Griffin: Towards an Agile, Predictive Infrastructure

Anthony D. Joseph UC Berkeley http://www.cs.berkeley.edu/~adj/ Dagstuhl QoS Seminar Oct 2002

Outline

- Griffin
 - Motivation
 - Goals
 - Architecture
- Tapas
 - Motivation
 - Multi-layer protocol trace collection
 - Data preconditioning-based network modeling
 - Network feedback and prediction

Near-Continuous, Highly-Variable Internet Connectivity

- Connectivity everywhere: campus, in-building, satellite...
 - Projects: Sahara (01-), Iceberg (98-01), Rover (95-97)
- Most applications support limited variability (1% to 2x)
 - Design environment for legacy apps is static desktop LAN
 - Strong abstraction boundaries (APIs) hide the # of RPCs
- But, today's apps see a wider range of variability
 - 3 \rightarrow 5 orders of magnitude of bandwidth from 10's Kb/s \rightarrow 1 Gb/s
 - 4 \rightarrow 6 orders of magnitude of latency from 1 μ sec \rightarrow 1,000's ms
 - 5→9 orders of magnitude of loss rates from $10^{-3} \rightarrow 10^{-12}$ BER
 - Neither best-effort or unbounded retransmission may be ideal
 - Also, overloaded servers / limited resources on mobile devices
- Result: Poor/variable performance from legacy apps

Griffin Goals

- Users always see excellent (= local, lightly loaded) application behavior and performance
 - Independent of the current infrastructure conditions
 - Move away from "reactive to change" model
 - Agility: key metric is time to react and adapt
- Help legacy applications handle changing conditions
 - Analyze, classify, and predict behavior
 - Pre-stage dynamic/static code/data (activate on demand)
- Architecture for developing new applications
 - Input/control mechanisms for new applications
 - Application developer tools
- Leverage Sahara policies and control mechanisms

Griffin: An Adaptive, Predictive Approach

- Continuous, cross-layer, multi-timescale introspection
 - Collect & cluster link, network, and application protocol events
 - Broader-scale: Correlate AND communicate short-/long-term events and effects at multiple levels (breaks abstractions)
 - Challenge: Building accurate models of correlated events
- Convey app reqs/network info to/from lower-levels
 - Break abstraction boundaries in a controlled way
 - Challenge: Extensible interfaces to avoid existing least common denominator problems
- Overlay more powerful network model on top of IP
 - Avoid standardization delays/inertia
 - Enables dynamic service placement
 - Challenge: Efficient interoperation with IP routing policies

Some Enabling Infrastructure Components

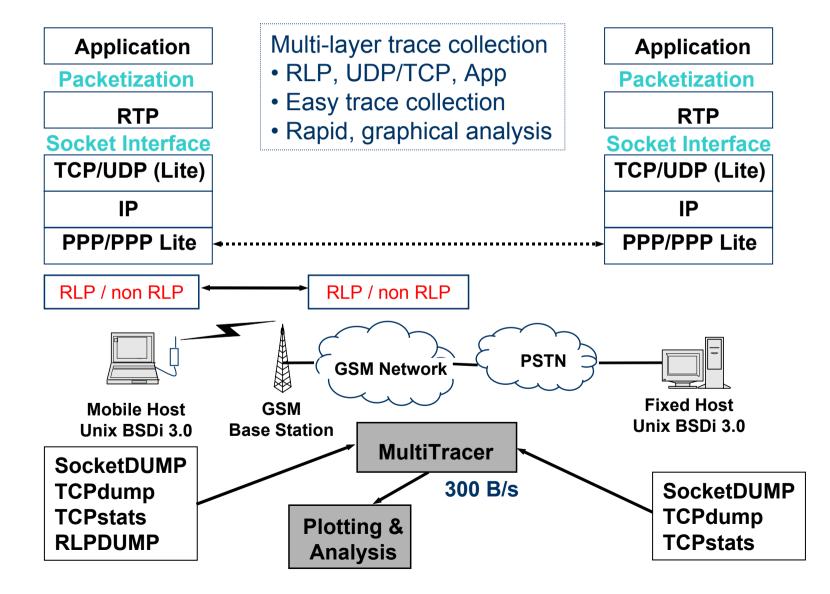
- Tapas network characteristics toolkit
 - Measuring/modeling/emulating/predicting delay, loss, ...
 - Provides Sahara with micro-scale network weather information
 - Mechanism for monitoring/predicting available QoS
- REAP protocol modifying / application building toolkit
 - Introspective mobile code/data support for legacy / new apps
 - Provides Sahara with dynamic placement of data and service sub-components
- Brocade, Mobile Tapestry, and Fault-Tolerant Tapestry
 - Overlay routing layer providing Sahara with efficient application-level object location and routing
 - Mobility support, fault-tolerance, varying delivery semantics

Outline

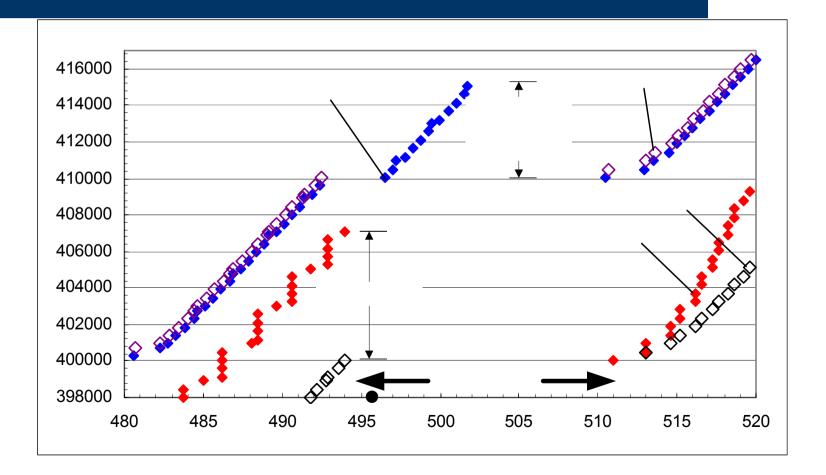
- Griffin
 - Motivation
 - Goals
 - Architecture
- Tapas
 - Motivation
 - Multi-layer protocol trace collection
 - Data preconditioning-based network modeling
 - Network feedback and prediction

Tapas Motivation

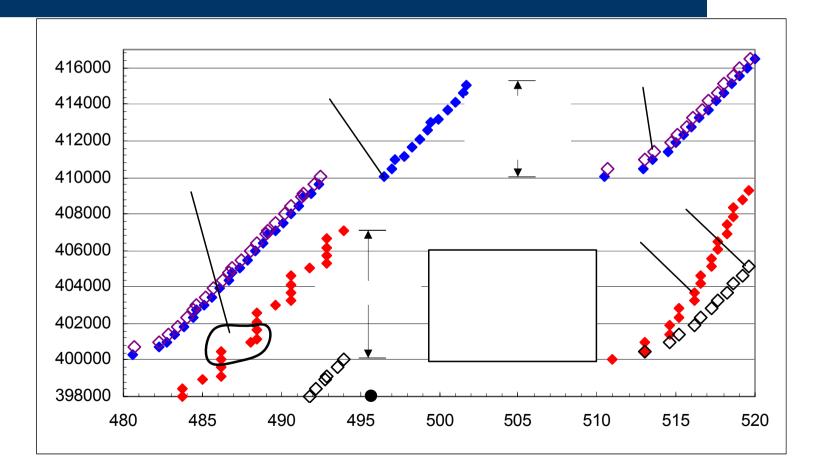
- Accurate modeling and emulation for protocol design
 - Very difficult to gain access to new or experimental networks
 - Delay, error, congestion in IP, GSM, GPRS, 1xRTT, 802.11a/b
 - Study interactions between protocols at different levels
- Creating models/artificial traces that are statistically indistinguishable from traces from real networks
 - Such models have both predictive and descriptive power
 - Better understanding of network characteristics
 - Can be used to optimize new and existing protocols
- Answer several application design questions
 - Q1: Impact of network layering in application design
 - Q2: Effects of network model choices on results (survey?)
 - Q3: Using feedback for adaptive, predictive applications


Tapas

- Novel data preconditioning-based analysis approach
 - More accurately models/emulates long-/short-term dependence effects than classic approaches (Gilbert, Markov, HMM, Bernoulli)
- Analysis, simulation, modeling, prediction tools:
 - MultiTracer: Multi-layer trace collection and analysis (*download*)
 - Trace analysis and synthetic trace generator tools
 - Markov-based Trace Analysis, Modified hidden Markov Model
 - WSim: Wireless link simulator (currently trace-driven)
 - Simple feedback algorithm and API
 - Domain analysis tool: chooses most accurate model for a metric
- Error-tolerant radio / link layer protocols: RLPLite, PPPLite
- Collected >5,000 minutes of TCP, UDP, RLP traces in good/bad, stationary/mobile environments (*download*)


Optimizing GSM CS Data Protocol

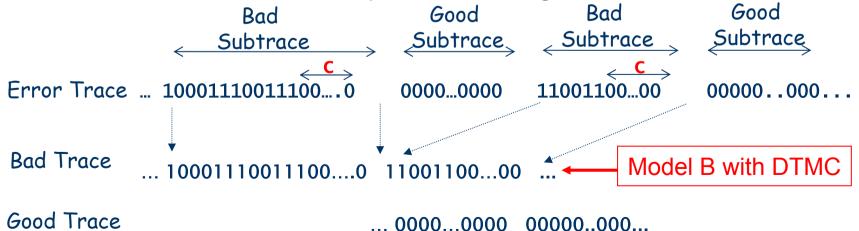
- Circuit-switched data Radio Link Protocol (RLP)
 - Semi-reliable ARQ Protocol at 9.6 Kbit/s
 - Link resets after N = 6 number of retransmissions
- RLP and TCP interaction measurement / analysis
 - Both are reliable protocols (link and transport layers)
 - Researchers claim *competing retransmissions* problem (Q1)
- Fixed logical frame size of 30 bytes
 - 6 bytes header/checksum
 - What are effects of alternative frame sizes on throughput?
 - What effect does the choice of model have on results? (Q2)
- MultiTracer trace collection/analysis tool quickly identifies *interaction* and *performance* effects


MultiTracer Measurement Testbed

Time-Sequence TCP Plot

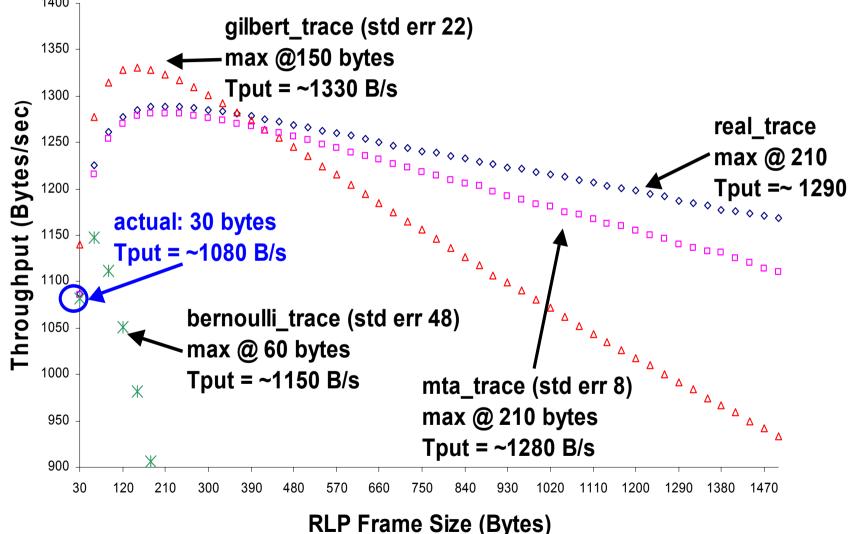
MultiTracer TCP and RLP Plot

Choosing the Right Network Model

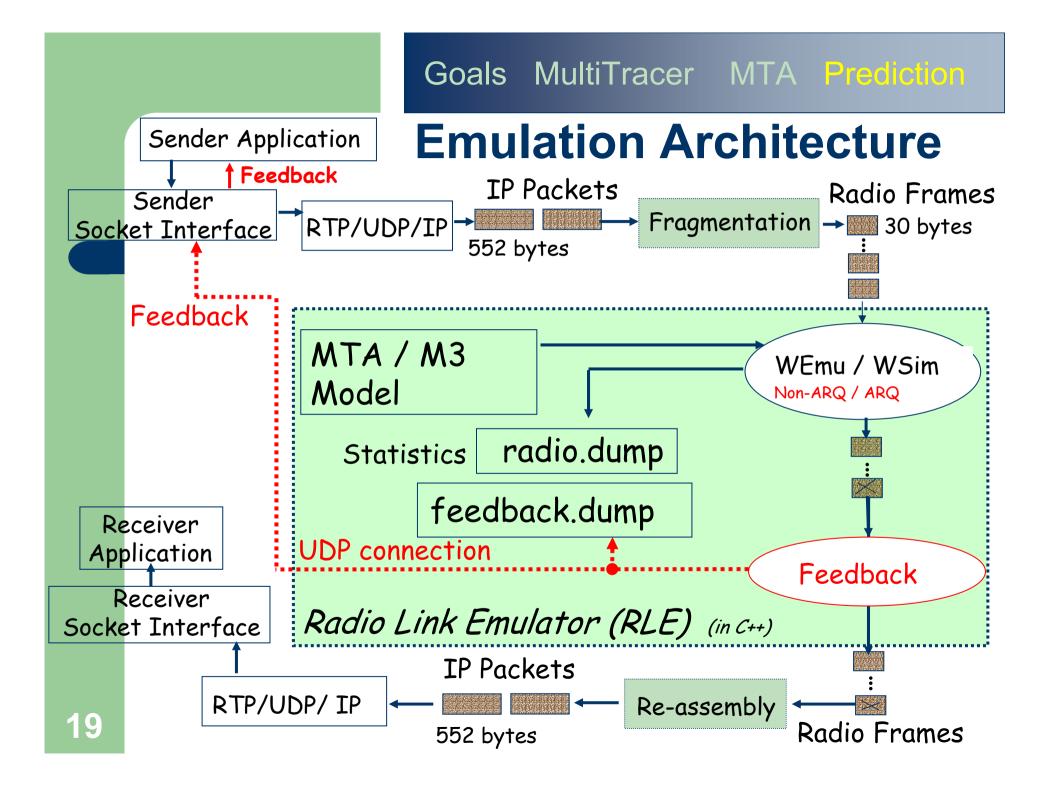

- Collect empirical packet trace: T = {1,0}*
 - 1: corrupted/delayed packet, 0: correct/non-delayed packet
- Create mathematical models based on T

- Challenge: domain analysis which model to use?
- T may be *non-stationary* (statistics vary over time)
 - Classic models don't always work well (can't capture variations)
- MTA, M³ Trace data preconditioning algorithms
 - Decompose T into stationary sub-traces & model transitions
 - Stationary sub-traces can be modeled with high-order DTMC
 - Markov-based Trace Analysis (MTA) and Modified hidden Markov
 - Model (M³) tools accurately model time varying links

Creating Stationarity in Traces

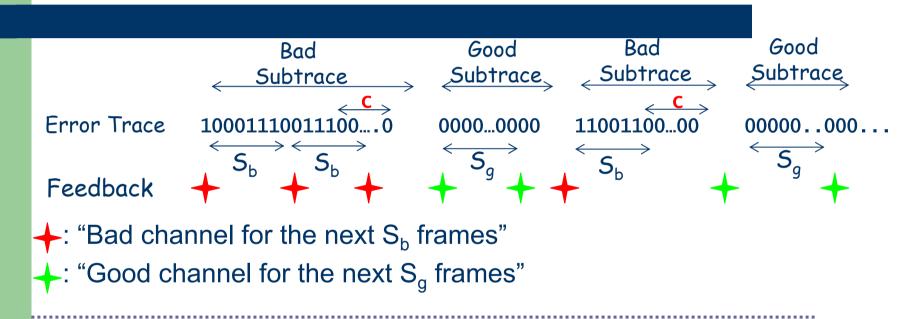

- Our idea for MTA and M³: decompose T into stationary sub-traces
 - Bad sub-traces $B_{1..n} = 1\{1,0\}^*0^c$, Good sub-traces $G_{1..n} = 0^*$
 - C is a change-of-state constant: mean + std dev of length of 1*
- MTA: Model B with a DTMC, model state lengths with exponential distribution, and compute transitions between states
- M³: Similar, but models multiple states using HMM to transition

Role of Accurate Network Modeling


- Choosing optimal RLP frame size for bulk data transfer
 - Use real Block Error Traces from MultiTracer
 - Compare against synthetic traces with same BER generated by different models (MTA, Bernoulli, Gilbert)
 - Measure throughput for different frame sizes (30,60,...,1500 B)
- Optimal frame size is the one with highest throughput
 - Reduced overhead vs. increased retransmission delay
- MultiTracer analysis: errors occur in long bursts
 - Channel is either OK or very bad
 - A few long or many short packets are affected
- Burst effect not captured by classical models

Right Model ⇒ **More Accurate Results**

Predictive, Error-Resilient Video


- Explore benefits of feedback and prediction
 - Dynamic adaptation of data rate to network conditions for adaptive, error resilient video codecs
 - H.263+ error-resilient QCIF codec (< 64 kb/s, 10-15fps)
- Link layer reliability helps with wireless errors
 - But, link layer reliability alone introduces delay \Rightarrow higher jitter
- Add a simple feedback algorithm
 - High and low resolution versions of video stored on server
 - Channel prediction bad state \Rightarrow send low resolution frame
 - Goal: switch data rates to minimize jitter effects by keeping interframe arrival times relatively flat

Streaming Video with Predictive Feedback

- Simulation using wireless traces (4480 min):
 - ~4 min per video, bad channel (-105 to -99dB), ~ 1.5 % BLER
- Calculate S_b and S_g (avg bad/good subtrace lengths), and C
- Receiver receives radio frame:
 - In "bad subtrace"? \Rightarrow send bad state feedback every S_b frames
 - In "good subtrace "? \Rightarrow send good state feedback every S_g frames

Predictive Feedback Algorithm

• Preliminary results

- No feedback: jitter std dev 150 ms, many 200+ ms instances
 Feedback: jitter std dev 100 ms, only two 200+ ms instances
- Next steps: More sophisticated algorithms, full platform, RTCP feedback-based mechanism

Tapas Summary

- A better understanding of effects of multi-layer effects
- Accurate models ⇒ Accurate simulation ⇒ Better protocol design
- 1st cut simple socket interface model for communicating with lower protocol stack layers
- Preliminary result: Prediction enables better response time to discontinuous changes in error rate
- On-going work:
 - Trace collection: CDMA 1xRTT, GPRS, & IEEE 802.11a

Griffin: Towards an Agile, Predictive Infrastructure

Anthony D. Joseph UC Berkeley http://www.cs.berkeley.edu/~adj/ Dagstuhl QoS Seminar Oct 2002

