Sensor Fusion: A Technique To Improve Location Systems *E-NEXT WG1 TF*

Thomas King

University of Mannheim

king@informatik.uni-mannheim.de

Motivation

Introduction

Motivation

- Outline
- Categorization

Existing Work

Sensor Fusion

Conclusion

- Various applications require location information
 - mobile ad-hoc routing: position based routing
 - mobile business: context-aware applications
- various location systems are around
- no highly accurate, easy-to-use indoor location systems is available

Motivation

Introduction

Motivation

- Outline
- Categorization

Existing Work

Sensor Fusion

Conclusion

- Various applications require location information
 - mobile ad-hoc routing: position based routing
 - mobile business: context-aware applications
- various location systems are around
- no highly accurate, easy-to-use indoor location systems is available
- ⇒ we investigate sensor fusion based location systems

Outline

Introduction

Motivation

Outline
Categorization

Existing Work

Sensor Fusion

Conclusion

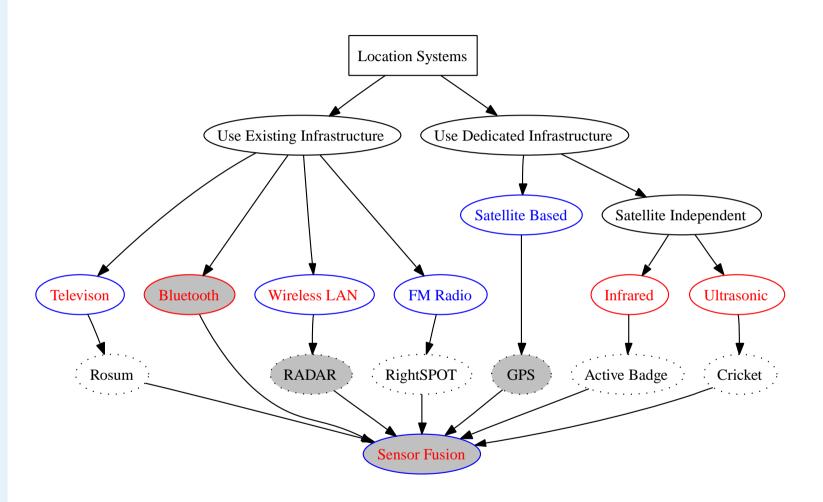
- Categorization
- Existing Work
- Sensor Fusion
- Conclusion

UNIVERSITY OF

Categorization

Introduction

Motivation


Outline

Categorization

Existing Work

Sensor Fusion

Conclusion

UNIVERSITY OF

Global Positioning System - Overview

Introduction

Existing Work

Global Positioning System -Overview

- Global Positioning System -Flaws
- RADAR Overview
- RADAR Database
- RADAR Positioning
- Bluetooth

Sensor Fusion

Conclusion

- designed for the U.S. military
- funded and operated by the Department of Defense
- operational since 1995
- 24 satellites orbit the earth at a height of 20.000 km
- provides an accuracy of 5-20 meters in 95 percent of all cases

Global Positioning System - Flaws

Introduction

Existing Work

 Global Positioning System -Overview

- Global Positioning System -Flaws
- RADAR Overview
- RADAR Database
- RADAR Positioning
- Bluetooth

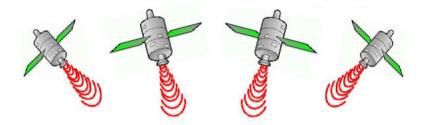
Sensor Fusion

Conclusion

- a line of sight to at least 4 satellites is required
- the GPS signals are blocked by obstacles (walls, foilage, ...)

UNIVERSITY OF

Global Positioning System - Flaws


Introduction

Existing Work

- Global Positioning System -Overview
- Global Positioning System -Flaws
- RADAR Overview
- RADAR Database
- RADAR Positioning
- Bluetooth

Sensor Fusion

- a line of sight to at least 4 satellites is required
- the GPS signals are blocked by obstacles (walls, foilage, ...)

RADAR - Overview

Introduction

Existing Work

- Global Positioning System -Overview
- Global Positioning System -Flaws

RADAR - Overview

- RADAR Database
- RADAR Positioning
- Bluetooth

Sensor Fusion

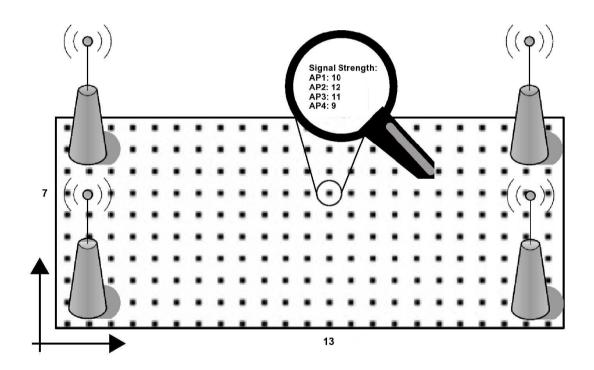
- wireless LAN access points are used to determine the position of mobile devices
- two step approach:
 - trainging phase: a database with signal strength values of the operation area have to be created
 - location phase: uses this database
- median distance error 2.5 meters

RADAR - Database

Introduction

Existing Work

- Global Positioning System -Overview
- Global Positioning System -Flaws
- RADAR Overview


■ RADAR - Database

- RADAR Positioning
- Bluetooth

Sensor Fusion

Conclusion

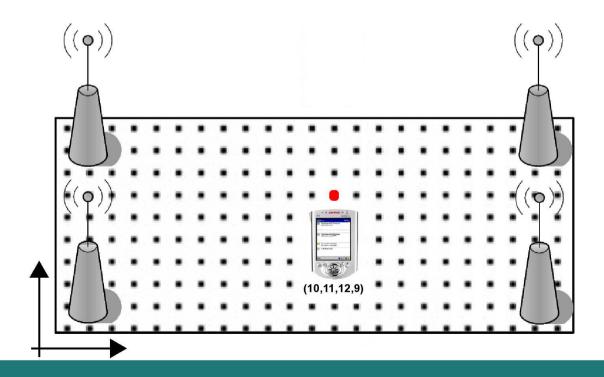
a dense grid of measurement points is required

RADAR - Positioning

Introduction

Existing Work

- Global Positioning System -Overview
- Global Positioning System -Flaws
- RADAR Overview
- RADAR Database


RADAR - Positioning

Bluetooth

Sensor Fusion

Conclusion

- the mobile device measures the signal strength of the access points in communication range
- the mobile device compares this sample with the values stored in the database

Bluetooth

Introduction

Existing Work

- Global Positioning System -Overview
- Global Positioning System -Flaws
- RADAR Overview
- RADAR Database
- RADAR Positioning

Bluetooth

Sensor Fusion

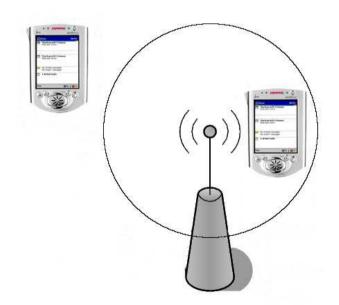
Conclusion

- invented to replace low-bandwidth cabling e.g. computer peripherals
- communication range up to 10 meters
- proximity based location determination

Bluetooth

Introduction

Existing Work


- Global Positioning System -Overview
- Global Positioning System -Flaws
- RADAR Overview
- RADAR Database
- RADAR Positioning

Bluetooth

Sensor Fusion

Conclusion

- invented to replace low-bandwidth cabling e.g. computer peripherals
- communication range up to 10 meters
- proximity based location determination

UNIVERSITY OF

Sensor Fusion - Overview

Introduction

Existing Work

Sensor Fusion

Sensor Fusion - Overview

- Sensor Fusion Challenges
- Generic Location System Architecture

Conclusion

 modern mobile devices contain a multiple of communication and sensor interfaces (e.g. Wireless LAN, Bluetooth, GSM, ...)

Sensor Fusion - Overview

Introduction

Existing Work

Sensor Fusion

Sensor Fusion - Overview

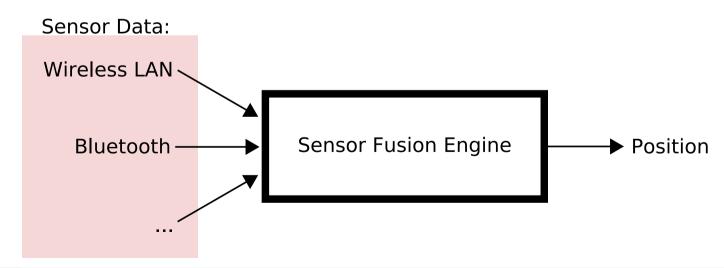
- Sensor Fusion Challenges
- Generic Location System Architecture

- modern mobile devices contain a multiple of communication and sensor interfaces (e.g. Wireless LAN, Bluetooth, GSM, ...)
- ⇒ exploit the correlation between sensed parameters to increase the positioning accuracy and availability

Sensor Fusion - Overview

Introduction

Existing Work


Sensor Fusion

Sensor Fusion - Overview

- Sensor Fusion Challenges
- Generic Location System Architecture

Conclusion

- modern mobile devices contain a multiple of communication and sensor interfaces (e.g. Wireless LAN, Bluetooth, GSM, ...)
- ⇒ exploit the correlation between sensed parameters to increase the positioning accuracy and availability

Sensor Fusion - Challenges

Introduction

Existing Work

Sensor Fusion

Sensor Fusion - Overview

Sensor Fusion - Challenges

 Generic Location System Architecture

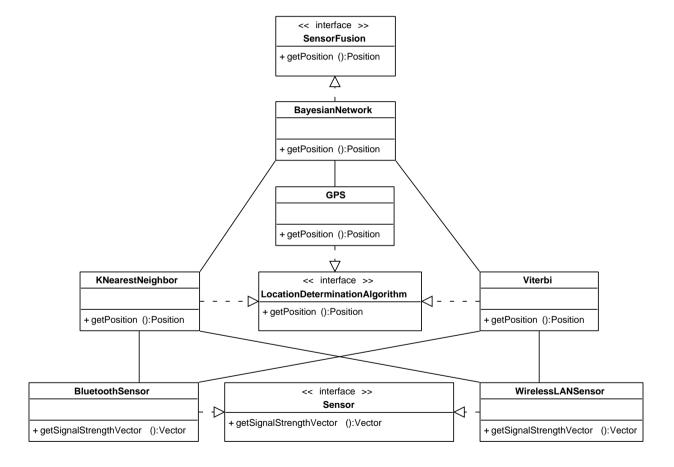
Conclusion

challenges:

- different sensor types provide different accuracy and precision
- sensor data is often noisy
- position estimates from different sensors may conflict with each other

Generic Location System Architecture

Introduction


Existing Work

Sensor Fusion

Sensor Fusion - Overview

Sensor Fusion - Challenges

Generic Location System
 Architecture

Conclusion

Introduction

Existing Work

Sensor Fusion

Conclusion

Conclusion

- Categorization of location systems
- Existing Work
 - GPS
 - RADAR
 - Bluetooth
- Sensor Fusion

UNIVERSITY OF MANNHFI