components can be

very different for each use case. This makes it impossible

to calculate an average energy consumption. During our

measurements, we have shown that the actual energy

consumption is in many cases higher than given in the
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data sheets.

The static measured energy consumption is shown in

TABLE III at different clock speeds. Those values are

measured when the DTN implementation is running, but

not active data transfers (except the usual broadcasting of

announcement messages) are active. We did not measure

the current consumption of each component, but only the

consumption of the complete Amphisbaena board.

TABLE III
MEASURED ENERGY CONSUMPTION OF Amphisbaena.

.

CPU Frequency With Ethernet Without Ethernet
30MHz 354.6mW 141.9mW
84MHz 432.3mW 207.8mW
168MHz 529.4mW 309.4mW

D. Discussion of the results

We have shown that the costs of data transmissions

are different for each scenario. In some cases, the clock

speed of the MCU has hardly any influence on the time

a data transfer takes which means that in most cases

the lowest clock frequency should be chosen for this

scenario (Figure 9). In other cases, the highest clock

rate results in faster transmissions while increasing the

energy demand (Figure 8). Conducting measurements

for all combinations of clock speeds and data sizes

are important since the “best” (either time or energy

consumption) values are not necessarily be found at the

highest or lowest clock frequency (Figure 10).

Our measurements have shown that the energy de-

mand of the Ethernet PHY is much higher than given in

the specification and shown in TABLE II, it is around

60mW higher than expected. The current consumption

of the MCU is also higher.

VI. CONCLUSION

In this paper, we have presented the versatile two-

platform node “Amphisbaena” for a Delay-Tolerant Net-

work (DTN) which is deployed outdoors. The option to

charge a battery by a PV panel efficiently using MPPT

allows the node to run self-sustaining for a long time due

to its low power consumption while still being able to

communicate. Our novel concept of a seamless switching

between two platforms offers new possibilities for out-

door deployments. Measurements offer the opportunity

to decide for which kind of communication which link

or even system should be used.

The lightweight DTN implementation running in a real

time operating system on a 32Bit MCU outperforms

Linux based implementations due to its reduced over-

head, especially for small data amounts to be exchanged.

If Megabytes of data have to be transmitted, the software

on the MCU can decide to boot the full featured Linux

on a SBC. A communication partner in the network

would only realize that a new communication link is

available. Further investigations on the announcement of

the possibility to boot the SBC will be done in the future

to benefit from this for routing strategies.
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