
© 2002, smirnow@fokus.fhg.de 1

Policy Group Control Issues

27.-31.10.2002, Dagstuhl, Seminar Nº 02441

Quality of Service in Networks and Distributed Systems

Michael Smirnov

Fraunhofer FOKUS

© 2002, smirnow@fokus.fhg.de 2

• Open
• Standard rules for service syntax and semantics

• � interoperability
• � portability

• Flexible
• Easy to configure a service out of components,

add/delete components from different vendors
• � extensibility

• � interface definitions between components

• Scalable
• � design for scalability

What we want

• Open
• Standard rulesrules for service syntax and semanticssemantics

• � interoperability
• � portability

• Flexible
• Easy to configure a service out of components,

add/delete components from different vendors
• � extensibility

• � interface definitions between componentsinterface definitions between components

• Scalable
• � designdesign for scalability evolvability

and what we need for this

© 2002, smirnow@fokus.fhg.de 3

• Why to change components?
– To provide optimal policy for particular

user/application (i.e. for a Subject)

• What is policy?
– „Policy is a rule that defines a choice in the

behaviour of a system“ [M. Sloman]
– Component:= policy | mechanism

• How to separate concerns?
– Subject � PolicyAgent � TargetObject

– PolicyAgent(P1, ..., PN)

– TargetObject(a1, ..., aM)

• Why to change components?
– To provide optimal policy for particular

user/application (i.e. for a Subject)

• What is policy?
– „Policy is a rule that defines a choice in the

behaviour of a system“ [M. Sloman]
– Component:= policy | mechanism

• How to separate concerns?
– Subject � PolicyAgent � TargetObject

– PolicyAgent(P1, ..., PN)

– TargetObject(a1, ..., aM)

Policy

© 2002, smirnow@fokus.fhg.de 4

Further separation of concerns

• Separation of concerns between obligation and
authorisation
– {Obligation; Authorisation} × {Positive, Negative}

• S � A+ � T(ai): subject may request action ai on T
• S � A- � T(ai): subject may not request action ai on T
• S � O+ � T(ai): subject must request action ai on T
• S � O- � T(ai): subject must not request action ai on T

T

S

object

role

server

client

A

O

O

A

safeguard

behaviour

Entity type Relation
Configured

policy
Discovered

policy
Purpose of
Conf. policy

• O-policies are S-based, A-policies are T-based:
S | O � A | T

PolicyAgent disappears

© 2002, smirnow@fokus.fhg.de 5

Closed loop control

S | O+ A+ | T (a)request (T,a)

Monitor

ES

Monitor

EA
Event triggered

obligation
• Safety
• State dependency
• Conflict resolution
• Dependencies

•Platform
•Device, etc.

Policy domain:
S, T grouped together
to apply common policy

Policy Design

• Future Directions: „dynamically change behaviour to
cater for new services“ [M. Sloman]

© 2002, smirnow@fokus.fhg.de 6

1st step: Monitoring behaviour

M | N+

ES

M | N+

EA

S | O+ A+ | T (a)request (T,a)

Policy
Design

• Notification policy ~ Obligation for notification
• M | N+ � ES � S | O+

© 2002, smirnow@fokus.fhg.de 7

• Composite service:
– more than one type of target objects under control

of potentially more than one Subject (Manager)

• Scenario based design:
– Scenario is {understood | feasible | ... } instance of

service implementation in a given infrastructure
– Scenario = <S, T, O, A, E>

• Service policy:
– Evolving concept

– Set of all implemented scenario policies

• Composite service: � service system (group)
– more than one typetype of target objects under control

of potentially more than one Subject (Manager)

• Scenario based design:
– Scenario is {understood | feasible | ... } instance of

service implementation in a given infrastructure
– Scenario = <S, T, O, A, E>

• Service policy:
– Evolving concept

– Set of all implemented scenario policies

Co-ordinated policy set design

© 2002, smirnow@fokus.fhg.de 8

• Service definition is hard
– Is BE IPTel the same as EF IPTel?

– Is cached service the same as not cached
service?

• Scenario is a good thing
– Incremental service deployment

– Re-use of components
– Scenario based design is a natural way of design

for evolvability

• Service definition is hard
– Is BE IPTel the same as EF IPTel?

– Is cached service the same as not cached
service?

• Scenario is a good thing
– Incremental service deployment

– Re-use of components
– Scenario based design is a natural way of design

for evolvability (handle tussles):
ExistingService.S1, S2, ..., SI, ..., SN, ...(NewService)

Why scenarios?

© 2002, smirnow@fokus.fhg.de 9

GENeralisation: Internal Events

M | N+

ES

M | N+

EA

S | O+ A+ | T (a)request (T,a)

• Internal events (state) at Subjects, Objects, Monitors
justify their roles in service system as event correlation
points (mediators)

• One man‘s internal event is another man‘s external
event � [service] group event notification

© 2002, smirnow@fokus.fhg.de 10

Coordination Framework

• Multiple behaviour designs are inevitable � need
coordination framework for semantics, trust, syntax

Behaviours

GENeralisation: Multiple Designs

M | N+

ES

M | N+

EA

S | O+ A+ | T (a)request (T,a)

Policy
Design

Management Policy Design

Monitoring Policy Design

© 2002, smirnow@fokus.fhg.de 11

GEN: Group Event Networking

A C
°P1

°P2

°PN

P°1

P°M

timestamp

B

Event = {Action, Box, Conditions, Duration)

BDi = {Cp, Pj
BD, Mj

BD}.

... ...

a1 a2 an a1 aB... | ... Am Ap

... ...

... ...

S1

S2

SK

...

Conditions
(by events)

Policies Action
requests

© 2002, smirnow@fokus.fhg.de 12

Example 1: Service Creation

Start & Next1 & C→ play(v1);
v1_fin → send(v1_fin);
HEARD(v1_fin) → play(s1);
HEARD(v2_fin) → play(s1);
HEARD(v3_fin) → play(s1);
HEARD(Stop) → Stop

RS1

Start & Next1 & C → play(s3);
HEARD(v1_fin) → play(s3);
HEARD(v2_fin) → play(v3);
v3_fin → send(v3_fin);
HEARD(v3_fin) → play(s3);
HEARD(STOP) → Stop

Start & Next1 & C → play(s4);
HEARD(v1_fin) → play(s4);
HEARD(v2_fin) → play(s4);
HEARD(v3_fin) → play(v4);
v4_fin → send(Stop);
HEARD(Stop) → Stop

Start & Next1 & C→ play(s2);
HEARD(v1_fin) → play(v2);
v2_fin → send(v2_fin);
HEARD(v2_fin) → play(s2);
HEARD(v3_fin) → play(s2);
HEARD(Stop) → Stop

RS2

RS3 RS4

oneof (exist(v1) AND exist(s1)) Pr1 oneof (exist(v2) AND exist(s2)) Pr2

oneof (exist(v3) AND exist(s3)) Pr3 oneof (exist(v4) AND exist(s4)) Pr4

© 2002, smirnow@fokus.fhg.de 13

SIP
SQL/HTTP
VMS
RTP

Example 2: Load Balancing

…

3. IP add.

2. select

11. media

1. INVITE

4. INVITE

6. SDP info

7. User? 8. Preferences

9. Config.

10. Ack

12. notify

SIP
GEN
VMS
RTP

• It scales! No reboots, no re-programming, same interfaces
• Failures are treated as naturally as busy state

SIP Router

SIP/VMS UA

VMS Server

© 2002, smirnow@fokus.fhg.de 14

E.G. 3: Conflict free policy computation

• Conformance to SLA � service ontology (practically: a tree)
• Negotiatable parameters �meta-data (practically: modality+range)

Access
Session
Control

Profile

AAA
Control

Credentials

user

Policy
Control

Config.

Resource
Control

Net.state

network

Service
Control

Srv.profile

service

r

a

b

b1 b2

True

Min

Max

Value

r

a

b

b1 b2

Min

Max

1

2

3

r

a

b

b1 b2

True

Min

Max

Value

r

a

b

b1 b2

True

Min

Max

Value

r

a

b

b1 b2

True

Min

Max

Value

r

a

b

b1 b2

True

Min

Max

Value

PS PS PS PS

• Group communication (Partial State) �up to 70% latency reduction

© 2002, smirnow@fokus.fhg.de 15

Conclusion

• „What is envisioned is a network of unmanned digital
switches implementing a self-learning policy at each
node so that overall traffic is effectively routed in a
changing environment--without need for a central and
possibly vulnerable control point“

• „The network can be made rapidly responsive to the
effects of destruction, repair, and transmission fades
by a slight modification of the rules for computing the
values on the handover number table“

Source: Paul Baran ODC, 1964, v.1. RM4320, ch4

