Multi-hop Scatternet Formation for Bluetooth Networks

Northeastern

Northeastern University

Stefano Basagni

Chiara Petrioli

Univ. di Roma "La Sapienza"

Dagstuhl seminar 02441 October 29th 2002

Ad Hoc Networks

 Wireless networks with no fixed infrastructure (all nodes can move)

- Connection based on radio vicinity
- Each node is a switch
- Multi-hop communication

A Simple Ad Hoc Network

Bluetooth (BT): Enabling Ad Hoc Networks

• Wireless technology in the ISM band (2.4GHz)

Introduced for cable replacement

Short range radio communication

Frequency hopping spread-spectrum

Bluetooth: Piconets

- Master Slave communication
- Piconets with one master and multiple slaves
- Synchronization based on master ID and clock

Bluetooth: Scatternets

- Nodes can have multiple roles
- Nodes with multiple roles timeshare between multiple piconets
- A scatternet enables multi-hop communication

Bluetooth: Scatternets

Scatternet Formation: The Problem

- Forming connected ad hoc networks of Bluetooth device
- Three major problems:
 - Device discovery
 - Piconet formation
 - Piconet interconnection

Scatternet Formation: Previous Solutions

- Single-hop topologies (the radio vicinity of all nodes is required):
 - Salonidis et al.: works for up to 36 nodes
 - Law et al.: Creates a tree
 - Tan et al.: Creates a tree

Scatternet formation: Previous Solutions

- Multi-hop topologies:
 - Zaruba et al.: BlueTrees, tree-like connected scatternet. Depends on a designated node
 - Haas et al.: BlueNets, mesh-like scatternet formation.
 Connectivity of the scatternet is not guaranteed
 - Stojmenovic: mesh-like connected scatternet based on topology reduction techniques. Requires additional hardware (e.g., GPS receivers)

BlueStars: Mesh-like Connected Scatternet

- Distributed solution: all nodes participate to the formation with minimal, local topology knowledge (one-hop neighbors)
- Multi-hop solution: nodes need not to be in each other communication range
- Mesh-like solution: multiple routes between pair of nodes
- No additional hardware is required

BlueStars: Three-phase Protocol

- Device discovery: each nodes becomes aware of its one-hop neighbors and of their "weight" (symmetric knowledge)
 - 1. Node alternate between inquiry and inquiry scan
 - 2. Temporary piconets to exchange informations

BlueStars: Three-phase Protocol

- 2. **Piconet formation**: nodes are partitioned into groups each with one master and possibly multiple slaves
- 3. Piconet interconnection: piconets whose masters are at most three hops away are interconnected, so to form a connected scatternet

- Need to alternate between inquiry and inquiry scan (only nodes in opposite modes can handshake)
- Long Back-off interval (2048 ticks)
- The ID packets sent by the inquirer do not identify the sender

Discovering all neighbors in a multi-hop Bluetooth network can be extremely time consuming!

BlueStars Operations: An Example

BlueStars Simulations, 1

Extension of the VINT ns2 simulator that

Implements all the details of the protocol stack
 Implements the device discovery phase
 Implements BlueStars

Simulation scenarios

an - Mar V

- 30, 50, 70, 90, 110 Power Class 3 BT devices uniformly spread over a square area of side 30
- Connected visibility graphs
- Avg.degree ranging from 7.4 (30 nodes) to 27.9 (110)
- Results obtained over 300 topologies

BlueStars Simulations, 2

Methodology and metrics:

- Effect of device discovery parameters on the discovered topologies
- Effect of device discovery length on BlueStars performance:
 - Avg. Number of piconet
 - Avg. Number of roles per node
 - Avg. Number of slaves per piconet
 - Avg. Length of routes

Device Discovery Performance

- 20s are needed to discover more than 90% of neighbors, BUT
- Neighbors discovered after 8-10s guarantee connected topologies
- Average degree is halved (closer to 7)
- Average route length increases 35%

- Smaller back-off interval and transmission of inquirer address dramatically improves performance
- Setting the back-off interval to 25% of the standard value, 4-6s are enough to guarantee connected topologies

BlueStars Performance

- Phase II and III last at most 2s (most of the times, less than 1s)
- Each node assumes at a most an average of 2.4 roles
- Half of the piconets are due to phase III
- Device discovery can be used as a "tuning knob" for reducing the number of piconets and of slaves per piconets

Something "To Go"

- Protocols for scatternet formation in the ad hoc setting, connectivity and with no additional HW.
- ns2-based performance evaluation:
 - Identify importance of device discovery on overall performance
 - Identify parameters and standard features that have a dramatic impact on performance
 - Assess BlueStars ability to rapidly and locally generate a connected scatternet with 'good properties'

"IMPROVEMENTS:" BLUEMESH basagni@ece.neu.edu