
Professor Dr. Stefan Fischer
Institut für Betriebssysteme und Rechnerverbund

Gruppe Verteilte Systeme
Betreuer: Muhammad Khan

Technische Universität Carolo Wilhemina zu Braunschweig
Mühlenpfordtstraße
38100 Braunschweig

Service Discovery in Home
Environments

Seminararbeit
(Wintersemester 2002/2003)

Björn H. Gerth
<b.gerth@tu-bs.de>

CONTENTS 2

Contents

1 Introduction 3

2 Jini 4

3 Universal Plug and Play 7

4 Salutation 10

5 Home Audio Video interoperability 12

6 Conclusion 15

List of Figures

1 Jini’s announce and discovery protocols 5
2 Jini communication . 6
3 UPnP protocol stack . 8
4 Salutation structure . 10
5 HAVi architecture . 12

List of Tables

1 Comparison of service discovery solutions 15

1 INTRODUCTION 3

1 Introduction

In the modern world, home environments include more and more electronic appliances
in kitchen, bath and living rooms. Seldom are all these devices able to communicate
with each other, although we are familiar with partial interaction, e.g. the CD player
connected to an amplifier and its remote control. But since the devices nowadays contain
a microprocessor (not only all sorts of consumer electronics) it just seems reasonable to
connect them and have them communicate, interact and share services and functions.
This requires some sort of service discovery within the network of appliances, such that
devices can find the services offered by other devices. So middleware, the software con-
necting applications, providing the service discovery and sometimes the exchange of data,
increasingly gained interest in recent years.

Taking a look into the computer world, the problem to realize a network of all sorts
of devices is the current system setup. Disk-centric and client/server computing force
networks with central connection points, a high amount of administration and thus low
flexibility. Peripherals like printers are attached to some of the clients and have to be
driven by special applications with certain device drivers. Addition of other components
may require a complete shutdown and reboot of the network. Finally, relatively limited
bandwidth may prevent the devices from meeting the user’s quality expectations.

For a loose coupling of devices a different kind of architecture is needed. As mentioned
in [8], we have to get away from configured environments to foreign networks with un-
known infrastructures. Network-centric computing should allow devices to be integrated
into the network by simply plugging them in; furthermore, the new devices should be
able to use other entities present in the network and/or offer their own services. Thus,
the network consists of a collection of services and clients instead of applications and
peripherals, where the flexibility lies not only in the easy installation and removal of
components, but also in the way these components interact.

Coming back to home environments, such networks would not only include printers,
storage devices and specialized hardware, but cell phones, personal digital assistants
(PDA), television, stereo components, telecommunication devices and even modern ther-
mostats [13]. A quite fitting example is given by [3]: An alarm clock may be connected
to the coffee machine and the home heating system; hence, the inhabitant will have hot
coffee and a warm house when he wakes up. This is just one sample of the envisioned
house of the future, with a smart environment: The electronics surrounding us simplify
life by offering ways to spare us daily trips to supermarket, post office and baker. Digital
technologies significantly enhance the user’s entertainment experience [10]. All devices
requiring user interaction can be controlled from one component, be it PDA, cell phone

2 JINI 4

or simply the personal computer. Furthermore, home appliances might be remotely ac-
cessed through the internet, e.g. to start longterm processes before actually arriving at
home.

The next sections will take a closer look at different service discovery architecture and
how they are suitable for how environments.

2 Jini

The Jini architecture presents a kind of layer among devices to enable communication
among them. Goals of the Jini design, detailed in the next paragraphs, were to allow a
federation of easily pluggable and removable components, a low level of administration
and avoidance of single points of failure.

The federation concept of Jini mainly means that a certain set of devices is registered
with one or a few control points - the Lookup Services (LUS), explained below -, i.e.
the network is made up of several federated control points. Although current distributed
systems mainly use centralized control, Jini’s federations show some advantages towards
the expected excessive expansion of networks. It may be difficult to change centralized
systems over time - especially when the systems grow to a very large scale. Federations
may suit this problem better, for the reason that the control is spread over several points,
the LUS, and a minimal set of rules that Jini imposes on the participants of the federation.
These demands will be detailed below.

The integration and removal of new members is realized in an efficient way: On the
one hand, it suffices to simply plug the new unit into the network and turn it on while on
the other hand it is not necessary to update old members or even shut the whole network
down for an upgrade.

Administration is still needed for the network. Although the Jini federation takes care
of the administration, a device plugged into the network still has to be equipped with an
Internet Protocol (IP) address (a possible automatic solution for this would be AutoIP of
UPnP, see below). Furthermore for the unicast discovery protocol, see below, some help
by an administrator is required.

The avoidance of single points of failure improves the reliability of the architecture.
Since Jini also aims at including consumer electronics, which are not known for crashing
the whole system due to a failure of one component, the breakdown of one device in the
network affects other members as little as possible.

The communication between services and clients is realized with Service Objects, or

2 JINI 5

Figure 1: Jini: multicast discovery (left), multicast announce (middle) and unicast dis-
covery protocols [3]

proxies. A proxy is a code object which represents the interface to its service; a client
wishing to use the service simply downloads the proxy code and accesses the interface
functions.

The communication between a proxy and its own service is not restricted by Jini,
i.e. the choice and implementation of the underlying protocol depends on the developer.
This process allows an insulation of the programmer from the Advanced Programming
Interface (API) [14], and the communication protocol between proxy and service can be
changed without any need for the client to be updated.

There are three kinds of proxies: Stubs, smart proxies and full service proxies. A
stub simply delegates the request from a client to its service device. A full service proxy
manages all the function itself and may not even have an underlying device. A smart
proxy is somewhat in the middle, solving easy tasks by its own functions and transferring
remaining function calls to the more complex device.

The Lookup Service is the part of the Jini model which allows spontaneous network-
ing and which answers the question how a service can be discovered by a client. In a
Jini federation there exists at least one lookup service where other services can register
themselves and clients can request connection to the services.

There are three ways to set up communication between LUS and services/clients,
shown in figure 1:

A service wishing to join a network sends out a message of the multicast discovery
protocol, based on the Transmission Control Protocol (TCP), to a certain port. A LUS
which receives such a message sends the requester a service object of its own, which can
be used to provide the IP address of the LUS and identify the LUS later. The requester
can now open a TCP connection to the LUS. In case the requester is a service it uploads
its own Service Object and its service attributes, some other descriptive attributes, to

2 JINI 6

Figure 2: Jini: Client requesting service from LUS (left), client-service communication
[13]

any or all of the answering LUS; in case it is a client it may query the replying LUS
whether they offer a matching interface of the desired service.

A LUS announces its presence in the network through the multicast announce protocol
by sending out packets. Any service or client which receives this message and does not
already know that specific LUS (identifiable by the Service Object of the LUS) can now
announce itself.

The last protocol is the unicast discovery, where a client or service may connect to
a certain LUS. This LUS is usually farther away in the network, and its IP address has
to be provided by a network administrator. The discovering entity may then directly
connect to the LUS.

A client queries the LUS whether it offers a matching proxy, i.e. a matching Java
type and maybe some desired properties in the service attributes. The client can then
download the proxy from the LUS and communicate with the service directly, the LUS is
not involved anymore (figure 2). Even if it crashes, the communication between service
and client can still take place.

The Lookup Services provide a way to spontaneously enter a Jini network, but how
does the architecture allow or discover the removal of a service? This and more is achieved
by the third part of the Jini model, the concept of Leasing.

As an example, Leasing is used to maintain a connection between LUS and ser-
vices/clients. The LUS grants a limited service registration lease to the other entity.
Then, shortly before expiration of the lease the other entity has to renew its registration,
otherwise the LUS assumes the entity has been removed from the network.

Other examples of how Leasing can be used in various situations throughout the Jini
architecture are resource Leasing or event subscription. A service may lease its resources
to a client so that it can operate successfully; this does not only include memory, but
also space on a hard disk or the ability to display a user interface (the service does not
have to use leasing for its resources - the developer is free to use other mechanisms). On

3 UNIVERSAL PLUG AND PLAY 7

the other hand, this even allows the use of resources outside of the client or the service
- all resources available in the network may be leased. If the client wants to continue to
use the service, it has to renew its resource lease in due time. Event subscription means
that a client may register a subscription at a LUS, such that the LUS informs the client
when a certain service registers or removes itself.

In addition, Leasing has several more advantages:
Jini may run deactivated services. Those services may not use any processing power

or memory, but as long as they renew their lease with a LUS, they can still be used and
may even receive a wake-up call from a LUS.

If the network goes down temporarily, for a shorter period than the lease time, it
will not harm the federation too much. The resources allocated before will still be valid
afterwards, until the lease time expires.

An entity may even cancel leases, in case they are in use but should not be. This may
not happen too often, but in some cases it may be necessary.

Jini is based on Java technology, so it exploits several of Java’s advantages. It turns a
network of heterogeneous devices into a homogeneous collection of Java Virtual Machines
(JVM), which supports the Write-Once-Run-Anywhere capability: operating system (OS)
independence and dynamic loading of object code, e.g. for integration of new function-
ality or automatic bug fix updates. This also allows a raise of the abstraction level, so
that programmers do not have to worry about implementation details of the network
or communication protocols. Finally parts of the Java code can be executed at other
locations through the Remote Method Invocation (RMI), which is used for the proxies
up- and downloaded between services and clients. The most important disadvantage on
the other hand is that Java still costs a lot of processing power.

Jini is certainly useful for the home environment, as long as interfaces for the desired
devices are being developed. This is one of the drawbacks: Much is still left unspecified,
interfaces for certain devices still have to be implemented, while they are already available
for consumer electronics in other service discovery solutions. This prevents interworking
between devices of different vendors.

3 Universal Plug and Play

Originally thought as an extension of Plug and Play (PnP), where devices of a personal
computer did not require user configuration, the Universal Plug and Play (UPnP) forum,
led by Microsoft, finally developed an OS and language independent service discovery

3 UNIVERSAL PLUG AND PLAY 8

Figure 3: UPnP protocol stack[8]

that does not have much more in common with PnP than the concept.
The UPnP protocol works on a much lower level than Jini. Instead of working with

a virtual machine to adapt to heterogeneous devices, protocols that are already imple-
mented on nearly every machine were chosen, namely TCP/IP and other open standards
like HTTP and XML (see figure 3. On that basis other protocols were developed to
enable advertisement, discovery and control of the components.

The Simple Service Discovery Protocol (SSDP) is used to announce the presence of
a component in the network and discover other entities. It works on HTTP multicast
and unicast messages via UDP (HTTPMU and HTTPU). The joining device sends out
a multicast message to advertise its presence. This advertisement can either be directly
seen by other clients or recorded by control points. Control points correspond to LUS in
Jini, with the exception that the network is not required to have a control point.

When a control point is added to the network, it sends out a multicast search message,
which is answered by unicast replies from the connected devices.

A device may contain a set of services, i.e. corresponding to each functional component
of the device. A very powerful feature of UPnP is the description of the services, which
is stored in an XML file. This contrasts Jini, where the description is shortly given in
the service attributes. The advertisement message of a device contains an URL (Uniform
Resource Locator) which points to the XML file, which can be accessed and evaluated
by the other devices for usefulness or by a control point.

The description contains a list of actions which can be used to access the service, and
a list of variables which express the run-time state of the service. When these variables
change, the service can cast an update message, written in XML and formatted using

3 UNIVERSAL PLUG AND PLAY 9

the General Event Notification Architecture, which contains the name and new value of
the variables. Any control point can subscribe to receive this information. Furthermore,
clients may be able to modify these states, forcing the service to update its internal states.

A description may even include a Presentation URL. This URL offers a higher level
user interface, which can be loaded into a browser to display the status of a device or
even allow the user to modify it.

To control the services, the Simple Object Access Protocol (SOAP) is used to invoke
the actions. A SOAP message is sent to the SOAP control object of the service of the
device, which returns action-specific values. The UPnP Forum has already developed
several device and service definitions and control possibilites for common devices. These
templates can be used to ensure interoperability between components of different manu-
facturers.

When joining the network, a device can receive its IP address in two ways. Either
there exists a Dynamic Host Configuration Protocol (DHCP) server in the network, which
assigns an address, or the device uses the AutoIP mechanism. In the latter way the device
randomly chooses an IP address from a reserved range and then sends out a request with
the Address Resolution Protocol to detect whether the address is already owned by
another component.

UPnP is a service discovery solution for small to medium size IP networks [4]. Thus,
its use for the home environment is ideal, especially with the AutoIP mechanism which
does not require any network administration. Microsoft is already shipping its Windows
XP operating system for personal computer with UPnP, furthermore the UPnP Forum
has developed a specification aiming at consumer electronics, called UPnP AV [10].

UPnP AV is a set of device and service templates for devices handling entertainment
content, such that the content can be distributed in the network. It consists of three
parts, the Media Server, the Media Renderer and the AV Control Point.

A Media Server is a device that has access to entertainment content and can send it
to another device for rendering. Media Servers include familiar devices such as VCRs or
TV tuners.

A Media Renderer on the other hand is a device that can receive content and render
it using some local hardware. This may be the familiar TV or a stereo system, but
innovative renderers can use any type of output hardware that can be controlled by the
incoming content, e.g. a water fountain dancing to a song.

The AV Control Point finally manages command and control operations to coordinate
the Media Servers and Renderers. It is not, though, involved in the actual transfer of the
content, thus the Server and Renderer can choose any transport protocol that they both

4 SALUTATION 10

support. This allows various transfer protocols and content formats.
This specification improves UPnP usability for consumer electronics in home environ-

ments and hence UPnP’s position among the service discovery solutions.

4 Salutation

“Salutation is shipping while others are still thinking!” claims the Salutation Consortium
in [9] while comparing its service discovery solution Salutation to Jini and UPnP. Products
equipped with Salutation architecture have already been on the market since 1996. Since
Salutation is nonproprietary and thus the specifications open and available for third-
party development and since Salutation chooses a middle way between autonomy (Jini)
and standardization (UPnP), it is easy for vendors to adapt to the specifications [11].

The main part of Salutation consists of the Salutation Managers and Transport Man-
agers. To join a network, a service registers itself with the local or nearest Salutation
Manager, which keeps a registry about all services and clients registered with it. A client
requesting a service queries the local or nearest Salutation Manager, which in turn may
redirect the search to all other Salutation managers in the network.

Figure 4: Salutation: Composition device - managers - infrastructure [9]

The Transport Managers offer reliable communication channels, regardless of the un-
derlying network transports [8]. A Salutation Manager is attached to one Transport
Manager for each infrastructure it is connected to, and this is what the Consortium
points out as one of the strengths of Salutation: The support of multiple infrastructures
(see figure 4). The interface between Transport Managers and Salutation Managers is
called SLM-TI and provides protocol independence. Thus, one Salutation Manager can

4 SALUTATION 11

work with a TCP/IP as well as with an infrared-based network.
The communication between Salutation Managers and devices takes place through

the SLM-API, a transport independent interface for service discovery, registration and
access. It includes callbacks to the device for certain events, e.g. when data is arriving
or another services makes itself available or unavailable to the Salutation Manager.

When a client requests a service, the local Salutation Manager specifies certain types
and sets of attributes, which have to be matched by the services registered with other
Salutation Managers. This capability exchange again allows the connection of devices of
physically different networks.

There are three ways for components to communicate with each other: In the native
mode, the communication takes place directly. In the emulated mode, the Salutation
Managers carry messages between the devices, hence providing transport protocol inde-
pendence. Finally in the Salutation mode the Salutation Managers do not only carry
messages but also define their format, using well-defined standards for the interoperation
between Functional Units.

A Functional Unit is a “minimal meaningful function to constitute a client or service”
[8], i.e. the type or a feature of the device. Usually a service consists of a collection of
such units. Each unit is composed of a descriptive attribute list, giving more details,
which complies to the Abstract Syntax Notation One (ISO 8824). These units have to
be matched during a search query.

Since Salutation is a transport-independent framework, the matter of self-configuration
has not been solved. In IP networks, approaches similar to UPnP might be usable.

For security reasons Salutation included a user authentication by user identification
and password scheme.

The Consortium also offers Salutation-Lite, a reduced version of the Salutation Ar-
chitecture especially designed for small devices, such as PDAs. It is particularly suitable
for devices with limited storage space, low communication bandwidth and little power
consumption. The Lite implementation therefore abandons some function, e.g. the avail-
ability check callbacks. In case the dismissed functions are still needed, they can be later
added as a user option [12].

Though Salutation may be a candidate for home environments, vendor developments
have gone in direction of the small office. Most of the Salutation products available on
the market are office automation products [8].

5 HOME AUDIO VIDEO INTEROPERABILITY 12

5 Home Audio Video interoperability

The Home Audio Video interoperability (HAVi) standard focuses on home entertainment
products, i.e. mainly audio/video (AV) equipment. Therefore, it is probably the best
candidate for service discovery in home environments. The progression of digital AV
sources, the extension of network bandwidth and the more and more powerful proces-
sors in AV electronics are the basis for this middleware, which depends neither on any
operating system nor on any brands.

The networking software specifies the protocols to be used by the components. These
are communication mechanisms, which provide multi-directional AV streams, registries
and the share of resources. Since the addressed product range is so narrow, it is easier
to develop and implement special services and to meet the particular demands of (digi-
tal) audio and video. Concerning the development, HAVi offers advanced programming
interfaces to facilitate the companies’ software production. The components of the HAVi
architecture, depicted in figure 5, are as follows [7]:

Figure 5: HAVi architecture [6]

HAVi discriminates between four types of devices: Full AV devices (FAV), Intermediate
AV devices (IAV), Base AV devices (BAV) and Legacy AV devices (LAV). FAV completely
support all elements of the HAVi architecture (see below), though some are optional, and

5 HOME AUDIO VIDEO INTEROPERABILITY 13

additionally provide a Java runtime environment. IAV offer all these elements except
the runtime environment, and BAV have only the base equipment. An LAV is a device
which was not designed for HAVi, e.g. an older device, but it can still be integrated into
a HAVi network.

Each device is represented by a Device Control Module (DCM) as a software element
in the network. The DCM contains a set of Functional Component Modules (FCM)
similar to the functional unit of Salutation. Each FCM represents a controllable function
of the device, numerous FCMs and their APIs have already been defined in HAVi. From
the FCM on, native language commands are sent to the appropriate target device. The
DCM is the interface through which the function of the device can be accessed. An LAV
does not possess such a DCM, since it was not developed for HAVi; it must be provided
elsewhere in the network. IAV bring some embedded DCM for LAV (as well as BAV),
while FAV are capable of uploading DCMs (possibly from the internet) and execute them
through the runtime environment.

Each device except the LAV has self describing device data (SDD data), which contain
descriptive information about the device and its capabilities. In case of the BAV, it may
also include a DCM code unit, uploadable by the FAV.

The FAV and IAV offer some services which handle the communication in the HAVi
architecture. Thus, it is not possible to make up a network containing only BAV and
LAV. The services are the following:

The Messaging system has two functions: Firstly, it creates unique Software Element
Identifiers (SEID) for an object, before it is registered. The SEIDs are later used to
identify the elements in the network. Secondly, it performs the exchange of information
between the devices.

The directory service within HAVi is called the Registry. Any software element which
wants to make its service available to the network registers there, the Registry keeps track
of the element’s SEID and its attributes. For clients the Registry offers a query interface
so they can find a service matching a set of criterias.

The 1394 Communication Media Manager provides a transport mechanism to send
requests to and receive indications from remote devices. It also abstracts the network
activities and presents information to the HAVi system; finally, it informs the Event
Manager (see below) about network changes. The interconnection medium handled by
the Communication Manager is the IEEE 1394 standard, which is also called i.Link (by
Sony) or FireWire (by Apple). Not requiring any PC, this serial bus allows speeds of
up to 400 Mbit/s, and it has a mode of transmission which guarantees bandwidth which
makes it ideal for AV streams. Furthermore a digital copy protection standard known as
“5C” was developed especially for this medium [2].

5 HOME AUDIO VIDEO INTEROPERABILITY 14

An Event is the change of state of a software element or of the network, e.g. when a
device is added to the network. The Event Manager is a directory where software elements
can register to receive notifications about such events. In case of global events, indicated
by the event poster, the Manager notifies all other Event Managers in the network, which
in turn address their local software elements.

If an FAV or IAV wants to host the DCM of a BAV or LAV, a DCM Manager is
needed. It installs or uninstalls the DCM code units, usually on network resets (when
the network topology changes, i.e. when devices get activated or deactivated or plugged
or unplugged). Every FAV has a DCM Manager, but it is optional for an IAV, which
indicates through its SDD data whether it is able to host other DCMs. The user usually
does not have to interact in this setup, the configuration is called “plug and enjoy” [5]
by the HAVi organization.

The Stream Manager configures both internal connections (within a device) and exter-
nal connections (between devices). Streams take place between the FCMs of devices, the
Manager handles requests for such streams and the allocation of system resources coming
with it (in this case bandwidth and channel numbers) and releases the resources after-
wards. It also provides global connection information and supports connection restoration
after network resets.

A different kind of resources is dealt with by the Resource Manager: It handles device
resources, i.e. the use and release of FCMs within a device. Certain strategies are imple-
mented in HAVi, among them all-or-nothing allocation, share of read-access resources,
and reservation of certain resources including an event when the reserved items become
available.

The HAVi system services cannot only allow physical devices into the network, it is
also possible to run applications, supported by the runtime environment of FAV. This
includes a special feature of HAVi: The support of user interfaces (UI) on remote display
devices. The Data Driven Interaction (DDI) protocol is used to connect the component
with the UI and the display device. If the display is Java-enabled, it may extract and run
a Havlet from the DCM of the other component (or even an application), where a Havlet
is a Java application. So the display may show the graphical user interface of the Havlet,
which allows the user to control the remote component, e.g. by accessing vendor-specific
features.

There are two ways in which HAVi provides some security: The first one are access
levels. It sorts APIs into sets of trusted and untrusted APIs, devices can then decide
whether they want to run untrusted APIs or only trusted ones. The second way is based
on the Rivest-Shamir-Adleman coding schema (RSA). A special organization, the HAVi
Certification Authority creates private keys and gives out public keys. Furthermore, it

6 CONCLUSION 15

assigns private keys to certain vendors. FAV may then run only certified Java code in their
runtime environment, this prevents download of harmful code (e.g. from the internet).

The HAVi Organization was founded by eight well known consumer electronics com-
panies, among them Grundig, Sony and Toshiba, and is supported by numerous others.
Objectives are on the one hand to expand the system to include home control systems,
security systems, communication systems and PC based applications; on the other hand,
interconnecting bridges to other service discovery solutions like Jini are being developed.

Feature Jini UPnP Salutation HAVi

Developer Sun Microsystems Microsoft Salutation Con-
sortium

HAVi Organiza-
tion

License open license, but
fee for commercial
use

open (only for
members)

open source open source

Version 1.0 1.0 2.1 1.1

Network transport independent TCP/IP independent IEEE 1394

Programming language Java independent independent independent

OS and platform independent dependent dependent independent

Code mobility yes (Java RMI) no no yes

Srv attributes searchable yes no yes yes

Central cache repository optional no optional no

Operation w/o directory Lookup Table re-
quired

- yes Registry required

Leasing concept yes yes no yes

Security Java based IP dependent authentication access levels, sig-
natures

Table 1: Comparison of service discovery solutions

6 Conclusion

The middleware solutions above approach the problem of service discovery quite well,
but it is still a long way to go to a complete and standardized device connection possi-
bility. Table 1 shows a brief comparison between the four solutions, which reveals some
advantages, but also disadvantages.

Apart from the individual handicaps like unsupported infrastructures or unspecified
configuration etc, it is very difficult for all frameworks to address mobile devices [8],
which already appear freqently in any home. This is a very severe failing, since future
customers will expect ad-hoc networks including their own devices like PDAs or mobile
phones. Another lack is the unexploited context information of the devices in the network,
like their locations.

REFERENCES 16

So, some waiting time is to be expected before the alarm clock truly adjusts heating
and coffee machine.

References

[1] Christian Bettstetter, Christoph Renner: A comparison of service discovery proto-
cols and implementation of the service location protocol
Sixth EUNICE Open European Summer School, Sept. 2000

[2] Dick Davies: 1394 Trade Association supports “5C” copy protection plan
1394 Trade Association homepage, http://www.1394ta.org, March 2001

[3] Kees-Jan Dijkzeul: Jini: Middleware solution of the future?
Xootic Magazine, Nov. 2001

[4] Adrian Friday, Nigel Davies, Elaine Catterall: Supporting Service Discovery, Query-
ing and Interaction in Ubiquitous Computing Environments
Second ACM international workshop on Data engineering for wireless and mobile
access, May 2001

[5] HAVi Organization: HAVi - Home Audio / Video Interoperability website
http://www.havi.org

[6] HAVi Organization: HAVi - The A/V digital network revolution
White paper

[7] HAVi Organization: The HAVi Specification
May 2001

[8] Sumi Helal: Standards for service discovery and delivery
IEEE Pervasive Computing, July/Sept. 2002

[9] Bob Pascoe: Salutation Architectures and the newly defined service discovery pro-
tocols from Microsoft and Sun
Salutation Consortium, June 1999

[10] Yassir Rasheed, John Ritchie: High-Quality Media Distribution in the Digital Home
Intel Corporation, Nov. 2002

[11] John Rekesh: UPnP, Jini and Salutation - A look at some popular coordination
frameworks for future networked devices
California Software Laboratories, June 1999

REFERENCES 17

[12] Salutation Consortium: Salutation-Lite Code Programmers Guide
Salutation Consortium website, http://www.salutation.org/lite, July 2000

[13] Jim Waldo: The Jini architecture for network-centric computing
Communications of the ACM, July 1999

[14] Hinkmond Wong: Developing Jini Applications Using J2ME Technology
Addison Wesely, Sept. 2001

