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Near-Continuous, Highly-Variable 
Internet Connectivity

Connectivity everywhere: campus, in-building, satellite…
– Projects: Sahara (01-), Iceberg (98-01), Rover (95-97)

Most applications support limited variability (1% to 2x)
– Design environment for legacy apps is static desktop LAN
– Strong abstraction boundaries (APIs) hide the # of RPCs 

But, today’s apps see a wider range of variability
– 3→5 orders of magnitude of bandwidth from 10's Kb/s →1 Gb/s
– 4→6 orders of magnitude of latency from 1 µsec →1,000's ms
– 5→9 orders of magnitude of loss rates from 10-3 → 10-12 BER
– Neither best-effort or unbounded retransmission may be ideal
– Also, overloaded servers / limited resources on mobile devices 

Result: Poor/variable performance from legacy apps

Motivation Goals   Architecture   Tapas
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Griffin Goals

Users always see excellent (≡ local, lightly loaded) 
application behavior and performance 

– Independent of the current infrastructure conditions
– Move away from “reactive to change” model
– Agility: key metric is time to react and adapt

Help legacy applications handle changing conditions
– Analyze, classify, and predict behavior
– Pre-stage dynamic/static code/data (activate on demand)

Architecture for developing new applications
– Input/control mechanisms for new applications
– Application developer tools

Leverage Sahara policies and control mechanisms

Motivation   Goals Architecture   Tapas
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Griffin: An Adaptive, Predictive 
Approach

Continuous, cross-layer, multi-timescale introspection
– Collect & cluster link, network, and application protocol events
– Broader-scale: Correlate AND communicate short-/long-term 

events and effects at multiple levels (breaks abstractions)
– Challenge: Building accurate models of correlated events

Convey app reqs/network info to/from lower-levels
– Break abstraction boundaries in a controlled way
– Challenge: Extensible interfaces to avoid existing least 

common denominator problems
Overlay more powerful network model on top of IP

– Avoid standardization delays/inertia
– Enables dynamic service placement
– Challenge: Efficient interoperation with IP routing policies

Motivation   Goals   Architecture Tapas
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Some Enabling Infrastructure 
Components

Tapas network characteristics toolkit
– Measuring/modeling/emulating/predicting delay, loss, …
– Provides Sahara with micro-scale network weather information
– Mechanism for monitoring/predicting available QoS

REAP protocol modifying / application building toolkit
– Introspective mobile code/data support for legacy / new apps
– Provides Sahara with dynamic placement of data and service 

sub-components
Brocade, Mobile Tapestry, and Fault-Tolerant Tapestry

– Overlay routing layer providing Sahara with efficient 
application-level object location and routing

– Mobility support, fault-tolerance, varying delivery semantics

Motivation   Goals   Architecture Tapas
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Tapas
– Motivation
– Multi-layer protocol trace collection
– Data preconditioning-based network modeling
– Network feedback and prediction
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Tapas Motivation

Accurate modeling and emulation for protocol design
– Very difficult to gain access to new or experimental networks
– Delay, error, congestion in IP, GSM, GPRS, 1xRTT, 802.11a/b
– Study interactions between protocols at different levels

Creating models/artificial traces that are statistically 
indistinguishable from traces from real networks

– Such models have both predictive and descriptive power 
– Better understanding of network characteristics
– Can be used to optimize new and existing protocols

Answer several application design questions
– Q1: Impact of network layering in application design
– Q2: Effects of network model choices on results (survey?)
– Q3: Using feedback for adaptive, predictive applications

Tapas MultiTracer    MTA   Prediction
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Tapas

Novel data preconditioning-based analysis approach
– More accurately models/emulates long-/short-term dependence 

effects than classic approaches (Gilbert, Markov, HMM, Bernoulli)
Analysis, simulation, modeling, prediction tools:

– MultiTracer: Multi-layer trace collection and analysis (download)
– Trace analysis and synthetic trace generator tools

Markov-based Trace Analysis, Modified hidden Markov Model
– WSim: Wireless link simulator (currently trace-driven)
– Simple feedback algorithm and API
– Domain analysis tool: chooses most accurate model for a metric 

Error-tolerant radio / link layer protocols: RLPLite, PPPLite
Collected >5,000 minutes of TCP, UDP, RLP traces in 
good/bad, stationary/mobile environments (download)

Tapas MultiTracer    MTA   Prediction
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Optimizing GSM CS Data Protocol

Circuit-switched data Radio Link Protocol (RLP) 
– Semi-reliable ARQ Protocol at 9.6 Kbit/s
– Link resets after N = 6 number of retransmissions

RLP and TCP interaction measurement / analysis
– Both are reliable protocols (link and transport layers)
– Researchers claim competing retransmissions problem (Q1)

Fixed logical frame size of 30 bytes
– 6 bytes header/checksum
– What are effects of alternative frame sizes on throughput?
– What effect does the choice of model have on results? (Q2)

MultiTracer trace collection/analysis tool quickly identifies 
interaction and performance effects

Goals MultiTracer MTA   Prediction
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MultiTracer Measurement Testbed

Plotting & 
Analysis
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Socket Interface

Application

RTP

IP
PPP/PPP Lite

Packetization

Fixed Host
Unix BSDi 3.0

GSM
Base Station

GSM Network PSTN

Mobile Host
Unix BSDi 3.0

RLP / non RLP RLP / non RLP

SocketDUMP
TCPdump
TCPstats
RLPDUMP

SocketDUMP
TCPdump
TCPstats

MultiTracer

TCP/UDP (Lite)
Socket Interface

Application

RTP

IP
PPP/PPP Lite

Packetization

300 B/s

Multi-layer trace collection 
• RLP, UDP/TCP, App
• Easy trace collection
• Rapid, graphical analysis
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Time-Sequence TCP Plot
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MultiTracer TCP and RLP Plot
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Choosing the Right Network Model
Collect empirical packet trace: T = {1,0}*

– 1: corrupted/delayed packet, 0: correct/non-delayed packet
Create mathematical models based on T

Challenge: domain analysis – which model to use?
T may be non-stationary (statistics vary over time)

– Classic models don’t always work well (can’t capture variations)
MTA, M3 – Trace data preconditioning algorithms

– Decompose T into stationary sub-traces & model transitions
– Stationary sub-traces can be modeled with high-order DTMC
– Markov-based Trace Analysis (MTA) and Modified hidden Markov 

Model (M3) tools accurately model time varying links

Goals MultiTracer  MTA Prediction
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Creating Stationarity in Traces

Our idea for MTA and M3: decompose T into stationary sub-traces
– Bad sub-traces B1..n = 1{1,0}*0c, Good sub-traces G1..n = 0*
– C is a change-of-state constant: mean + std dev of length of 1*

MTA: Model B with a DTMC, model state lengths with exponential 
distribution, and compute transitions between states
M3: Similar, but models multiple states using HMM to transition

… 10001110011100….0    0000…0000   11001100…00    00000..000...

Bad 
Subtrace

Good 
Subtrace

Good 
Subtrace

c
Error Trace

Bad Trace

Good Trace
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Subtrace

c

Model B with DTMC
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Role of Accurate Network Modeling

Choosing optimal RLP frame size for bulk data transfer
– Use real Block Error Traces from MultiTracer 
– Compare against synthetic traces with same BER generated 

by different models (MTA, Bernoulli, Gilbert)
– Measure throughput for different frame sizes (30,60,…,1500 B)

Optimal frame size is the one with highest throughput
– Reduced overhead vs. increased retransmission delay

MultiTracer analysis: errors occur in long bursts
– Channel is either OK or very bad
– A few long or many short packets are affected

Burst effect not captured by classical models

Goals MultiTracer  MTA Prediction
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real_trace
max @ 210
Tput =~ 1290

mta_trace (std err 8)
max @ 210 bytes
Tput = ~1280 B/s

gilbert_trace (std err 22)
max @150 bytes
Tput = ~1330 B/s

bernoulli_trace (std err 48)
max @ 60 bytes 
Tput = ~1150 B/s

actual: 30 bytes
Tput = ~1080 B/s

Right Model ⇒ More Accurate Results
Goals MultiTracer  MTA Prediction
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Predictive, Error-Resilient Video

Explore benefits of feedback and prediction
– Dynamic adaptation of data rate to network conditions for 

adaptive, error resilient video codecs
H.263+ error-resilient QCIF codec (< 64 kb/s, 10-15fps)

Link layer reliability helps with wireless errors
– But, link layer reliability alone introduces delay ⇒ higher jitter

Add a simple feedback algorithm
– High and low resolution versions of video stored on server
– Channel prediction bad state ⇒ send low resolution frame
– Goal: switch data rates to minimize jitter effects by keeping inter-

frame arrival times relatively flat

Goals MultiTracer  MTA  Prediction
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WEmu / WSimMTA / M3 
Model

Fragmentation

RTP/UDP/ IP 

...

Non-ARQ / ARQ

...

30 bytes
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...

Radio Link Emulator (RLE)  (in C++)
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radio.dump

Sender
Socket Interface
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Sender Application

Receiver
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Emulation Architecture
RTP/UDP/IP

IP Packets

Radio Frames

Statistics

Feedback

Feedback

feedback.dump
UDP connection

Feedback
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Streaming Video with Predictive 
Feedback

Simulation using wireless traces (4480 min):
– ~4 min per video, bad channel (-105 to -99dB), ~ 1.5 % BLER

Calculate Sb and Sg (avg bad/good subtrace lengths), 
and C
Receiver receives radio frame:

– In “bad subtrace”? ⇒ send bad state feedback every Sb frames
– In “good subtrace ”? ⇒ send good state feedback every Sg

frames

Goals MultiTracer  MTA  Prediction
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Predictive Feedback Algorithm

Preliminary results
– No feedback: jitter std dev 150 ms, many 200+ ms instances 

Feedback: jitter std dev 100 ms, only two 200+ ms instances
Next steps: More sophisticated algorithms, full 
platform, RTCP feedback-based mechanism
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Tapas Summary

A better understanding of effects of multi-layer effects
Accurate models ⇒ Accurate simulation ⇒ Better  
protocol design
1st cut simple socket interface model for communicating 
with lower protocol stack layers
Preliminary result: Prediction enables better response 
time to discontinuous changes in error rate
On-going work: 

– Trace collection: CDMA 1xRTT, GPRS, & IEEE 802.11a

Goals MultiTracer MTA   Prediction
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