

TU Braunschweig Institut für Betriebssysteme und Rechnerverbund

Verteilte Systeme

Prof. Dr. Stefan Fischer

Kapitel 12: Mobilität

Überblick

 Die folgenden Folien stammen zu großen Teilen von Herrn Prof. Dr. Jochen Schiller, Berlin – herzlichen Dank!!.

Inhalt:

- Motivation warum Mobilität in verteilten Systemen?
- Mobile Technik Netze, Rechner und Dienste
- Mobilität in Anwendungen am Beispiel WWW
 - HTTP/HTML
 - WAP und iMode
 - J2ME

Computer für das nächste Jahrhundert?

- Computer sind integriert
 - klein, billig, beweglich, austauschbar nicht mehr als eigenständige Einheit erkennbar
- Technik tritt in den Hintergrund
 - Computer erkennen selbst wo sie sind und passen sich an
 - Computer erkennen wo welcher Benutzer ist und verhalten sich entsprechend (z.B. Weiterleiten von Gesprächen, Fax)

Fortschritte in der Technik

- höhere Rechenleistung auf kleinerem Raum
- flache, leichte Anzeigen mit niedriger Leistungsaufnahme
- neue Schnittstellen zum Benutzer wg. kleiner Abmessungen
- mehr Bandbreite pro Kubikmeter
- vielfältige drahtlose Netzschnittstellen: lokale drahtlose Netze, globale Netze, regionale Telekommunikationsnetze etc. ("Overlaynetzwerke")

Mobilkommunikation

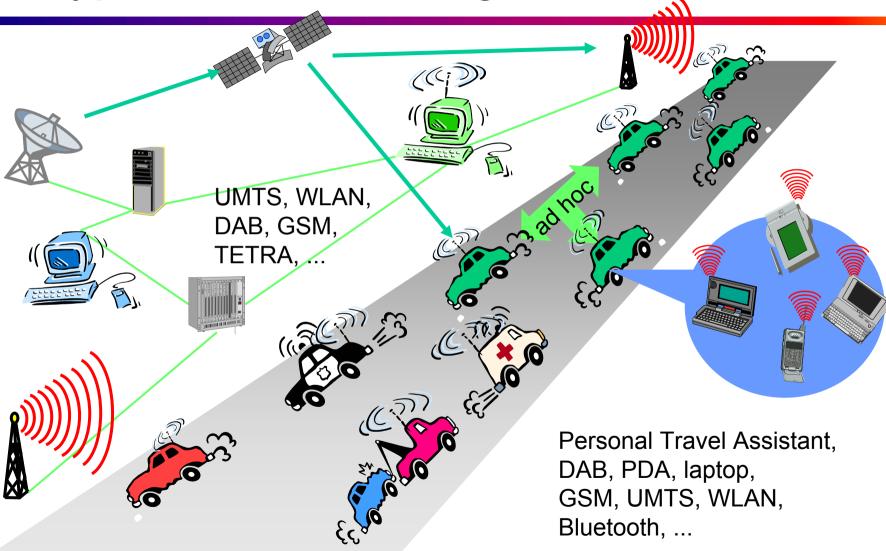
- Zwei Aspekte der Mobilität:
 - Benutzermobilität: Der Benutzer kommuniziert (drahtlos) "zu jeder Zeit, an jedem Ort, mit jedermann."
 - Gerätemobilität: Ein Endgerät kann zu einer beliebigen Zeit, an einem beliebigen Ort im Netz angeschlossen werden.
- Wireless Mobile Beispiele

stationäre Arbeitsplatzrechner Notebook im Hotel Funk-LANs in nicht verkabelten Gebäuden Personal Digital Assistants (PDA)

Festnetzintegration

- Der Wunsch nach mobiler
 Datenkommunikation schafft den Bedarf zur Integration von drahtlosen Netzen in bestehende Festnetze:
 - im lokalen Bereich: Standardisierung von IEEE 802.11, ETSI (HIPERLAN)
 - im Internet: Die Mobile IP-Erweiterung
 - im Weitverkehrsbereich: Anbindung an ISDN durch GSM

Anwendungen I


Fahrzeuge

- Empfang von Nachrichten, Straßenzustand, Wetter, Musik via DAB
- persönliche Kommunikation über GSM
- Positionsbestimmung über GPS
- lokales Netz mit Fahrzeugen in der Umgebung zur Vermeidung von Unfällen, Leitsystem, Redundanz
- Fahrzeugdaten (z.B. bei Linienbussen, ICE) können vorab in eine Werkstatt übermittelt werden, dann schnellere Reparatur

Notfälle

- Übermittlung von Patientendaten ins Krankenhaus vor der Einlieferung, aktueller Stand der Behandlung, Diagnose
- Ersatz der festen Infrastruktur bei Erdbeben, Orkanen, Feuer etc.

Typische Anwendung: Straßenverkehr

Prof. Dr. Stefan Fischer IBR, TU Braunschweig

Verteilte Systeme Kapitel 12: Mobilität

Anwendungen II

Handelsvertreter

- direkter Zugriff auf Kundendaten in der Zentrale
- konsistente Datenhaltung über alle Mitarbeiter
- mobiles Büro
- Ersatz eines Festnetzes
 - abgeschiedene Messstationen, z.B. Wetter, Flusspegel
 - Flexibilität bei Messeständen
 - Vernetzung historischer Gebäude
- Freizeit, Unterhaltung, Information
 - Internet-Anschluss im Grünen
 - tragbarer Reiseführer mit aktuellen Informationen vor Ort
 - Ad-hoc Netzwerke für Mehrbenutzerspiele

Ortsabhängige Dienste

Umgebungsbewusstsein

 welche Dienste, wie Drucker, Fax, Telefon, Server etc. existieren in der lokalen Umgebung

Nachfolgedienste

 automatische Anrufweiterleitung, Übertragung der gewohnten Arbeitsoberfläche an den aktuellen Aufenthaltsort

Informationsdienste

- "push": z.B. aktuelle Sonderangebote im Supermarkt
- "pull": z.B. wo finde ich Pizza mit Thunfisch

Nachfolgen der Unterstützungsdienste

 Caches, Zwischenberechnungen, Zustandsinformation etc. "folgt" dem mobilen Endgerät durch das Festnetz

Privatheit

wer soll Kenntnis über den Aufenthaltsort erlangen

Mobile Endgeräte

Pager

- nur Empfang
- sehr kleine Anzeigen
- einfache Textnachrichten

Sensoren, embedded systems

PDA

- einfache Grafikanzeigen
- Handschrifterkennung
- vereinfachtes WWW

Laptop

- · voll funktionsfähig
- Standardanwendungen

Mobiltelefone

- Sprache, Daten
- einfache Textanzeigen

Palmtops

- kleine Tastatur
- einfache Versionen der Standardprogramme

Leistung

Verteilte Systeme Kapitel 12: Mobilität

Auswirkungen der Endgeräteportabilität

Leistungsaufnahme

- begrenzte Rechenleistung, niedrigere Qualität der Anzeigen, kleinere Festplatten durch begrenzte Batterieleistung
- CPU: Leistungsaufnahme ~ CV²f
 - C: interne Kapazitäten, durch Hochintegration verringert
 - V: Betriebsspannung, wird kontinuierlich abgesenkt
 - f: Taktfrequenz, kann z.B. zeitweise gesenkt werde

Datenverlust

- muss von vornherein mit eingeplant werden (z.B. Defekte)
- Stark eingeschränkte Benutzungsschnittstelle
 - Kompromiss zwischen Fingergröße und Tragbarkeit
 - evtl. Integration von Handschrift, Sprache, Symbolen
- Eingeschränkter Speicher
 - Massenspeicher mit beweglichen Teilen nur begrenzt einsetzbar
 - Flash-Speicher als Alternative

Drahtlose vs. Festnetze

- Höhere Fehlerraten durch Interferenzen
 - Einstrahlung von z.B. Elektromotoren, Blitzschlag
- Restriktivere Regulierungen der Frequenzbereiche
 - Frequenzen müssen koordiniert werden, die sinnvoll nutzbaren Frequenzen sind schon fast alle vergeben
- Niedrigere Übertragungsraten
 - lokal einige Mbit/s, regional derzeit z.B. 9,6kbit/s mit GSM
- Höhere Verzögerungen, größere Schwankungen
 - Verbindungsaufbauzeiten via GSM im Sekundenbereich, auch sonst einige hundert Millisekunden
- Geringere Sicherheit Luftschnittstelle ist für jeden einfach zugänglich, Basisstationen können vorgetäuscht werden
- sichere Zugriffsverfahren wegen shared medium

WWW und Mobilität

- Protokoll (HTTP, Hypertext Transfer Protocol) und Sprache (HTML, Hypertext Markup Language) des Web wurden nicht für mobile Anwendungen entworfen, daraus resultieren zahlreiche Probleme!
- Typische Datengrößen
 - HTTP request: 100-350Byte
 - Antworten typ. <10kByte, Kopf 160Byte, GIF 4,1kByte, JPEG 12,8kByte, HTML 5,6kByte
 - aber auch viele sehr große Dateien, nicht vernachlässigbar

Charakter des WWW

- Das Web ist kein Dateisystem!
 - Web-Seiten sind nicht nur einfach Dateien, die geladen werden
 - statische und dynamische Inhalte, Interaktion mit Servern über Formulare, Inhaltstransformation, push-Strategien
 - zahlreiche Querverweise, kein transparenter
 Datenstrom, automatisches Nachladen
 - ein Klick auf eine Datei kann große Konsequenzen haben!

WWW-Beispiel

Anfrage an Port 80

GET / HTTP/1.0

Antwort vom server

```
HTTP/1.1 200 OK
Date: Fri, 06 Nov 1998 14:52:12 GMT
Server: Apache/1.3b5
Connection: close
Content-Type: text/html
<HTMT<sub>1</sub>>
<HEAD>
<TITLE> Institut f&uuml;r Telematik</TITLE>
</HEAD>
<BODY BGCOLOR="#ffffff">
<img src="icons/uni/faklogo de.gif"</pre>
ALT=" [Universität Karlsruhe, Fakultät für
  Informatikl ">
```

HTTP 1.0 und Mobilität I

Eigenschaften

- zustandslos, Client/Server, Anfrage/Antwort
- erfordert verbindungsorientiertes Protokoll, eine Verbindung pro Anfrage (meist TCP eingesetzt)
- primitive Caching- und Sicherheitsmodelle

Probleme

- entworfen für große Bandbreiten und geringe Verzögerungen
- große und redundante Protokollköpfe (lesbar für Menschen, kein gespeicherter Zustand erfordert stets umfangreiche Köpfe)
- unkomprimierte Übertragung von Inhalten
- mit TCP
 - großer Overhead pro Anfrage durch 3-Wege-Handshake
 - slow-start Problematik
- DNS-lookup durch Client erzeugt zusätzlichen Verkehr

HTTP 1.0 und Mobilität II

Caching

- oftmals von Dienstanbietern verhindert, damit Benutzungsstatistiken erstellt werden können
- dynamische Objekte k\u00f6nnen nicht im Cache abgelegt werden
 - zahlreiche Zähler, Datum, Personalisierungen, ...
- Mobilität macht oft Caches unmöglich
- Sicherheitsproblematik
 - wie verhält sich SSL im Zusammenhang mit Proxies
- POST (d.h. Senden zum Server)
 - kann i.allg. nicht gepuffert werden, damit problematisch falls gerade abgekoppelt
- Genügend ungelöste Fragen!

HTML und mobile Endgeräte

HTMI

- entworfen für Endgeräte höherer Leistung, Farbdisplay, Maus
- Optimierung der "Ästhetik", nicht des Kommunikationsaufwandes
- Mobile Endgeräte
 - haben oft nur kleine Anzeigen niedriger Auflösung und sehr eingeschränkte Eingabemöglichkeiten
- weitere "Features"
 - animierte GIFs, Java AWT, Frames, ActiveX Controls, Shockwave, Filmclips, Audio, ...
 - heute schon werden Echtfarbendarstellung, Multimedia-Unterstützung, hohe Auflösungen beim Entwurf von Web-Seiten vorausgesetzt
- Die Mehrzahl der HTML-Seiten enthält Fehler
 - Browser müssen sehr leistungsfähig sein, um diese Fehler "auszugleichen"
- Heterogenität der Endgeräte wird weitgehend ignoriert!
 - also werden z.B. auch große Bilder automatisch zum Mobiltelefon mit geringer Auflösung unter hohen Kosten übertragen!

Ansätze in Richtung Web für mobile Endgeräte

- Anwendungs-Gateways, erweiterte Server
 - einfache Clients, Vorberechnungen im Festnetz
 - Kompression, Filterung, Inhaltsextraktion
 - automatische Anpassung an Netzwerkgegebenheiten

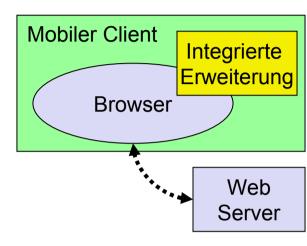
Beispiele

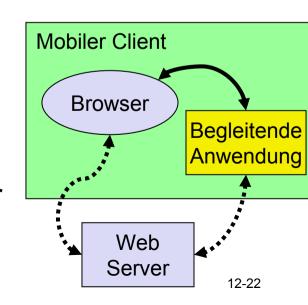
- Skalierung von Grafiken, Farbreduktion, Änderung des Dokumentenformats (z.B. PS nach TXT)
- Detailbetrachtungen, Ausschnitte, Zoom
- Extraktion von Überschriften, Zusammenfassung des Textes
- HDML: einfache, HTML-ähnliche Sprache mit speziellem Browser
- HDTP: passendes Protokoll, entwickelt von Unwired Planet

Probleme

- proprietäre Ansätze, erfordern eine Menge spezieller Zusätze für Browser
- große Geräteheterogenität erschwert Ansätze

Verteilte Systeme Kapitel 12: Mobilität


Mobilitätsunterstützung


HTTP/1.1

- client/server nutzen die selbe Verbindung für mehrere Anfragen/Antworten
- mehrere Anfragen zu Beginn einer Sitzung möglich, die Antworten kommen dann in der Anfragereihenfolge
- erweiterte Zwischenspeicherung von Antworten möglich (falls Antworten identisch)
- semantische Transparenz ist nicht immer machbar: abgetrennt, geringe Leistung, Verfügbarkeit
- neue Tags und Optionen, um das Caching besser zu steuern (public/private, max-age, no-cache etc.)
- Konsistenz kann auf Nutzerwunsch abgeschwächt werden
- Kodierung/Kompression, Integritätsprüfung, Sicherheit von Proxies, Authentisierung, Authentifikation...

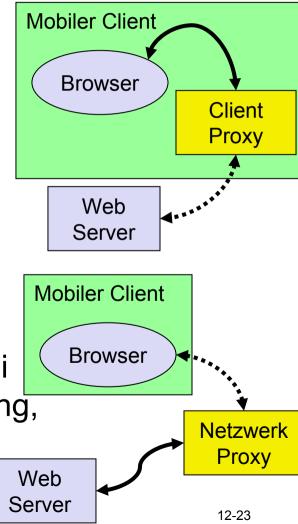
Systemunterstützung für WWW im Mobilen I

- Erweiterte Browser
 - Pre-fetching, caching und abgekoppelte Nutzung
 - z.B. Internet Explorer
- Zusätzliche, begleitende Anwendung
 - Pre-fetching, caching und abgekoppelte Nutzung
 - z.B. ursprünglicher WebWhacker

Systemunterstützung für WWW im Mobilen II

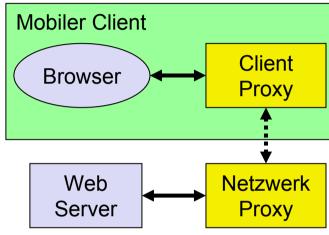
Client Proxy

- Pre-fetching, caching und abgekoppelte Nutzung
- z.B. Caubweb, TeleWeb,
 Weblicator, WebWhacker,
 WebEx, WebMirror,

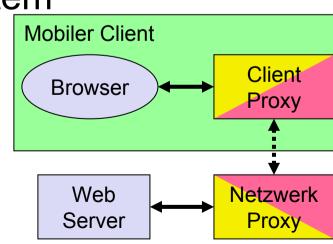

. . .

Netzwerk Proxy

Adaptive Inhaltstransformation bei schlechter Verbindung, pre-fetching, caching


z.B. TranSend, Digestor

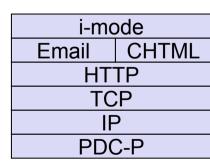
Verteilte Systeme Kapitel 12: Mobilität


Systemunterstützung für WWW im Mobilen III

- Client und Netzwerk Proxy
 - Kombination der Nutzen plus Protokollvereinfachungen
 - z.B. MobiScape, WebExpress

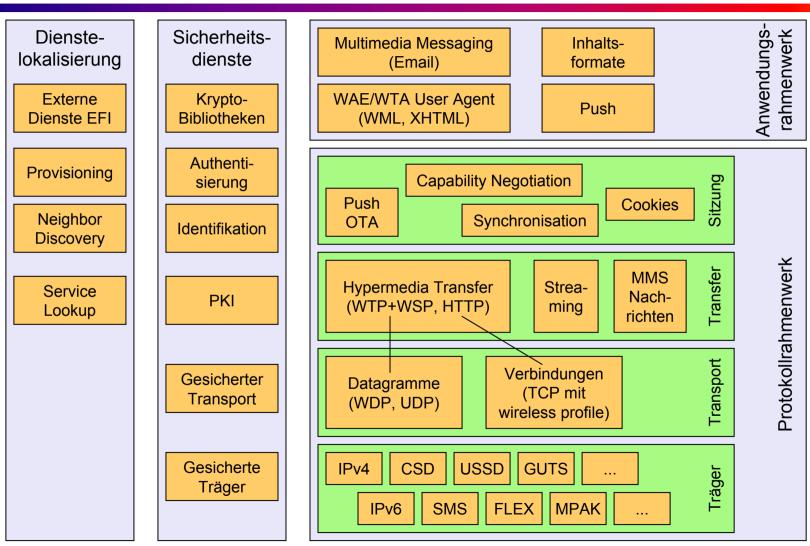
Spezielles Netzwerk Subsystem

- Adaptive Inhaltstransformation bei schlechter Verbindung,
- pre-fetching, caching
- z.B. Mowgli



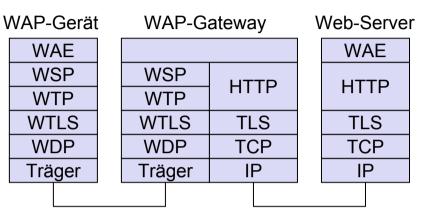
i-mode

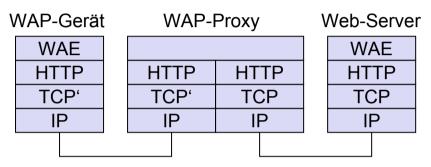
Zugang zu Internet-Diensten in Japan/NTT DoCoMo


- Dienste
 - Email, Kurznachrichten, Web, Austausch von Bildern, Horoskope, ...
- Sehr großer Erfolg, über 25 Mio. Nutzer (Juni 2001)
 - Für viele ein PC-Ersatz, PC-Dichte in Japan relativ niedrig
 - Ermöglichte für viele ersten Internet-Kontakt
 - Sehr einfach und bequem in der Handhabung
- Technik
 - 9,6 kbit/s, paketorientiert
 - Compact HTML, keine Sicherheit

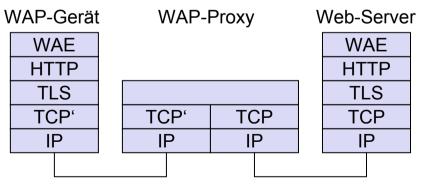
WAP 2.0 (Juli 2001)

- Neu für Entwickler
 - XHTML
 - TCP
 - HTTP
- Neue Anwendungen
 - Farbgrafik
 - Animation
 - Laden großer Dateien
 - Ortsabhängige Dienste
 - Synchronisation mit PIMs
 - Pop-up/kontextsensitive Menüs
- Ziel: Integration von WWW, Internet, WAP, i-mode


WAP 2.0 Architektur


Prof. Dr. Stefan Fischer IBR, TU Braunschweig

Verteilte Systeme Kapitel 12: Mobilität


WAP 2.0 Protokollstapel

WAP 1.x Server/Gateway/Client

WAP HTTP Proxy mit angepasstem TCP

WAP Proxy mit TLS-Tunneling

WAP-Gerät

WAE
HTTP
TCP'
IP
IP
IP
IP
IP
IP
IP
IP

WAP Direkter Zugriff

Prof. Dr. Stefan Fischer IBR, TU Braunschweig

Verteilte Systeme Kapitel 12: Mobilität

Java 2 Platform Micro Edition

- "Java-Boom erwartet" (?)
 - Desktop-Bereich: über 90% Standard-PC-Architektur, Intelx86-kompatibel, meist MS-Windows-Systeme
 - Was soll hier Plattformunabhängigkeit helfen?
- ABER: Heterogene, "kleine" Geräte
 - Internet Appliances, Mobilfunktelefone, eingebettete Steuerungen, Autoradios, ...
 - Aus technischer Notwendigkeit (Temperatur, Platz, Leistungsaufnahme, ...) und Kostengründen unterschiedliche Hardware benötigt

J2ME

- Bereitstellung einer einheitlichen Plattform
- Teilweise eingeschränkter Funktionsumfang im Vergleich zu Standard-Java-Plattform Verteilte Systeme

IBR, TU Braunschweig

Kapitel 12: Mobilität

Anwendungen von J2ME

Beispiel Mobiltelefone

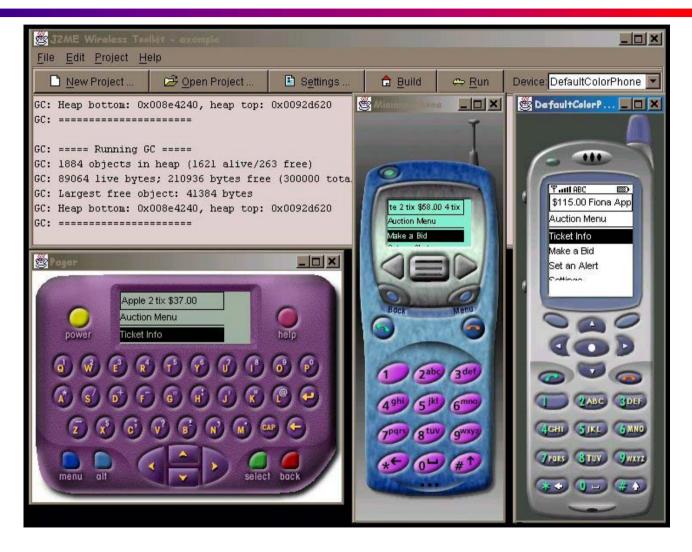
- NTT DoCoMo führt iαppli ein
- Anwendungen auf PDA, Handy, ...
- Laden von Spielen, Multimedia-Anwendungen, Verschlüsselung, Systemaktualisierungen
- Zusatzfunktionen gegen Geld auf Knopfdruck laden
- Eingebettete Steuerungen
 - Hausgeräte, Fahrzeuge, Überwachungssysteme, Gerätesteuerungen
 - Vorrangig Systemaktualisierung

Kenndaten und Architektur

- Java Virtual Machine
 - Virtuelle Hardware (Prozessor)
 - KVM (K Virtual Machine)
 - Min. 128 kByte, typ. 256 kByte
 - Optimiert f
 ür leistungsschwache Ger
 äte
 - Kann durch Coprozessor realisiert sein
- Konfigurationen
 - Untermenge der Bibliotheken bzgl. Standard-Java in Abhängigkeit der techn. Parameter (Speicher, CPU)
 - CLDC (Connected Limited Device Configuration, Basis-Konfiguration)
- Profile
 - Interoperabilität auch über heterogene Geräte hinweg, welche jedoch einer Kategorie angehören
 - MIDP (Mobile Information Device Profile)

Anwendungen

Profile (MIDP)


Konfigurationen (CDC, **CLDC**)

Java Virtual Machine (JVM, **KVM**)

Betriebssystem (EPOC, Palm, WinCE

Hardware (SH4, ARM, 68k, ...)

Hardware-unabhängige Entwicklung

Zusammenfassung J2ME

- Idee geht über WAP 1.x oder i-mode hinaus
 - Vollständige Anwendungen auf Mobiltelefonen, nicht nur Browser
 - Auch Systemaktualisierungen, Ende-zu-Ende-Verschlüsselung
- Plattformunabhängigkeit durch Virtualisierung
 - Solange bestimmte Schnittstellen eingehalten werden
 - Nicht bei Hardware-spezifischen Funktionen
- Eingeschränkte Funktionalität im Vergleich zu JVM
 - Übergangslösung, bis auch eingebettete
 Systeme/Mobiltelefone etc. gleiche Leistungsfähigkeit wie heutige Desktopsysteme besitzen