

Incentive Engineering in Wireless LAN Based Access Networks

Raymond R.-F. Liao Rita H. Wouhaybi Andrew T. Campbell

October 28, 2002

802.11 Explosive Growth

Introduction

- Explosive growth of 802.11 users and access points
- The need to differentiate traffic based on
 - Type of traffic
 - User

Desired System

- The need for a platform that provides
 - QOS and differentiation of traffic
 - Simple pricing mechanism for users and providers
 - Incentive for users to bid truthfully
 - Distributed Algorithm
 - Minimizing signal information

Our Approach

- The system provide 2 levels of service:
 - Instantaneous Allocation (IA)
 - Stable Allocation (SA)
- Users have a budget that they can divide between the 2 services
- The access point periodically
 - calculates the prices of the 2 services based on bandwidth demand and usage
 - broadcasts them to the users

Wireless LAN Network

6

Instantaneous Allocation (IA)

- Nash bargaining fair
 - allocation is proportional to a subscriber's service purchasing power
- Efficient
 - allocation is capped at the maximum consumption level, measured by base station
 - supports bursty data transactions
- Simple Protocol
 - One broadcast message from base station, no messages from mobile
 - Base station detects excessive consumptions via traffic monitoring.

 $\mathcal{U}_{i,I} = \mathcal{U}_i + \mathcal{U}_{i,S}$

 v_i : Service purchasing power of user i $v_{i,I}$: Service purchasing power for IA Allocation $v_{i,S}$: Service purchasing power for SA Allocation

$$\zeta_{i,I}(t) = \frac{\upsilon_{i,I}}{b_{i,I}^{\max}(t)}$$

 $\zeta_{i,I}(t)$: IA unit "bid price" for a mobile device i $b_{i,I}^{\max}(t)$: maximum bandwidth of IA class that mobile device i can consume

//

IA Algorithm: Measurement-based

$$b_{i,I}^{\max}(t_n) = \min\left\{\gamma \overline{b_{i,I}}(t_n), b_{i,I}^{\max}\right\}$$

 $\gamma(t_{n}) = \begin{cases} \rho > threshold \& \\ \gamma(t_{n-1})(1+inc) & \exists j; b_{j,I}^{\max}(t) < b_{j,I}^{\max} \\ \max \left\{ 1, \gamma(t_{n-1})(1-dec) \right\} & \rho < 0.7 * threshold \\ \gamma(t_{n-1}) & otherwise \end{cases}$

Stable Allocation (SA)

- Base station maintains a ranked allocation list prioritized by bid price
 - Subscribers with higher bid price has more stable allocation
 - Supports handoff by broadcasting handoff price
- Incentive compatible
 - Users have no incentive to cheat in declaring more or less bandwidth than needed;
 - Dominant strategy for users prefer more throughput is to use IA allocation;
 - Dominant strategy for users prefer allocation stability will choose SA allocation.
- Simple Protocol
 - Reservation protocol: mobile submits bid for bandwidth, no needs to estimate reservation length
 - Reservation revocation is delayed for a warning interval for applications to respond with increasing bid price or reducing bid quantity

admission control {// arrival of reservation request update $\overline{\lambda}(t)$

if $(b_{i,S} > (1 - \rho_{l,S})C)$ reject(); // no enough bandwidth

elseif $(\zeta_{i,S} < p_{l,S})$ reject(); // bid price too low

else

Calculate_SA_price();

calculate_SA_price { update $(1 - \rho_{l,S})C$;

update t_{out};

search for the smallest p_k in the quantized price set $\{p_k\}$

$$\gamma t_{out} \sum_{i \ge k} \overline{\lambda}(t \mid p_i) \le (1 - \rho_{l,S})C_s$$

$$p_{k} \geq \frac{\theta_{all,I}}{\rho_{l,S}C - \gamma t_{out} \sum_{i \geq k} \overline{\lambda}(t \mid p_{i})};$$

 $p_{l,S}=p_k;$

broadcast price-service menu;

$$\overline{\lambda}(t \mid p_k) = \alpha \frac{cnt _ b_k}{t - t_{n-1}} + (1 - \alpha) \overline{\lambda}(t_{n-1} \mid p_k)$$

*cnt*_ b_k : the sum of $b_{i,S}$ arrived within $(t_{n-1}, t]$ whose bid price $\zeta_{i,S} \in [p_k, p_{k+1})$

t_{out}: the minimum interval at the end of which additional SA bandwidth is guaranteed to be available

$$p_{i} = \begin{cases} \frac{p_{K}}{K - i + 1} & i = 1, ..., K \\ 0 & i = 0 \\ \infty & i = K + 1 \end{cases}$$

15

maintain SA allocation { maintain sorted list of $\zeta_{i,S}$ if ($\zeta_{i,S} < p_{l,S}$ AND *i* is not under probation) put *i* under probation, start timeout timer; if ($\zeta_{i,S} \ge p_{l,S}$ AND *i* is under probation) move *i* out of probation; if (*i* is under probation and timer expires) remove *i*'s SA reservation;

Testbed

- Modifying wireless driver to allow for traffic snooping
- Relying on TC for traffic shaping
- Implementing 2 modes: simulation and realtime testing

Testbed: Modules

- Access Point:
 - -NAT
 - -TC
 - Protocol
- Mobile:
 - -TC
 - Protocol

Algorithm: Registration

Mobile Access Point

Algorithm: SA Warning

Access Point

- Periodically:
 - Measures traffic (updated driver)
 - Calculate new prices
 - Updates the allocations (TC)
- Bandwidth can be switched between IA & SA when underutilized.

Mobile

- Periodically:
 - Measures traffic (updated driver)
 - Tries to maximize allocations
 - If needed:
 - Requests a new allocation
 - When acknowledged
 - Updates its bandwidth accordingly (TC)

Mobile

- An application starts
 - Traffic is assumed to be IA
 - Port is checked
 - If SA
 - SA budget and rate are updated
 - Request sent to Access Point
 - If Approved
 - Traffic is switched to SA
 - Allocations updated accordingly

Testbed Results

26

Testbed Results

27