QoS & Transient Simulations of Web Traffic:

Using Quantiles to Characterize User-Perceived Latency in Simulations with Heavy-Tailed Input

> Dagstuhl, October 30st, 2002 by Ulrich Fiedler, TIK, ETH-Zurich

Motivation

- Simulations of web traffic are deployed to investigate numerous problems
 - Important performance metrics
 - Server throughput
 - User-perceived latency of downloads
 - -> user-centered QoS provisioning
 - Self-similarity ⇒ negative impact on performance (Barford, Crovella 1998)
 - Self-similarity \Leftarrow input: heavy-tailed object size distribution
 - Simulations remain transient during reasonable times
 - » Average object size, average latency do not converge

Problem

- Take end-user's perspective in client server scenario
- User-perceived latency is sum of latencies of network, server/cache, client
- Latency quantiles (or percentiles)
 - have a natural interpretation
 - do not depend on moments of the distribution
- Are latency quantiles suitable statistics for performance evaluation?
 - Do latency quantiles converge in reasonable times?

Ulrich Fiedler TIK, ETH

Using Quantiles to Characterize User-Perceived Latency

Outline

- Web workload modeling
 - Heavy-tailed distribution to model self-similarity, implications of heavy-tailed distributions
- Convergence of simulation input
 - Object size quantiles
- Convergence of simulation output
 - Latency quantiles
- Discussion

Ulrich Fiedler TIK, ETH

4/14

Web Workload Modeling I

• Def.: heavy-tailed distribution

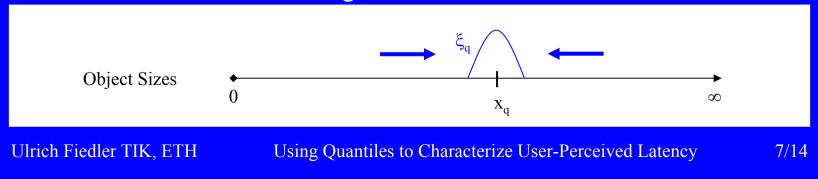
 $1 - F(x) \sim x^{-\alpha} \quad x \to \infty$

- Line in log-log representation
- Infinite variance for shape parameter $1 < \alpha < 2$
- Simplest class of representants: Pareto distributions

$$F(x) = 1 - \left(\frac{k}{x}\right)^{\alpha} \quad x \in [k, \infty[$$

Ulrich Fiedler TIK, ETH

Web Workload Modeling II


- Heavy-tails in object size or think time distribution cause self similarity on the network level
 - On/off model (Willinger 1995) (Likhanov 1995)
 - Effects caused by object sizes dominate effects caused by think time (Park, Kim, Crovella 1996)
- Sampling from heavy-tailed object size distribution, which has infinite variance, ...
 - Average object size in sample does not converge in reasonable times (Central Limit Theorem does not apply any more) ⇒ transient simulations (Crovella, Lipsky 2000)

» Also with a reasonable bound to the object size distribution!

6/14

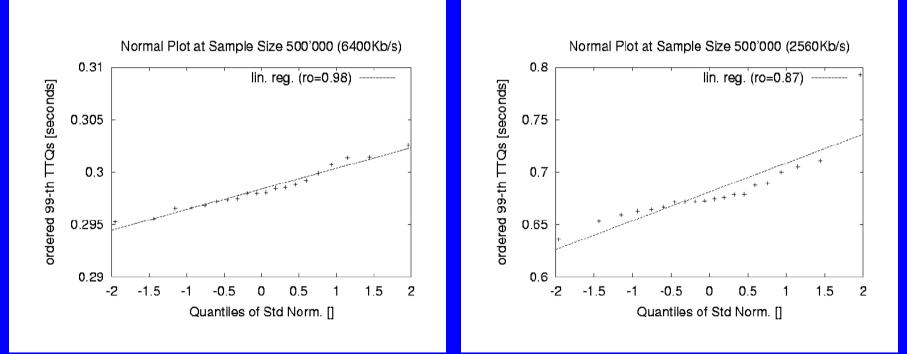
Object Size Quantiles

- Presumably, the p-th latency quantile in output can only converge, if the correponding p-th object size quantile (OSQ) has converged
 - 1. Derive the distribution of sample's p-th quantile ξ_q around quantile x_q of the distribution which was used for generation of the sample
 - 2. Derive the asymptotic distribution of sample's quantile
 - » Normal distribution! (Rao 1973)
 -> convergence in reasonable times

Stabilization of OSQ to 1%

	Heavy-tailed	Exponential
Quantile	#objects	#objects
98%	$1.4 \cdot 10^{6}$	1.2·10 ⁵
99%	$2.8 \cdot 10^{6}$	1.7·10 ⁵
99.9%	$2.7 \cdot 10^7$	8.0·10 ⁵
99.99%	$2.7 \cdot 10^{8}$	$4.5 \cdot 10^{6}$
Average	$3 \cdot 10^{12}$	800

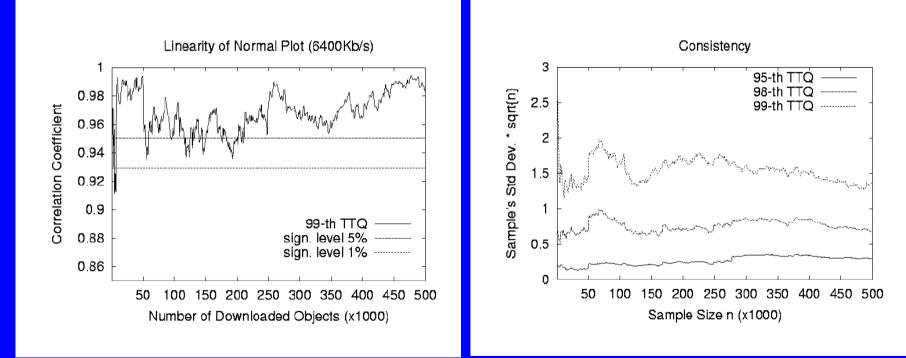
Latency Quantiles


- 1. Object size quantiles do converge
- 2. Exploit theory of robustness for latency quantiles
 - If correlation of a observed random variable is ,,not too strong" -> quantiles converge to normality at rate sqrt n (Hampel 1986)
 - → Test latency quantiles for convergence to normality
 - Reliable method: normal probability plots (Q-Q plots)
 - Check linearity with linear regression
 - Additionally check consistency (sqrt n rate)

Client Server Scenario

Queue Length: 52KB

Bottleneck Link Bandwidth: Variable Delay: 10ms **Client Side Server Side** 50 Web Clients 5 Web Servers **Access Links Access Links** Bandwidth: 10Mb/s Bandwidth: 10Mb/s Delay: 0.1ms Delay: 0.1ms


Normal Plots

Ulrich Fiedler TIK, ETH

Using Quantiles to Characterize User-Perceived Latency 11/14

Linearity of N.P. & Consistency

Ulrich Fiedler TIK, ETH

Using Quantiles to Characterize User-Perceived Latency 12/14

Discussion

- Latency quantiles, e.g. transfer time quantiles, converge if utilization is not too high and the network is not too heterogenious
 - Practical application in performance evaluation of ,,limited scenarios"
 - » Corporate networks, web server, ...
- High utilization
 - Possibly observations of latencies are long range dependent \Rightarrow Quantiles may not converge not to normal, but to α -stable
 - » Exploit Q-Q plots to test for this converge
 - » Problems: 1. Need to estimate α from correlated observations, 2. Likely too slow for practical use

Ulrich Fiedler TIK, ETH

Using Quantiles to Characterize User-Perceived Latency 13/14

Thanks

• Comments and questions welcome

e-mail: fiedler@tik.ee.ethz.ch

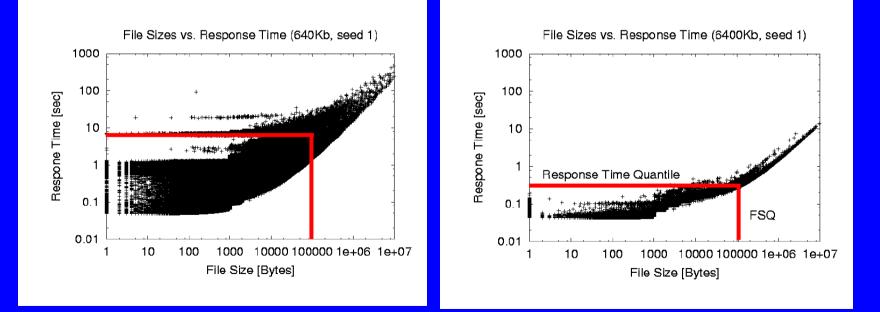
Ulrich Fiedler TIK, ETH

Using Quantiles to Characterize User-Perceived Latency 14/14

Source Model

Parameter	Distribution	Average	Shape
Size of	Pareto vs.	12000B	1.2
Index Obj.	Exponential	12000B	
# Embed.	Constant	Zero	
Objects			
Think Time	Pareto	10 sec	2.0

 \rightarrow Mean offered load for 50 clients: ~ 480 Kb/s


Ulrich Fiedler TIK, ETH

Using Quantiles to Characterize User-Perceived Latency

15/14

Characterization of Output

File Size vs. Response Time: 640Kb/s (left) vs. 6400Kb/s (right)

Ulrich Fiedler TIK, ETH

Using Quantiles to Characterize User-Perceived Latency 16/14