Recent Progress on a Statistical Network Calculus

Jorg Liebeherr

Department of Computer Science University of Virginia

Dagstuhl, October 2002

Collaborators

Almut Burchard Robert Boorstyn Chaiwat Oottamakorn Stephen Patek Chengzhi Li

Contents

- R. Boorstyn, A. Burchard, J. Liebeherr, C. Oottamakorn. "Statistical Service Assurances for Packet Scheduling Algorithms", IEEE Journal on Selected Areas in Communications. Special Issue on Internet QoS, Vol. 18, No. 12, pp. 2651-2664, December 2000.
- A. Burchard, J. Liebeherr, and S. D. Patek. "A Calculus for End-to-end Statistical Service Guarantees." (2nd revised version), Technical Report, May 2002.
- J. Liebeherr, A. Burchard, and S. D. Patek, "Statistical Per-Flow Service Bounds in a Network with Aggregate Provisioning", Infocom 2003.
- C. Li, A. Burchard, J. Liebeherr, "Calculus with Effective Bandwidth", July 2002.

Service Guarantees

• A deterministic service gives worst-case guarantees

 $Delay \leq d$

• A statistical service provides probabilistic guarantees

 $\Pr[\text{Delay} \ge d] \le \varepsilon \quad \text{or} \qquad \Pr[\text{Loss} \ge /] \le \varepsilon$

Multiplexing Gain

$\begin{pmatrix} \text{Resource needed} \\ \text{to support QoS} \\ \text{for N flows} \end{pmatrix} << N \cdot \begin{pmatrix} \text{Resource needed} \\ \text{to support QoS} \\ \text{for 1 flow} \end{pmatrix}$

Sources of multiplexing gain:

- Traffic Conditioning (Policing, Shaping)
- Scheduling
- Statistical Multiplexing of Traffic

Scheduling

 Scheduling algorithm determines the order in which traffic is transmitted

Related Work (small subset)

Motivation for our work on statistical network calculus:

- (1) Maintain elegance of deterministic calculus
- (2) Exploit know-how of statistical multiplexing

Source Assumptions

Arrivals $A_{f}(t, t+\tau)$ are random processes

Deterministic Calculus:

(A1) Additivity: For any $t_1 < t_2 < t_3$, we have: $A_j(t_1, t_2) + A_j(t_2, t_3) = A_j(t_1, t_3)$

(A2) Subadditive Bounds: Traffic A_j is constrained by a subadditive deterministic envelope A_j^* as follows

 $A_j(t, t + \tau) \le A_j^*(\tau) , \forall t, \forall \tau$

with $\rho = \lim_{\tau \to \infty} A_j^*(\tau) / \tau$

Source Assumptions

Statistical Calculus:

(A1) +(A2)

(A3) Stationarity: The A_j are stationary random variables

(A4) Independence: The A_i and A_j (i≠j) are stochastically independent

(No assumptions on arrival distribution!)

Arrivals from multiple flows: A_{c}

$$A_{\mathcal{C}} = \sum_{j} A_{j}$$

Deterministic Calculus:

Worst-case of multiple flows is sum of the worst-case of each flow $A_{\mathcal{C}}(t, t + \tau) \leq \sum_{i} A_{j}^{*}(\tau)$

Aggregating Arrivals

Statistical Calculus:

To bound aggregate arrivals we define a function that is a bound on the sum of multiple flows with high probability \rightarrow "Effective Envelope"

- Effective envelopes are <u>non-</u>random functions
- effective envelope $\mathcal{G}^{\varepsilon}_{\mathcal{C}}$:
 - $Pr\{A_{\mathcal{C}}(t,t+\tau) \leq \mathcal{G}_{\mathcal{C}}^{\varepsilon}(\tau)\} \geq 1 \varepsilon \quad \forall t,\tau$

• strong effective envelope $\mathcal{H}_{\mathcal{C}}^{\ell, \varepsilon}$:

 $Pr\{\forall [t, t+\tau] \subseteq I_{\ell} : A_{\mathcal{C}}(\tau) \leq \mathcal{H}_{\mathcal{C}}^{\ell, \varepsilon}(\tau)\} \geq 1-\varepsilon \quad \forall I_{\ell}$

Obtaining Effective Envelopes

$$\begin{split} \mathcal{G}_{\mathcal{C}}^{\varepsilon}(t) &= \inf_{s>0} \frac{1}{s} (\sum_{j \in \mathcal{C}} \log \overline{M}_j(s, t) - \log \varepsilon) \\ \text{with } \overline{M}_j(s, t) &= 1 + \frac{\rho_j t}{A_j^*(t)} (e^{sA_j^*(t)} - 1) \\ \mathcal{H}_{\mathcal{C}}^{\ell, \varepsilon'}(t) &\leq \mathcal{G}_{\mathcal{C}}^{\varepsilon}(\gamma t + a) , \qquad 0 \leq t \leq \ell \\ \text{with } \varepsilon' &\leq \varepsilon \cdot \frac{\ell}{a} \frac{\sqrt{\gamma} + 1}{\sqrt{\gamma} - 1} \\ a \in (0, \ell) \\ \gamma > 1 \end{split}$$

Effective vs. Deterministic Envelope Envelopes

A*=min (Pt, σ+ρ**t**)

Type 1 flows: P =1.5 Mbps ρ = .15 Mbps σ =95400 bits

Type 2 flows: P = 6 Mbps ρ = .15 Mbps σ = 10345 bits

Type 1 flows

Effective vs. Deterministic Envelope Envelopes

Traffic rate at t = 50 ms Type 1 flows

Scheduling Algorithms

- Consider a work-conserving scheduler with rate R
- Consider class-q arrival at t with $t+d_q$:

Scheduling Algorithms

FIFO: $\tau_{p} = 0.$ SP: $\tau_{p} = -\hat{\tau} \ (p > q) \ , \ 0 \ (p = q) \ , \ d_{q} \ (p < q).$ EDF: $\tau_{p} = \max\{-\hat{\tau}, d_{q} - d_{p}\}.$

Admission Control for Scheduling Algorithms

with Deterministic Envelopes:

$$\sup_{\hat{\tau}} \left\{ \sum_{p} A_{j}^{*}(\tau_{p} + \hat{\tau}) - \hat{\tau} \right\} \leq d_{q}$$

with Effective Envelopes: $\sup_{\hat{\tau}} \left\{ \sum_{p} \mathbf{G}_{C_{p}}^{\varepsilon/Q} (\tau_{p} + \hat{\tau}) - \hat{\tau} \right\} \leq d_{q}$

with Strong Effective Envelopes:

$$\sup_{\hat{\tau}} \left\{ \sum_{p} \mathsf{H}_{C_p}^{1,\varepsilon/Q}(\tau_p + \hat{\tau}) - \hat{\tau} \right\} \leq d_q$$

Effective vs. Deterministic Envelope Envelope

C= 45 Mbps, $\epsilon = 10^{-6}$ Delay bounds: Type 1: d₁=100 ms, Type 2: d₂=10 ms,

Effective Envelopes and Effective Bandwidth

Effective Bandwidth (Kelly, Chang)

$$\alpha(s,\tau) = \sup_{t \ge 0} \left\{ \frac{1}{s\tau} \log E[e^{s(A[t+\tau] - A[t])}] \right\}$$
$$s,\tau \in (0,\infty)$$

Given $\alpha(s,\tau)$, an effective envelope is given by

$$\mathcal{G}^{\varepsilon}(\tau) = \inf_{s>0} \{ \tau \alpha(s,\tau) - \frac{\log \varepsilon}{s} \}$$

Effective Envelopes and Effective Bandwidth

Now, we can calculate statistical service guarantees for schedulers and traffic types

Schedulers:

SP- Static Priority
EDF – Earliest
Deadline First
GPS – Generalized
Processor Sharing

Traffic:

Regulated – leaky bucket On-Off – On-off source FBM – Fractional Brownian Motion

C= 100 Mbps, $\varepsilon = 10^{-6}$

Statistical Network Calculus with Min-Plus Algebra

S(t)

Convolution and Deconvolution operators

Convolution operation:

 $f * g(t) = \inf_{\tau \in [0,t]} f(t-\tau) + g(\tau)$

Deconvolution operation

 $f \otimes g(t) = \sup_{\tau \in [0,t]} f(t+\tau) - g(\tau)$

• Impulse function:

$$\delta_{\tau}(t) = \begin{cases} \infty & , t > \tau \\ 0 & , t \le \tau \end{cases}$$

Service Curves (Cruz 1995)

A (minimum) service curve for a flow is a function S such that: $D(t) \ge A * S(t) , \forall t \ge 0$

Examples:

- Constant rate service curve: $S(t) = c \cdot t$
- Service curve with delay guarantees: $S(t) = \delta_d(t)$

Network Calculus Main Results (Cruz, Chang, LeBoudec)

1. <u>Output Envelope</u>: $A^* \otimes S$ is an envelope for the departures:

 $\mathbf{A}^{*} \otimes \mathbf{S}(t) \geq \mathbf{D}(t+\tau) - \mathbf{D}(\tau)$

- 2. <u>Backlog bound</u>: $A^* \otimes S(0)$ is an upper bound for the backlog B
- 3. Delay bound: An upper bound for the delay is

$$\mathbf{d}_{\max} \geq \inf_{\tau \in [0,t]} \left\{ d \geq 0 \mid \forall t \geq 0 : \mathbf{A}^*(t-d) \leq S(t) \right\}$$

Network Service Curve (Cruz, Chang, LeBoudec)

Network Service Curve:

If S^1 , S^2 and S^3 are service curves for a flow at nodes, then

$$S^{net} = S^1 * S^2 * S^3$$

is a service curve for the entire network.

Statistical Network Calculus

A (minimum) service curve for a flow is a function S such that: $D(t) \ge A * S(t) , \forall t \ge 0$

A (minimum) effective service curve for a flow is a function S^{ε} such that: $\Pr[D(t) \ge A * S^{\varepsilon}(t)] \ge 1 - \varepsilon , \forall t \ge 0$

Statistical Network Calculus Theorems

- 1. <u>Output Envelope</u>: $A^* \otimes S^{\varepsilon}$ is an envelope for the departures: $Pr[A^* \otimes S^{\varepsilon}(t) \ge D(t+\tau) - D(\tau)] \ge 1 - \varepsilon$, $\forall t, \tau \ge 0$
- 2. <u>Backlog bound</u>: $A^* \otimes S^{\varepsilon}(0)$ is an upper bound for the backlog $\Pr[B(t) \le A^* \otimes S^{\varepsilon}(0)] \ge 1 - \varepsilon$, $\forall t \ge 0$
- **3.** <u>Delay bound</u>: A probabilistic upper bound for the delay $d_{\max} \ge \inf_{\tau \in [0,t]} \left\{ d \ge 0 \mid \forall t \ge 0 : A^{*}(t-d) \le S^{\varepsilon}(t) \right\}$, i.e., $\Pr\left[W(t) \le d_{\max}\right] \ge 1 - \varepsilon \quad , \forall t \ge 0$

Effective Network Service Curve

Network Service Curve:

If $S^{1,\epsilon}$, $S^{2,\epsilon}$... $S^{H,\epsilon}$ are effective service curves for a flow at nodes, then

 $\Pr\left[D(t) \ge A * (\mathsf{S}^{1,\varepsilon} * \mathsf{S}^{2,\varepsilon} * \dots * \mathsf{S}^{H,\varepsilon} * \delta_{Ha})(t)\right] \ge 1 - \operatorname{Ht} \varepsilon / a$

Unfortunately, this network service is not very useful!

A "good" network service curve can be obtained by working with a modified service curve definition

What is the cause of the problem with the network effective service curve?

In the convolution

$$D^{2}(t) \geq A^{2} * \mathbf{S}^{2,\varepsilon}(t) = \inf_{\tau \in [0,t]} A^{2}(t-\tau) + \mathbf{S}^{2,\varepsilon}(\tau)$$

the range [0,t] where the infimum is taken is a random variable that does not have an a priori bound.

Statistical Per-Flow Service Bounds

Given:

• Service guarantee to aggregate (s_c) is known

- Total Traffic
$$A_{\mathcal{C}} = \sum_j A_j$$
 is known

What is a lower bound on the service seen by a single flow?

Statistical Per-Flow Service Bounds

Can show:

$$\mathcal{S}_{j}^{\varepsilon_{1}+\varepsilon_{2}} = [S_{\mathcal{C}} - \mathcal{H}_{\mathcal{C}}^{T^{\varepsilon_{1}},\varepsilon_{2}}]_{+}$$

is an effective service curve for a flow where $\mathcal{H}^{T^{\varepsilon_1}, \varepsilon_2}$ is a strong effective envelope and T^{ε_1} is a probabilistic bound on the busy period

Number of flows that can be admitted

Conclusions

- Convergence of deterministic and statistical analysis with new constructs:
 - Effective envelopes
 - Effective service curves
- Preserves much (but not all) of the deterministic calculus
- Open issues:
 - So far: Often need bound on busy period or other bound on "relevant time scale".
 - •Many problems still open for multi-node calculus