
LINEAR PROGRAMMING

[V. CH9]: INTEGER PROGRAMMING

Phillip Keldenich Ahmad Moradi

Department of Computer Science
Algorithms Department

TU Braunschweig

January 30, 2024

MOTIVATION

MOTIVATION

DEFINITION

BRANCH AND BOUND

BRANCH AND CUT

SOME CUTTING PLANE TEMPLATES

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 2 / 35

MOTIVATION

VERTEX COVER

For a given graph G = (V,E), the Vertex Cover problem asks for a minimum-cardinality subset
C ⊆ V of vertices such that each edge vw ∈ E has least one endpoint in C, i.e., {v, w} ∩ C ̸= ∅.

Trying to model this as linear program:

min
∑
v∈V

xv s.t.

∀v ∈ V : 0 ≤ xv ≤ 1

∀vw ∈ E : xv + xw ≥ 1

What happens on a triangle (K3, complete graph on 3 vertices)?

Notes: Vertex Cover is NP-hard! LP is not NP-hard unless P = NP.
LP is in P, even though Simplex is not a polynomial-time algorithm.
Unless P = NP, we thus cannot expect to fully model Vertex Cover as LP!
Idea: Extend LP to be able to model NP-hard problems! Any ideas?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 3 / 35

MOTIVATION

VERTEX COVER

For a given graph G = (V,E), the Vertex Cover problem asks for a minimum-cardinality subset
C ⊆ V of vertices such that each edge vw ∈ E has least one endpoint in C, i.e., {v, w} ∩ C ̸= ∅.

Trying to model this as linear program:

min
∑
v∈V

xv s.t.

∀v ∈ V : 0 ≤ xv ≤ 1

∀vw ∈ E : xv + xw ≥ 1

What happens on a triangle (K3, complete graph on 3 vertices)?

Notes: Vertex Cover is NP-hard! LP is not NP-hard unless P = NP.
LP is in P, even though Simplex is not a polynomial-time algorithm.
Unless P = NP, we thus cannot expect to fully model Vertex Cover as LP!
Idea: Extend LP to be able to model NP-hard problems! Any ideas?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 3 / 35

MOTIVATION

VERTEX COVER

For a given graph G = (V,E), the Vertex Cover problem asks for a minimum-cardinality subset
C ⊆ V of vertices such that each edge vw ∈ E has least one endpoint in C, i.e., {v, w} ∩ C ̸= ∅.

Trying to model this as linear program:

min
∑
v∈V

xv s.t.

∀v ∈ V : 0 ≤ xv ≤ 1

∀vw ∈ E : xv + xw ≥ 1

What happens on a triangle (K3, complete graph on 3 vertices)?

Notes: Vertex Cover is NP-hard! LP is not NP-hard unless P = NP.

LP is in P, even though Simplex is not a polynomial-time algorithm.
Unless P = NP, we thus cannot expect to fully model Vertex Cover as LP!
Idea: Extend LP to be able to model NP-hard problems! Any ideas?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 3 / 35

MOTIVATION

VERTEX COVER

For a given graph G = (V,E), the Vertex Cover problem asks for a minimum-cardinality subset
C ⊆ V of vertices such that each edge vw ∈ E has least one endpoint in C, i.e., {v, w} ∩ C ̸= ∅.

Trying to model this as linear program:

min
∑
v∈V

xv s.t.

∀v ∈ V : 0 ≤ xv ≤ 1

∀vw ∈ E : xv + xw ≥ 1

What happens on a triangle (K3, complete graph on 3 vertices)?

Notes: Vertex Cover is NP-hard! LP is not NP-hard unless P = NP.
LP is in P, even though Simplex is not a polynomial-time algorithm.

Unless P = NP, we thus cannot expect to fully model Vertex Cover as LP!
Idea: Extend LP to be able to model NP-hard problems! Any ideas?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 3 / 35

MOTIVATION

VERTEX COVER

For a given graph G = (V,E), the Vertex Cover problem asks for a minimum-cardinality subset
C ⊆ V of vertices such that each edge vw ∈ E has least one endpoint in C, i.e., {v, w} ∩ C ̸= ∅.

Trying to model this as linear program:

min
∑
v∈V

xv s.t.

∀v ∈ V : 0 ≤ xv ≤ 1

∀vw ∈ E : xv + xw ≥ 1

What happens on a triangle (K3, complete graph on 3 vertices)?

Notes: Vertex Cover is NP-hard! LP is not NP-hard unless P = NP.
LP is in P, even though Simplex is not a polynomial-time algorithm.
Unless P = NP, we thus cannot expect to fully model Vertex Cover as LP!

Idea: Extend LP to be able to model NP-hard problems! Any ideas?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 3 / 35

MOTIVATION

VERTEX COVER

For a given graph G = (V,E), the Vertex Cover problem asks for a minimum-cardinality subset
C ⊆ V of vertices such that each edge vw ∈ E has least one endpoint in C, i.e., {v, w} ∩ C ̸= ∅.

Trying to model this as linear program:

min
∑
v∈V

xv s.t.

∀v ∈ V : 0 ≤ xv ≤ 1

∀vw ∈ E : xv + xw ≥ 1

What happens on a triangle (K3, complete graph on 3 vertices)?

Notes: Vertex Cover is NP-hard! LP is not NP-hard unless P = NP.
LP is in P, even though Simplex is not a polynomial-time algorithm.
Unless P = NP, we thus cannot expect to fully model Vertex Cover as LP!
Idea: Extend LP to be able to model NP-hard problems! Any ideas?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 3 / 35

MOTIVATION

VERTEX COVER MODEL

Adapting our model:
min

∑
v∈V

xv s.t.

∀v ∈ V : 0 ≤ xv ≤ 1

∀vw ∈ E : xv + xw ≥ 1

∀v ∈ V : xv ∈ Z

Modeling SAT: How can we do that?
Variable xv ∈ {0, 1} for each Boolean variable v in the formula φ =

∧
i

Ci.

Value of literal ℓ = v: xv , ℓ̄ =

1− xv

Modeling a clause, e.g., v1 ∨ v2 ∨ v3:

xv1 + (1− xv2) + (1− xv3) ≥ 1

Notes: Obviously, LP with integer variables is NP-hard.
Even deciding feasibility is NP-hard (see SAT example).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 4 / 35

MOTIVATION

VERTEX COVER MODEL

Adapting our model:
min

∑
v∈V

xv s.t.

∀v ∈ V : 0 ≤ xv ≤ 1

∀vw ∈ E : xv + xw ≥ 1

∀v ∈ V : xv ∈ Z

Modeling SAT: How can we do that?
Variable xv ∈ {0, 1} for each Boolean variable v in the formula φ =

∧
i

Ci.

Value of literal ℓ = v: xv , ℓ̄ =

1− xv

Modeling a clause, e.g., v1 ∨ v2 ∨ v3:

xv1 + (1− xv2) + (1− xv3) ≥ 1

Notes: Obviously, LP with integer variables is NP-hard.
Even deciding feasibility is NP-hard (see SAT example).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 4 / 35

MOTIVATION

VERTEX COVER MODEL

Adapting our model:
min

∑
v∈V

xv s.t.

∀v ∈ V : 0 ≤ xv ≤ 1

∀vw ∈ E : xv + xw ≥ 1

∀v ∈ V : xv ∈ Z

Modeling SAT: How can we do that?

Variable xv ∈ {0, 1} for each Boolean variable v in the formula φ =
∧
i

Ci.

Value of literal ℓ = v: xv , ℓ̄ =

1− xv

Modeling a clause, e.g., v1 ∨ v2 ∨ v3:

xv1 + (1− xv2) + (1− xv3) ≥ 1

Notes: Obviously, LP with integer variables is NP-hard.
Even deciding feasibility is NP-hard (see SAT example).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 4 / 35

MOTIVATION

VERTEX COVER MODEL

Adapting our model:
min

∑
v∈V

xv s.t.

∀v ∈ V : 0 ≤ xv ≤ 1

∀vw ∈ E : xv + xw ≥ 1

∀v ∈ V : xv ∈ Z

Modeling SAT: How can we do that?
Variable xv ∈ {0, 1} for each Boolean variable v in the formula φ =

∧
i

Ci.

Value of literal ℓ = v: xv , ℓ̄ =

1− xv

Modeling a clause, e.g., v1 ∨ v2 ∨ v3:

xv1 + (1− xv2) + (1− xv3) ≥ 1

Notes: Obviously, LP with integer variables is NP-hard.
Even deciding feasibility is NP-hard (see SAT example).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 4 / 35

MOTIVATION

VERTEX COVER MODEL

Adapting our model:
min

∑
v∈V

xv s.t.

∀v ∈ V : 0 ≤ xv ≤ 1

∀vw ∈ E : xv + xw ≥ 1

∀v ∈ V : xv ∈ Z

Modeling SAT: How can we do that?
Variable xv ∈ {0, 1} for each Boolean variable v in the formula φ =

∧
i

Ci.

Value of literal ℓ = v: xv , ℓ̄ =

1− xv

Modeling a clause, e.g., v1 ∨ v2 ∨ v3:

xv1 + (1− xv2) + (1− xv3) ≥ 1

Notes: Obviously, LP with integer variables is NP-hard.
Even deciding feasibility is NP-hard (see SAT example).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 4 / 35

MOTIVATION

VERTEX COVER MODEL

Adapting our model:
min

∑
v∈V

xv s.t.

∀v ∈ V : 0 ≤ xv ≤ 1

∀vw ∈ E : xv + xw ≥ 1

∀v ∈ V : xv ∈ Z

Modeling SAT: How can we do that?
Variable xv ∈ {0, 1} for each Boolean variable v in the formula φ =

∧
i

Ci.

Value of literal ℓ = v: xv , ℓ̄ = 1− xv

Modeling a clause, e.g., v1 ∨ v2 ∨ v3:

xv1 + (1− xv2) + (1− xv3) ≥ 1

Notes: Obviously, LP with integer variables is NP-hard.
Even deciding feasibility is NP-hard (see SAT example).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 4 / 35

MOTIVATION

VERTEX COVER MODEL

Adapting our model:
min

∑
v∈V

xv s.t.

∀v ∈ V : 0 ≤ xv ≤ 1

∀vw ∈ E : xv + xw ≥ 1

∀v ∈ V : xv ∈ Z

Modeling SAT: How can we do that?
Variable xv ∈ {0, 1} for each Boolean variable v in the formula φ =

∧
i

Ci.

Value of literal ℓ = v: xv , ℓ̄ = 1− xv

Modeling a clause, e.g., v1 ∨ v2 ∨ v3:

xv1 + (1− xv2) + (1− xv3) ≥ 1

Notes: Obviously, LP with integer variables is NP-hard.
Even deciding feasibility is NP-hard (see SAT example).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 4 / 35

MOTIVATION

VERTEX COVER MODEL

Adapting our model:
min

∑
v∈V

xv s.t.

∀v ∈ V : 0 ≤ xv ≤ 1

∀vw ∈ E : xv + xw ≥ 1

∀v ∈ V : xv ∈ Z

Modeling SAT: How can we do that?
Variable xv ∈ {0, 1} for each Boolean variable v in the formula φ =

∧
i

Ci.

Value of literal ℓ = v: xv , ℓ̄ = 1− xv

Modeling a clause, e.g., v1 ∨ v2 ∨ v3: xv1 + (1− xv2) + (1− xv3) ≥ 1

Notes: Obviously, LP with integer variables is NP-hard.
Even deciding feasibility is NP-hard (see SAT example).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 4 / 35

MOTIVATION

VERTEX COVER MODEL

Adapting our model:
min

∑
v∈V

xv s.t.

∀v ∈ V : 0 ≤ xv ≤ 1

∀vw ∈ E : xv + xw ≥ 1

∀v ∈ V : xv ∈ Z

Modeling SAT: How can we do that?
Variable xv ∈ {0, 1} for each Boolean variable v in the formula φ =

∧
i

Ci.

Value of literal ℓ = v: xv , ℓ̄ = 1− xv

Modeling a clause, e.g., v1 ∨ v2 ∨ v3: xv1 + (1− xv2) + (1− xv3) ≥ 1

Notes: Obviously, LP with integer variables is NP-hard.

Even deciding feasibility is NP-hard (see SAT example).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 4 / 35

MOTIVATION

VERTEX COVER MODEL

Adapting our model:
min

∑
v∈V

xv s.t.

∀v ∈ V : 0 ≤ xv ≤ 1

∀vw ∈ E : xv + xw ≥ 1

∀v ∈ V : xv ∈ Z

Modeling SAT: How can we do that?
Variable xv ∈ {0, 1} for each Boolean variable v in the formula φ =

∧
i

Ci.

Value of literal ℓ = v: xv , ℓ̄ = 1− xv

Modeling a clause, e.g., v1 ∨ v2 ∨ v3: xv1 + (1− xv2) + (1− xv3) ≥ 1

Notes: Obviously, LP with integer variables is NP-hard.
Even deciding feasibility is NP-hard (see SAT example).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 4 / 35

DEFINITION

MOTIVATION

DEFINITION

BRANCH AND BOUND

BRANCH AND CUT

SOME CUTTING PLANE TEMPLATES

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 5 / 35

DEFINITION

INTEGER PROGRAM

A linear program where all variables are restricted to Z is called integer program (IP).

A linear program where some (but not all) variables are restricted to Z is called mixed integer
program (MIP).

A linear program where all variables are restricted to {0, 1} is called 0-1-program or binary
program.

0-1-programs, IP and MIP are NP-complete.
They can be used to straightforwardly model many NP-complete problems.
Good solvers exist that can solve small to moderate size instances of many NP-hard problems.

Given some (mixed) integer program I , the LP we obtain by removing the integrality constraints
is called linear relaxation of I .

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 6 / 35

DEFINITION

INTEGER PROGRAM

A linear program where all variables are restricted to Z is called integer program (IP).

A linear program where some (but not all) variables are restricted to Z is called mixed integer
program (MIP).

A linear program where all variables are restricted to {0, 1} is called 0-1-program or binary
program.

0-1-programs, IP and MIP are NP-complete.
They can be used to straightforwardly model many NP-complete problems.
Good solvers exist that can solve small to moderate size instances of many NP-hard problems.

Given some (mixed) integer program I , the LP we obtain by removing the integrality constraints
is called linear relaxation of I .

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 6 / 35

BRANCH AND BOUND

MOTIVATION

DEFINITION

BRANCH AND BOUND

BRANCH AND CUT

SOME CUTTING PLANE TEMPLATES

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 7 / 35

BRANCH AND BOUND

SOLVING IPS

How do we solve integer programs?
Using a technique called Branch & Bound, or an extension of that; let’s show an example.

max 17x1 + 12x2 s.t.

10x1 + 7x2 ≤ 40

x1 + x2 ≤ 5

x1, x2 ≥ 0

x1, x2 ∈ Z

Solving the LP relaxation (of subproblem P0, the original problem) gives us
ζ0 = 68 + 1/3, x0

1 = 5/3, x0
2 = 10/3.

This tells us the optimal (integer) solution is not better than ζ0.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 8 / 35

BRANCH AND BOUND

BRANCH & BOUND: EXAMPLE

How do we continue when the LP relaxation of a subproblem Pi has a non-integral optimal
solution?

We branch, i.e., split Pi into (at least two) new subproblems.

Together, the subproblems must cover all possible integer solutions in Pi.

None of the subproblems must contain the non-integral optimal solution of Pi.

Ideally, they should also be disjoint, i.e., each solution is contained in at most one of the new
problems.

In the example, x0
1 = 5/3; in any integer solution, we must have x1 ≤ 1 or x1 ≥ 2. We create

two new subproblems P1 (by adding x1 ≤ 1) and P2 (by adding x1 ≥ 2) to the original
constraints.

In general, we can take any integer variable x with non-integral value θ and use x ≤ ⌊θ⌋ and
x ≥ ⌈θ⌉ as new constraints.

The optimal integer solution to Pi is the best integer solution found recursively in the
subproblems.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 9 / 35

BRANCH AND BOUND

BRANCH & BOUND: EXAMPLE

How do we continue when the LP relaxation of a subproblem Pi has a non-integral optimal
solution?

We branch, i.e., split Pi into (at least two) new subproblems.

Together, the subproblems must cover all possible integer solutions in Pi.

None of the subproblems must contain the non-integral optimal solution of Pi.

Ideally, they should also be disjoint, i.e., each solution is contained in at most one of the new
problems.

In the example, x0
1 = 5/3; in any integer solution, we must have x1 ≤ 1 or x1 ≥ 2. We create

two new subproblems P1 (by adding x1 ≤ 1) and P2 (by adding x1 ≥ 2) to the original
constraints.

In general, we can take any integer variable x with non-integral value θ and use x ≤ ⌊θ⌋ and
x ≥ ⌈θ⌉ as new constraints.

The optimal integer solution to Pi is the best integer solution found recursively in the
subproblems.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 9 / 35

BRANCH AND BOUND

BRANCH & BOUND: EXAMPLE

How do we continue when the LP relaxation of a subproblem Pi has a non-integral optimal
solution?

We branch, i.e., split Pi into (at least two) new subproblems.

Together, the subproblems must cover all possible integer solutions in Pi.

None of the subproblems must contain the non-integral optimal solution of Pi.

Ideally, they should also be disjoint, i.e., each solution is contained in at most one of the new
problems.

In the example, x0
1 = 5/3; in any integer solution, we must have x1 ≤ 1 or x1 ≥ 2. We create

two new subproblems P1 (by adding x1 ≤ 1) and P2 (by adding x1 ≥ 2) to the original
constraints.

In general, we can take any integer variable x with non-integral value θ and use x ≤ ⌊θ⌋ and
x ≥ ⌈θ⌉ as new constraints.

The optimal integer solution to Pi is the best integer solution found recursively in the
subproblems.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 9 / 35

BRANCH AND BOUND

BRANCH & BOUND: EXAMPLE

How do we continue when the LP relaxation of a subproblem Pi has a non-integral optimal
solution?

We branch, i.e., split Pi into (at least two) new subproblems.

Together, the subproblems must cover all possible integer solutions in Pi.

None of the subproblems must contain the non-integral optimal solution of Pi.

Ideally, they should also be disjoint, i.e., each solution is contained in at most one of the new
problems.

In the example, x0
1 = 5/3; in any integer solution, we must have x1 ≤ 1 or x1 ≥ 2. We create

two new subproblems P1 (by adding x1 ≤ 1) and P2 (by adding x1 ≥ 2) to the original
constraints.

In general, we can take any integer variable x with non-integral value θ and use x ≤ ⌊θ⌋ and
x ≥ ⌈θ⌉ as new constraints.

The optimal integer solution to Pi is the best integer solution found recursively in the
subproblems.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 9 / 35

BRANCH AND BOUND

BRANCH & BOUND: EXAMPLE

How do we continue when the LP relaxation of a subproblem Pi has a non-integral optimal
solution?

We branch, i.e., split Pi into (at least two) new subproblems.

Together, the subproblems must cover all possible integer solutions in Pi.

None of the subproblems must contain the non-integral optimal solution of Pi.

Ideally, they should also be disjoint, i.e., each solution is contained in at most one of the new
problems.

In the example, x0
1 = 5/3; in any integer solution, we must have x1 ≤ 1 or x1 ≥ 2. We create

two new subproblems P1 (by adding x1 ≤ 1) and P2 (by adding x1 ≥ 2) to the original
constraints.

In general, we can take any integer variable x with non-integral value θ and use x ≤ ⌊θ⌋ and
x ≥ ⌈θ⌉ as new constraints.

The optimal integer solution to Pi is the best integer solution found recursively in the
subproblems.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 9 / 35

BRANCH AND BOUND

BRANCH & BOUND: EXAMPLE

How do we continue when the LP relaxation of a subproblem Pi has a non-integral optimal
solution?

We branch, i.e., split Pi into (at least two) new subproblems.

Together, the subproblems must cover all possible integer solutions in Pi.

None of the subproblems must contain the non-integral optimal solution of Pi.

Ideally, they should also be disjoint, i.e., each solution is contained in at most one of the new
problems.

In the example, x0
1 = 5/3; in any integer solution, we must have x1 ≤ 1 or x1 ≥ 2. We create

two new subproblems P1 (by adding x1 ≤ 1) and P2 (by adding x1 ≥ 2) to the original
constraints.

In general, we can take any integer variable x with non-integral value θ and use x ≤ ⌊θ⌋ and
x ≥ ⌈θ⌉ as new constraints.

The optimal integer solution to Pi is the best integer solution found recursively in the
subproblems.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 9 / 35

BRANCH AND BOUND

BRANCH & BOUND: EXAMPLE

How do we continue when the LP relaxation of a subproblem Pi has a non-integral optimal
solution?

We branch, i.e., split Pi into (at least two) new subproblems.

Together, the subproblems must cover all possible integer solutions in Pi.

None of the subproblems must contain the non-integral optimal solution of Pi.

Ideally, they should also be disjoint, i.e., each solution is contained in at most one of the new
problems.

In the example, x0
1 = 5/3; in any integer solution, we must have x1 ≤ 1 or x1 ≥ 2. We create

two new subproblems P1 (by adding x1 ≤ 1) and P2 (by adding x1 ≥ 2) to the original
constraints.

In general, we can take any integer variable x with non-integral value θ and use x ≤ ⌊θ⌋ and
x ≥ ⌈θ⌉ as new constraints.

The optimal integer solution to Pi is the best integer solution found recursively in the
subproblems.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 9 / 35

BRANCH AND BOUND

BRANCH & BOUND: EXAMPLE

How do we continue when the LP relaxation of a subproblem Pi has a non-integral optimal
solution?

We branch, i.e., split Pi into (at least two) new subproblems.

Together, the subproblems must cover all possible integer solutions in Pi.

None of the subproblems must contain the non-integral optimal solution of Pi.

Ideally, they should also be disjoint, i.e., each solution is contained in at most one of the new
problems.

In the example, x0
1 = 5/3; in any integer solution, we must have x1 ≤ 1 or x1 ≥ 2. We create

two new subproblems P1 (by adding x1 ≤ 1) and P2 (by adding x1 ≥ 2) to the original
constraints.

In general, we can take any integer variable x with non-integral value θ and use x ≤ ⌊θ⌋ and
x ≥ ⌈θ⌉ as new constraints.

The optimal integer solution to Pi is the best integer solution found recursively in the
subproblems.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 9 / 35

BRANCH AND BOUND

RESULT OF FIRST BRANCHING

The subproblems form a search tree. The relaxation of the left child problem P1 has an integral
solution. It does not need another branch and becomes a leaf of the search tree (double box).

What if the right child had an objective value ζ ≤ 65?
We could make it a leaf because its bound is not better than a solution we already found!
This is called pruning and important for making Branch & Bound efficient in practice.
Pruning relies on good bounds, i.e., strong LP relaxations. If optimal solutions are much worse
than the bounds we obtain, pruning can only be applied rarely and the number of subproblems
rises.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 10 / 35

BRANCH AND BOUND

RESULT OF FIRST BRANCHING

The subproblems form a search tree. The relaxation of the left child problem P1 has an integral
solution. It does not need another branch and becomes a leaf of the search tree (double box).

What if the right child had an objective value ζ ≤ 65?

We could make it a leaf because its bound is not better than a solution we already found!
This is called pruning and important for making Branch & Bound efficient in practice.
Pruning relies on good bounds, i.e., strong LP relaxations. If optimal solutions are much worse
than the bounds we obtain, pruning can only be applied rarely and the number of subproblems
rises.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 10 / 35

BRANCH AND BOUND

RESULT OF FIRST BRANCHING

The subproblems form a search tree. The relaxation of the left child problem P1 has an integral
solution. It does not need another branch and becomes a leaf of the search tree (double box).

What if the right child had an objective value ζ ≤ 65?
We could make it a leaf because its bound is not better than a solution we already found!

This is called pruning and important for making Branch & Bound efficient in practice.
Pruning relies on good bounds, i.e., strong LP relaxations. If optimal solutions are much worse
than the bounds we obtain, pruning can only be applied rarely and the number of subproblems
rises.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 10 / 35

BRANCH AND BOUND

RESULT OF FIRST BRANCHING

The subproblems form a search tree. The relaxation of the left child problem P1 has an integral
solution. It does not need another branch and becomes a leaf of the search tree (double box).

What if the right child had an objective value ζ ≤ 65?
We could make it a leaf because its bound is not better than a solution we already found!
This is called pruning and important for making Branch & Bound efficient in practice.

Pruning relies on good bounds, i.e., strong LP relaxations. If optimal solutions are much worse
than the bounds we obtain, pruning can only be applied rarely and the number of subproblems
rises.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 10 / 35

BRANCH AND BOUND

RESULT OF FIRST BRANCHING

The subproblems form a search tree. The relaxation of the left child problem P1 has an integral
solution. It does not need another branch and becomes a leaf of the search tree (double box).

What if the right child had an objective value ζ ≤ 65?
We could make it a leaf because its bound is not better than a solution we already found!
This is called pruning and important for making Branch & Bound efficient in practice.
Pruning relies on good bounds, i.e., strong LP relaxations. If optimal solutions are much worse
than the bounds we obtain, pruning can only be applied rarely and the number of subproblems
rises.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 10 / 35

BRANCH AND BOUND

CONTINUING

Exploring a node of the search tree means:

solving the LP relaxation (most expensive step),

deciding whether and how to branch.

We usually explore nodes in a (sort of) depth-first order. This has several advantages:

Memory requirements: DFS needs essentially O(depth).
BFS needs to store a level of the tree (often Ω(nodes)).

Integer solutions are often deep in the tree. We need them to prune; earlier is better. When
aborting the search, e.g., due to a timeout, we want to have a good solution.

Warm Starting: In DFS, the next problem we solve is very often only one added constraint
away from the previously solved one. We can hope that we can use the previous optimal
basis as a starting point for solving the next problem with much fewer iterations than starting
from scratch. Let’s see how that could be done!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 11 / 35

BRANCH AND BOUND

CONTINUING

Exploring a node of the search tree means:

solving the LP relaxation (most expensive step),

deciding whether and how to branch.

We usually explore nodes in a (sort of) depth-first order. This has several advantages:

Memory requirements: DFS needs essentially O(depth).
BFS needs to store a level of the tree (often Ω(nodes)).

Integer solutions are often deep in the tree. We need them to prune; earlier is better. When
aborting the search, e.g., due to a timeout, we want to have a good solution.

Warm Starting: In DFS, the next problem we solve is very often only one added constraint
away from the previously solved one. We can hope that we can use the previous optimal
basis as a starting point for solving the next problem with much fewer iterations than starting
from scratch. Let’s see how that could be done!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 11 / 35

BRANCH AND BOUND

CONTINUING

Exploring a node of the search tree means:

solving the LP relaxation (most expensive step),

deciding whether and how to branch.

We usually explore nodes in a (sort of) depth-first order. This has several advantages:

Memory requirements: DFS needs essentially O(depth).
BFS needs to store a level of the tree (often Ω(nodes)).

Integer solutions are often deep in the tree. We need them to prune; earlier is better. When
aborting the search, e.g., due to a timeout, we want to have a good solution.

Warm Starting: In DFS, the next problem we solve is very often only one added constraint
away from the previously solved one. We can hope that we can use the previous optimal
basis as a starting point for solving the next problem with much fewer iterations than starting
from scratch. Let’s see how that could be done!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 11 / 35

BRANCH AND BOUND

CONTINUING

Exploring a node of the search tree means:

solving the LP relaxation (most expensive step),

deciding whether and how to branch.

We usually explore nodes in a (sort of) depth-first order. This has several advantages:

Memory requirements: DFS needs essentially O(depth).
BFS needs to store a level of the tree (often Ω(nodes)).

Integer solutions are often deep in the tree. We need them to prune; earlier is better. When
aborting the search, e.g., due to a timeout, we want to have a good solution.

Warm Starting: In DFS, the next problem we solve is very often only one added constraint
away from the previously solved one. We can hope that we can use the previous optimal
basis as a starting point for solving the next problem with much fewer iterations than starting
from scratch. Let’s see how that could be done!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 11 / 35

BRANCH AND BOUND

DUAL SIMPLEX WARM STARTING

Consider our original problem P0 and its related problem P2 (P0 with x1 ≥ 2).
Optimal dictionary for P0:

ζ =
205

3
−

5

3
w1 −

1

3
w2

x1 =
5

3
−

1

3
w1 +

7

3
w2

x2 =
10

3
+

1

3
w1 −

10

3
w2

What happens when we add x1 ≥ 2?

We get a slack variable g1 = x1 − 2 = −1/3 − w1/3 + 7w2/3.
We can add that variable as basic. That makes the new dictionary primally infeasible. It is dually
feasible however, so we can use dual Simplex.

ζ =
205

3
−

5

3
w1 −

1

3
w2

x1 =
5

3
−

1

3
w1 +

7

3
w2

x2 =
10

3
+

1

3
w1 −

10

3
w2

g1 = −
1

3
−

1

3
w1 +

7

3
w2

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 12 / 35

BRANCH AND BOUND

DUAL SIMPLEX WARM STARTING

Consider our original problem P0 and its related problem P2 (P0 with x1 ≥ 2).
Optimal dictionary for P0:

ζ =
205

3
−

5

3
w1 −

1

3
w2

x1 =
5

3
−

1

3
w1 +

7

3
w2

x2 =
10

3
+

1

3
w1 −

10

3
w2

What happens when we add x1 ≥ 2? We get a slack variable g1 = x1 − 2 = −1/3 − w1/3 + 7w2/3.

We can add that variable as basic. That makes the new dictionary primally infeasible. It is dually
feasible however, so we can use dual Simplex.

ζ =
205

3
−

5

3
w1 −

1

3
w2

x1 =
5

3
−

1

3
w1 +

7

3
w2

x2 =
10

3
+

1

3
w1 −

10

3
w2

g1 = −
1

3
−

1

3
w1 +

7

3
w2

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 12 / 35

BRANCH AND BOUND

DUAL SIMPLEX WARM STARTING

Consider our original problem P0 and its related problem P2 (P0 with x1 ≥ 2).
Optimal dictionary for P0:

ζ =
205

3
−

5

3
w1 −

1

3
w2

x1 =
5

3
−

1

3
w1 +

7

3
w2

x2 =
10

3
+

1

3
w1 −

10

3
w2

What happens when we add x1 ≥ 2? We get a slack variable g1 = x1 − 2 = −1/3 − w1/3 + 7w2/3.
We can add that variable as basic. That makes the new dictionary primally infeasible. It is dually
feasible however, so we can use dual Simplex.

ζ =
205

3
−

5

3
w1 −

1

3
w2

x1 =
5

3
−

1

3
w1 +

7

3
w2

x2 =
10

3
+

1

3
w1 −

10

3
w2

g1 = −
1

3
−

1

3
w1 +

7

3
w2

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 12 / 35

BRANCH AND BOUND

CONTINUING OUR EXAMPLE

After exploring P3:

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 13 / 35

BRANCH AND BOUND

CONTINUING OUR EXAMPLE

After exploring P4, P5:

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 14 / 35

BRANCH AND BOUND

CONTINUING OUR EXAMPLE

After exploring P6, P7, P8:

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 15 / 35

BRANCH AND BOUND

FINAL SEARCH TREE

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 16 / 35

BRANCH AND BOUND

BRANCH & BOUND ALGORITHM

We maintain a stack (or (priority) queue) Q of unexplored search nodes, and a best current
solution B with value vB and assume maximization (minimization is analogous).

Initialize Q with P0, the original problem.

Initialize B, vB with the best known solution (or set vB = −∞, B = ⊥).
While Q is non-empty:

Take the next Pi out of Q.
Compute the optimal solution x

i with value ζ
i for the LP relaxation of Pi.

If Pi is infeasible or ζi ≤ vB , continue with next Pi.
If xi is integral, update B = x

i
, vB = ζ

i, and continue with next Pi.
Select non-integral variable x with value θ from x

i.
Add Pi ∪ {x ≤ ⌊θ⌋} and Pi ∪ {x ≥ ⌈θ⌉} to Q.

If B = ⊥, report infeasibility. Otherwise, return optimal solution B.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 17 / 35

BRANCH AND BOUND

BRANCH & BOUND ALGORITHM

We maintain a stack (or (priority) queue) Q of unexplored search nodes, and a best current
solution B with value vB and assume maximization (minimization is analogous).

Initialize Q with P0, the original problem.

Initialize B, vB with the best known solution (or set vB = −∞, B = ⊥).
While Q is non-empty:

Take the next Pi out of Q.
Compute the optimal solution x

i with value ζ
i for the LP relaxation of Pi.

If Pi is infeasible or ζi ≤ vB , continue with next Pi.
If xi is integral, update B = x

i
, vB = ζ

i, and continue with next Pi.
Select non-integral variable x with value θ from x

i.
Add Pi ∪ {x ≤ ⌊θ⌋} and Pi ∪ {x ≥ ⌈θ⌉} to Q.

If B = ⊥, report infeasibility. Otherwise, return optimal solution B.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 17 / 35

BRANCH AND BOUND

BRANCH & BOUND ALGORITHM

We maintain a stack (or (priority) queue) Q of unexplored search nodes, and a best current
solution B with value vB and assume maximization (minimization is analogous).

Initialize Q with P0, the original problem.

Initialize B, vB with the best known solution (or set vB = −∞, B = ⊥).

While Q is non-empty:

Take the next Pi out of Q.
Compute the optimal solution x

i with value ζ
i for the LP relaxation of Pi.

If Pi is infeasible or ζi ≤ vB , continue with next Pi.
If xi is integral, update B = x

i
, vB = ζ

i, and continue with next Pi.
Select non-integral variable x with value θ from x

i.
Add Pi ∪ {x ≤ ⌊θ⌋} and Pi ∪ {x ≥ ⌈θ⌉} to Q.

If B = ⊥, report infeasibility. Otherwise, return optimal solution B.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 17 / 35

BRANCH AND BOUND

BRANCH & BOUND ALGORITHM

We maintain a stack (or (priority) queue) Q of unexplored search nodes, and a best current
solution B with value vB and assume maximization (minimization is analogous).

Initialize Q with P0, the original problem.

Initialize B, vB with the best known solution (or set vB = −∞, B = ⊥).
While Q is non-empty:

Take the next Pi out of Q.
Compute the optimal solution x

i with value ζ
i for the LP relaxation of Pi.

If Pi is infeasible or ζi ≤ vB , continue with next Pi.
If xi is integral, update B = x

i
, vB = ζ

i, and continue with next Pi.
Select non-integral variable x with value θ from x

i.
Add Pi ∪ {x ≤ ⌊θ⌋} and Pi ∪ {x ≥ ⌈θ⌉} to Q.

If B = ⊥, report infeasibility. Otherwise, return optimal solution B.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 17 / 35

BRANCH AND BOUND

BRANCH & BOUND ALGORITHM

We maintain a stack (or (priority) queue) Q of unexplored search nodes, and a best current
solution B with value vB and assume maximization (minimization is analogous).

Initialize Q with P0, the original problem.

Initialize B, vB with the best known solution (or set vB = −∞, B = ⊥).
While Q is non-empty:

Take the next Pi out of Q.

Compute the optimal solution x
i with value ζ

i for the LP relaxation of Pi.
If Pi is infeasible or ζi ≤ vB , continue with next Pi.
If xi is integral, update B = x

i
, vB = ζ

i, and continue with next Pi.
Select non-integral variable x with value θ from x

i.
Add Pi ∪ {x ≤ ⌊θ⌋} and Pi ∪ {x ≥ ⌈θ⌉} to Q.

If B = ⊥, report infeasibility. Otherwise, return optimal solution B.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 17 / 35

BRANCH AND BOUND

BRANCH & BOUND ALGORITHM

We maintain a stack (or (priority) queue) Q of unexplored search nodes, and a best current
solution B with value vB and assume maximization (minimization is analogous).

Initialize Q with P0, the original problem.

Initialize B, vB with the best known solution (or set vB = −∞, B = ⊥).
While Q is non-empty:

Take the next Pi out of Q.
Compute the optimal solution x

i with value ζ
i for the LP relaxation of Pi.

If Pi is infeasible or ζi ≤ vB , continue with next Pi.
If xi is integral, update B = x

i
, vB = ζ

i, and continue with next Pi.
Select non-integral variable x with value θ from x

i.
Add Pi ∪ {x ≤ ⌊θ⌋} and Pi ∪ {x ≥ ⌈θ⌉} to Q.

If B = ⊥, report infeasibility. Otherwise, return optimal solution B.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 17 / 35

BRANCH AND BOUND

BRANCH & BOUND ALGORITHM

We maintain a stack (or (priority) queue) Q of unexplored search nodes, and a best current
solution B with value vB and assume maximization (minimization is analogous).

Initialize Q with P0, the original problem.

Initialize B, vB with the best known solution (or set vB = −∞, B = ⊥).
While Q is non-empty:

Take the next Pi out of Q.
Compute the optimal solution x

i with value ζ
i for the LP relaxation of Pi.

If Pi is infeasible or ζi ≤ vB , continue with next Pi.

If xi is integral, update B = x
i
, vB = ζ

i, and continue with next Pi.
Select non-integral variable x with value θ from x

i.
Add Pi ∪ {x ≤ ⌊θ⌋} and Pi ∪ {x ≥ ⌈θ⌉} to Q.

If B = ⊥, report infeasibility. Otherwise, return optimal solution B.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 17 / 35

BRANCH AND BOUND

BRANCH & BOUND ALGORITHM

We maintain a stack (or (priority) queue) Q of unexplored search nodes, and a best current
solution B with value vB and assume maximization (minimization is analogous).

Initialize Q with P0, the original problem.

Initialize B, vB with the best known solution (or set vB = −∞, B = ⊥).
While Q is non-empty:

Take the next Pi out of Q.
Compute the optimal solution x

i with value ζ
i for the LP relaxation of Pi.

If Pi is infeasible or ζi ≤ vB , continue with next Pi.
If xi is integral, update B = x

i
, vB = ζ

i, and continue with next Pi.

Select non-integral variable x with value θ from x
i.

Add Pi ∪ {x ≤ ⌊θ⌋} and Pi ∪ {x ≥ ⌈θ⌉} to Q.

If B = ⊥, report infeasibility. Otherwise, return optimal solution B.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 17 / 35

BRANCH AND BOUND

BRANCH & BOUND ALGORITHM

We maintain a stack (or (priority) queue) Q of unexplored search nodes, and a best current
solution B with value vB and assume maximization (minimization is analogous).

Initialize Q with P0, the original problem.

Initialize B, vB with the best known solution (or set vB = −∞, B = ⊥).
While Q is non-empty:

Take the next Pi out of Q.
Compute the optimal solution x

i with value ζ
i for the LP relaxation of Pi.

If Pi is infeasible or ζi ≤ vB , continue with next Pi.
If xi is integral, update B = x

i
, vB = ζ

i, and continue with next Pi.
Select non-integral variable x with value θ from x

i.

Add Pi ∪ {x ≤ ⌊θ⌋} and Pi ∪ {x ≥ ⌈θ⌉} to Q.

If B = ⊥, report infeasibility. Otherwise, return optimal solution B.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 17 / 35

BRANCH AND BOUND

BRANCH & BOUND ALGORITHM

We maintain a stack (or (priority) queue) Q of unexplored search nodes, and a best current
solution B with value vB and assume maximization (minimization is analogous).

Initialize Q with P0, the original problem.

Initialize B, vB with the best known solution (or set vB = −∞, B = ⊥).
While Q is non-empty:

Take the next Pi out of Q.
Compute the optimal solution x

i with value ζ
i for the LP relaxation of Pi.

If Pi is infeasible or ζi ≤ vB , continue with next Pi.
If xi is integral, update B = x

i
, vB = ζ

i, and continue with next Pi.
Select non-integral variable x with value θ from x

i.
Add Pi ∪ {x ≤ ⌊θ⌋} and Pi ∪ {x ≥ ⌈θ⌉} to Q.

If B = ⊥, report infeasibility. Otherwise, return optimal solution B.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 17 / 35

BRANCH AND BOUND

BRANCH & BOUND ALGORITHM

We maintain a stack (or (priority) queue) Q of unexplored search nodes, and a best current
solution B with value vB and assume maximization (minimization is analogous).

Initialize Q with P0, the original problem.

Initialize B, vB with the best known solution (or set vB = −∞, B = ⊥).
While Q is non-empty:

Take the next Pi out of Q.
Compute the optimal solution x

i with value ζ
i for the LP relaxation of Pi.

If Pi is infeasible or ζi ≤ vB , continue with next Pi.
If xi is integral, update B = x

i
, vB = ζ

i, and continue with next Pi.
Select non-integral variable x with value θ from x

i.
Add Pi ∪ {x ≤ ⌊θ⌋} and Pi ∪ {x ≥ ⌈θ⌉} to Q.

If B = ⊥, report infeasibility. Otherwise, return optimal solution B.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 17 / 35

BRANCH AND CUT

MOTIVATION

DEFINITION

BRANCH AND BOUND

BRANCH AND CUT

SOME CUTTING PLANE TEMPLATES

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 18 / 35

BRANCH AND CUT

CUTTING PLANES

There are several ways to extend Branch & Bound, usually with the goal of making it faster, at
least for many interesting and practically relevant NP-hard problems.

One extremely important extension, implemented by all serious (M)IP solvers, is the addition of
cutting planes.

The idea is to analyze the solutions of linear relaxations, and to dynamically identify certain types
of linear constraints that

are satisfied by all integral solutions, but

are not satisfied by the solution to the current linear relaxation.

Such inequalities can be dynamically added to and removed from the problem (without changing
the set of integral solutions). They are called cutting planes or simply cuts. They can often
drastically improve the quality of the bounds given by linear relaxations, help prune nodes of the
search tree and identify integral solutions earlier.

Cuts are usually found by heuristic procedures. Modern solvers already contain a set of such
procedures that have proven useful for many practical problems. Implementing such procedures
efficiently and balancing the additional effort put into finding cuts against the runtime benefits
they provide is an important part of engineering a good solver.

Furthermore, many problems allow the implementation of problem-specific cuts that are not part
of general-purpose solvers. These often require additional knowledge about the problem or are
too expensive or too specialized to be included in general-purpose solvers.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 19 / 35

BRANCH AND CUT

CUTTING PLANES

There are several ways to extend Branch & Bound, usually with the goal of making it faster, at
least for many interesting and practically relevant NP-hard problems.
One extremely important extension, implemented by all serious (M)IP solvers, is the addition of
cutting planes.

The idea is to analyze the solutions of linear relaxations, and to dynamically identify certain types
of linear constraints that

are satisfied by all integral solutions, but

are not satisfied by the solution to the current linear relaxation.

Such inequalities can be dynamically added to and removed from the problem (without changing
the set of integral solutions). They are called cutting planes or simply cuts. They can often
drastically improve the quality of the bounds given by linear relaxations, help prune nodes of the
search tree and identify integral solutions earlier.

Cuts are usually found by heuristic procedures. Modern solvers already contain a set of such
procedures that have proven useful for many practical problems. Implementing such procedures
efficiently and balancing the additional effort put into finding cuts against the runtime benefits
they provide is an important part of engineering a good solver.

Furthermore, many problems allow the implementation of problem-specific cuts that are not part
of general-purpose solvers. These often require additional knowledge about the problem or are
too expensive or too specialized to be included in general-purpose solvers.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 19 / 35

BRANCH AND CUT

CUTTING PLANES

There are several ways to extend Branch & Bound, usually with the goal of making it faster, at
least for many interesting and practically relevant NP-hard problems.
One extremely important extension, implemented by all serious (M)IP solvers, is the addition of
cutting planes.

The idea is to analyze the solutions of linear relaxations, and to dynamically identify certain types
of linear constraints that

are satisfied by all integral solutions, but

are not satisfied by the solution to the current linear relaxation.

Such inequalities can be dynamically added to and removed from the problem (without changing
the set of integral solutions). They are called cutting planes or simply cuts. They can often
drastically improve the quality of the bounds given by linear relaxations, help prune nodes of the
search tree and identify integral solutions earlier.

Cuts are usually found by heuristic procedures. Modern solvers already contain a set of such
procedures that have proven useful for many practical problems. Implementing such procedures
efficiently and balancing the additional effort put into finding cuts against the runtime benefits
they provide is an important part of engineering a good solver.

Furthermore, many problems allow the implementation of problem-specific cuts that are not part
of general-purpose solvers. These often require additional knowledge about the problem or are
too expensive or too specialized to be included in general-purpose solvers.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 19 / 35

BRANCH AND CUT

CUTTING PLANES

There are several ways to extend Branch & Bound, usually with the goal of making it faster, at
least for many interesting and practically relevant NP-hard problems.
One extremely important extension, implemented by all serious (M)IP solvers, is the addition of
cutting planes.

The idea is to analyze the solutions of linear relaxations, and to dynamically identify certain types
of linear constraints that

are satisfied by all integral solutions, but

are not satisfied by the solution to the current linear relaxation.

Such inequalities can be dynamically added to and removed from the problem (without changing
the set of integral solutions). They are called cutting planes or simply cuts. They can often
drastically improve the quality of the bounds given by linear relaxations, help prune nodes of the
search tree and identify integral solutions earlier.

Cuts are usually found by heuristic procedures. Modern solvers already contain a set of such
procedures that have proven useful for many practical problems. Implementing such procedures
efficiently and balancing the additional effort put into finding cuts against the runtime benefits
they provide is an important part of engineering a good solver.

Furthermore, many problems allow the implementation of problem-specific cuts that are not part
of general-purpose solvers. These often require additional knowledge about the problem or are
too expensive or too specialized to be included in general-purpose solvers.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 19 / 35

BRANCH AND CUT

CUTTING PLANES

There are several ways to extend Branch & Bound, usually with the goal of making it faster, at
least for many interesting and practically relevant NP-hard problems.
One extremely important extension, implemented by all serious (M)IP solvers, is the addition of
cutting planes.

The idea is to analyze the solutions of linear relaxations, and to dynamically identify certain types
of linear constraints that

are satisfied by all integral solutions, but

are not satisfied by the solution to the current linear relaxation.

Such inequalities can be dynamically added to and removed from the problem (without changing
the set of integral solutions). They are called cutting planes or simply cuts. They can often
drastically improve the quality of the bounds given by linear relaxations, help prune nodes of the
search tree and identify integral solutions earlier.

Cuts are usually found by heuristic procedures. Modern solvers already contain a set of such
procedures that have proven useful for many practical problems. Implementing such procedures
efficiently and balancing the additional effort put into finding cuts against the runtime benefits
they provide is an important part of engineering a good solver.

Furthermore, many problems allow the implementation of problem-specific cuts that are not part
of general-purpose solvers. These often require additional knowledge about the problem or are
too expensive or too specialized to be included in general-purpose solvers.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 19 / 35

BRANCH AND CUT

CUTTING PLANES

There are several ways to extend Branch & Bound, usually with the goal of making it faster, at
least for many interesting and practically relevant NP-hard problems.
One extremely important extension, implemented by all serious (M)IP solvers, is the addition of
cutting planes.

The idea is to analyze the solutions of linear relaxations, and to dynamically identify certain types
of linear constraints that

are satisfied by all integral solutions, but

are not satisfied by the solution to the current linear relaxation.

Such inequalities can be dynamically added to and removed from the problem (without changing
the set of integral solutions). They are called cutting planes or simply cuts. They can often
drastically improve the quality of the bounds given by linear relaxations, help prune nodes of the
search tree and identify integral solutions earlier.

Cuts are usually found by heuristic procedures. Modern solvers already contain a set of such
procedures that have proven useful for many practical problems. Implementing such procedures
efficiently and balancing the additional effort put into finding cuts against the runtime benefits
they provide is an important part of engineering a good solver.

Furthermore, many problems allow the implementation of problem-specific cuts that are not part
of general-purpose solvers. These often require additional knowledge about the problem or are
too expensive or too specialized to be included in general-purpose solvers.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 19 / 35

BRANCH AND CUT

CUTTING PLANES

There are several ways to extend Branch & Bound, usually with the goal of making it faster, at
least for many interesting and practically relevant NP-hard problems.
One extremely important extension, implemented by all serious (M)IP solvers, is the addition of
cutting planes.

The idea is to analyze the solutions of linear relaxations, and to dynamically identify certain types
of linear constraints that

are satisfied by all integral solutions, but

are not satisfied by the solution to the current linear relaxation.

Such inequalities can be dynamically added to and removed from the problem (without changing
the set of integral solutions). They are called cutting planes or simply cuts. They can often
drastically improve the quality of the bounds given by linear relaxations, help prune nodes of the
search tree and identify integral solutions earlier.

Cuts are usually found by heuristic procedures. Modern solvers already contain a set of such
procedures that have proven useful for many practical problems. Implementing such procedures
efficiently and balancing the additional effort put into finding cuts against the runtime benefits
they provide is an important part of engineering a good solver.

Furthermore, many problems allow the implementation of problem-specific cuts that are not part
of general-purpose solvers. These often require additional knowledge about the problem or are
too expensive or too specialized to be included in general-purpose solvers.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 19 / 35

BRANCH AND CUT

CUTTING PLANES

There are several ways to extend Branch & Bound, usually with the goal of making it faster, at
least for many interesting and practically relevant NP-hard problems.
One extremely important extension, implemented by all serious (M)IP solvers, is the addition of
cutting planes.

The idea is to analyze the solutions of linear relaxations, and to dynamically identify certain types
of linear constraints that

are satisfied by all integral solutions, but

are not satisfied by the solution to the current linear relaxation.

Such inequalities can be dynamically added to and removed from the problem (without changing
the set of integral solutions). They are called cutting planes or simply cuts. They can often
drastically improve the quality of the bounds given by linear relaxations, help prune nodes of the
search tree and identify integral solutions earlier.

Cuts are usually found by heuristic procedures. Modern solvers already contain a set of such
procedures that have proven useful for many practical problems. Implementing such procedures
efficiently and balancing the additional effort put into finding cuts against the runtime benefits
they provide is an important part of engineering a good solver.

Furthermore, many problems allow the implementation of problem-specific cuts that are not part
of general-purpose solvers. These often require additional knowledge about the problem or are
too expensive or too specialized to be included in general-purpose solvers.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 19 / 35

BRANCH AND CUT

GOMORY CUTS
A very important family of cuts are the so-called Gomory cuts.
Consider an (optimal) basic solution to a linear relaxation. In dictionary form, we have m
equations of the form (which are valid constraints)

xi = x∗
i −

∑
j∈N

āijxj ⇔ x∗
i = xi +

∑
j∈N

āijxj

Consider the case where all xj with non-zero coefficients are integer variables. Is that case rare?
No! Many slack variables are integral, e.g., if all coefficients in their constraint are integral.
Split into integral and fractional part:

⌊x∗
i ⌋+ (x∗

i − ⌊x∗
i ⌋) = xi +

∑
j∈N

⌊āij⌋xj +
∑
j∈N

(āij − ⌊āij⌋)xj

Separate integral (left-hand side) and fractional (right-hand side):

xi +
∑
j∈N

⌊āij⌋xj − ⌊x∗
i ⌋︸ ︷︷ ︸

∈Z

= (x∗
i − ⌊x∗

i ⌋)︸ ︷︷ ︸
<1

−
∑
j∈N

(āij − ⌊āij⌋)xj︸ ︷︷ ︸
≥0 for x≥0

Therefore, xi +
∑
j∈N

⌊āij⌋xj −⌊x∗
i ⌋ ≤ 0 ⇔ xi +

∑
j∈N

⌊āij⌋xj ≤ ⌊x∗
i ⌋ holds for all integer solutions.

This constraint is always violated in the current basic solution if x∗
i /∈ Z. Why?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 20 / 35

BRANCH AND CUT

GOMORY CUTS
A very important family of cuts are the so-called Gomory cuts.
Consider an (optimal) basic solution to a linear relaxation. In dictionary form, we have m
equations of the form (which are valid constraints)

xi = x∗
i −

∑
j∈N

āijxj ⇔ x∗
i = xi +

∑
j∈N

āijxj

Consider the case where all xj with non-zero coefficients are integer variables. Is that case rare?

No! Many slack variables are integral, e.g., if all coefficients in their constraint are integral.
Split into integral and fractional part:

⌊x∗
i ⌋+ (x∗

i − ⌊x∗
i ⌋) = xi +

∑
j∈N

⌊āij⌋xj +
∑
j∈N

(āij − ⌊āij⌋)xj

Separate integral (left-hand side) and fractional (right-hand side):

xi +
∑
j∈N

⌊āij⌋xj − ⌊x∗
i ⌋︸ ︷︷ ︸

∈Z

= (x∗
i − ⌊x∗

i ⌋)︸ ︷︷ ︸
<1

−
∑
j∈N

(āij − ⌊āij⌋)xj︸ ︷︷ ︸
≥0 for x≥0

Therefore, xi +
∑
j∈N

⌊āij⌋xj −⌊x∗
i ⌋ ≤ 0 ⇔ xi +

∑
j∈N

⌊āij⌋xj ≤ ⌊x∗
i ⌋ holds for all integer solutions.

This constraint is always violated in the current basic solution if x∗
i /∈ Z. Why?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 20 / 35

BRANCH AND CUT

GOMORY CUTS
A very important family of cuts are the so-called Gomory cuts.
Consider an (optimal) basic solution to a linear relaxation. In dictionary form, we have m
equations of the form (which are valid constraints)

xi = x∗
i −

∑
j∈N

āijxj ⇔ x∗
i = xi +

∑
j∈N

āijxj

Consider the case where all xj with non-zero coefficients are integer variables. Is that case rare?
No! Many slack variables are integral, e.g., if all coefficients in their constraint are integral.

Split into integral and fractional part:

⌊x∗
i ⌋+ (x∗

i − ⌊x∗
i ⌋) = xi +

∑
j∈N

⌊āij⌋xj +
∑
j∈N

(āij − ⌊āij⌋)xj

Separate integral (left-hand side) and fractional (right-hand side):

xi +
∑
j∈N

⌊āij⌋xj − ⌊x∗
i ⌋︸ ︷︷ ︸

∈Z

= (x∗
i − ⌊x∗

i ⌋)︸ ︷︷ ︸
<1

−
∑
j∈N

(āij − ⌊āij⌋)xj︸ ︷︷ ︸
≥0 for x≥0

Therefore, xi +
∑
j∈N

⌊āij⌋xj −⌊x∗
i ⌋ ≤ 0 ⇔ xi +

∑
j∈N

⌊āij⌋xj ≤ ⌊x∗
i ⌋ holds for all integer solutions.

This constraint is always violated in the current basic solution if x∗
i /∈ Z. Why?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 20 / 35

BRANCH AND CUT

GOMORY CUTS
A very important family of cuts are the so-called Gomory cuts.
Consider an (optimal) basic solution to a linear relaxation. In dictionary form, we have m
equations of the form (which are valid constraints)

xi = x∗
i −

∑
j∈N

āijxj ⇔ x∗
i = xi +

∑
j∈N

āijxj

Consider the case where all xj with non-zero coefficients are integer variables. Is that case rare?
No! Many slack variables are integral, e.g., if all coefficients in their constraint are integral.
Split into integral and fractional part:

⌊x∗
i ⌋+ (x∗

i − ⌊x∗
i ⌋) = xi +

∑
j∈N

⌊āij⌋xj +
∑
j∈N

(āij − ⌊āij⌋)xj

Separate integral (left-hand side) and fractional (right-hand side):

xi +
∑
j∈N

⌊āij⌋xj − ⌊x∗
i ⌋︸ ︷︷ ︸

∈Z

= (x∗
i − ⌊x∗

i ⌋)︸ ︷︷ ︸
<1

−
∑
j∈N

(āij − ⌊āij⌋)xj︸ ︷︷ ︸
≥0 for x≥0

Therefore, xi +
∑
j∈N

⌊āij⌋xj −⌊x∗
i ⌋ ≤ 0 ⇔ xi +

∑
j∈N

⌊āij⌋xj ≤ ⌊x∗
i ⌋ holds for all integer solutions.

This constraint is always violated in the current basic solution if x∗
i /∈ Z. Why?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 20 / 35

BRANCH AND CUT

GOMORY CUTS
A very important family of cuts are the so-called Gomory cuts.
Consider an (optimal) basic solution to a linear relaxation. In dictionary form, we have m
equations of the form (which are valid constraints)

xi = x∗
i −

∑
j∈N

āijxj ⇔ x∗
i = xi +

∑
j∈N

āijxj

Consider the case where all xj with non-zero coefficients are integer variables. Is that case rare?
No! Many slack variables are integral, e.g., if all coefficients in their constraint are integral.
Split into integral and fractional part:

⌊x∗
i ⌋+ (x∗

i − ⌊x∗
i ⌋) = xi +

∑
j∈N

⌊āij⌋xj +
∑
j∈N

(āij − ⌊āij⌋)xj

Separate integral (left-hand side) and fractional (right-hand side):

xi +
∑
j∈N

⌊āij⌋xj − ⌊x∗
i ⌋︸ ︷︷ ︸

∈Z

= (x∗
i − ⌊x∗

i ⌋)︸ ︷︷ ︸
<1

−
∑
j∈N

(āij − ⌊āij⌋)xj︸ ︷︷ ︸
≥0 for x≥0

Therefore, xi +
∑
j∈N

⌊āij⌋xj −⌊x∗
i ⌋ ≤ 0 ⇔ xi +

∑
j∈N

⌊āij⌋xj ≤ ⌊x∗
i ⌋ holds for all integer solutions.

This constraint is always violated in the current basic solution if x∗
i /∈ Z. Why?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 20 / 35

BRANCH AND CUT

GOMORY CUTS
A very important family of cuts are the so-called Gomory cuts.
Consider an (optimal) basic solution to a linear relaxation. In dictionary form, we have m
equations of the form (which are valid constraints)

xi = x∗
i −

∑
j∈N

āijxj ⇔ x∗
i = xi +

∑
j∈N

āijxj

Consider the case where all xj with non-zero coefficients are integer variables. Is that case rare?
No! Many slack variables are integral, e.g., if all coefficients in their constraint are integral.
Split into integral and fractional part:

⌊x∗
i ⌋+ (x∗

i − ⌊x∗
i ⌋) = xi +

∑
j∈N

⌊āij⌋xj +
∑
j∈N

(āij − ⌊āij⌋)xj

Separate integral (left-hand side) and fractional (right-hand side):

xi +
∑
j∈N

⌊āij⌋xj − ⌊x∗
i ⌋︸ ︷︷ ︸

∈Z

= (x∗
i − ⌊x∗

i ⌋)︸ ︷︷ ︸
<1

−
∑
j∈N

(āij − ⌊āij⌋)xj︸ ︷︷ ︸
≥0 for x≥0

Therefore, xi +
∑
j∈N

⌊āij⌋xj −⌊x∗
i ⌋ ≤ 0 ⇔ xi +

∑
j∈N

⌊āij⌋xj ≤ ⌊x∗
i ⌋ holds for all integer solutions.

This constraint is always violated in the current basic solution if x∗
i /∈ Z. Why?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 20 / 35

BRANCH AND CUT

GOMORY CUTS
A very important family of cuts are the so-called Gomory cuts.
Consider an (optimal) basic solution to a linear relaxation. In dictionary form, we have m
equations of the form (which are valid constraints)

xi = x∗
i −

∑
j∈N

āijxj ⇔ x∗
i = xi +

∑
j∈N

āijxj

Consider the case where all xj with non-zero coefficients are integer variables. Is that case rare?
No! Many slack variables are integral, e.g., if all coefficients in their constraint are integral.
Split into integral and fractional part:

⌊x∗
i ⌋+ (x∗

i − ⌊x∗
i ⌋) = xi +

∑
j∈N

⌊āij⌋xj +
∑
j∈N

(āij − ⌊āij⌋)xj

Separate integral (left-hand side) and fractional (right-hand side):

xi +
∑
j∈N

⌊āij⌋xj − ⌊x∗
i ⌋︸ ︷︷ ︸

∈Z

= (x∗
i − ⌊x∗

i ⌋)︸ ︷︷ ︸
<1

−
∑
j∈N

(āij − ⌊āij⌋)xj︸ ︷︷ ︸
≥0 for x≥0

Therefore, xi +
∑
j∈N

⌊āij⌋xj −⌊x∗
i ⌋ ≤ 0 ⇔ xi +

∑
j∈N

⌊āij⌋xj ≤ ⌊x∗
i ⌋ holds for all integer solutions.

This constraint is always violated in the current basic solution if x∗
i /∈ Z. Why?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 20 / 35

BRANCH AND CUT

GOMORY CUT EXAMPLE

With a given optimal dictionary, equivalent cuts (to the general scheme introduced before) can be
found like in the following example.

ζ =
179

3
−

7

27
w1 −

73

54
w2

x1 =
11

3
−

5

54
w1 −

1

54
w2

x2 =
7

3
+

1

27
w1 +

5

54
w2

w3 = 13−
5

9
w1 −

8

9
w2

x1 is not integral. Reorganize equation so all variables are on one side:

x1 +
5

54
w1 +

1

54
w2 =

11

3
.

Rounding the left-hand side coefficients makes the left-hand side smaller and integral:

x1 + 0w1 + 0w2 ≤ ⌊11/3⌋ = 3 ⇒ x1 ≤ 3.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 21 / 35

BRANCH AND CUT

GOMORY CUT EXAMPLE

With a given optimal dictionary, equivalent cuts (to the general scheme introduced before) can be
found like in the following example.

ζ =
179

3
−

7

27
w1 −

73

54
w2

x1 =
11

3
−

5

54
w1 −

1

54
w2

x2 =
7

3
+

1

27
w1 +

5

54
w2

w3 = 13−
5

9
w1 −

8

9
w2

x1 is not integral. Reorganize equation so all variables are on one side:

x1 +
5

54
w1 +

1

54
w2 =

11

3
.

Rounding the left-hand side coefficients makes the left-hand side smaller and integral:

x1 + 0w1 + 0w2 ≤ ⌊11/3⌋ = 3 ⇒ x1 ≤ 3.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 21 / 35

BRANCH AND CUT

GOMORY CUT EXAMPLE

With a given optimal dictionary, equivalent cuts (to the general scheme introduced before) can be
found like in the following example.

ζ =
179

3
−

7

27
w1 −

73

54
w2

x1 =
11

3
−

5

54
w1 −

1

54
w2

x2 =
7

3
+

1

27
w1 +

5

54
w2

w3 = 13−
5

9
w1 −

8

9
w2

x1 is not integral. Reorganize equation so all variables are on one side:

x1 +
5

54
w1 +

1

54
w2 =

11

3
.

Rounding the left-hand side coefficients makes the left-hand side smaller and integral:

x1 + 0w1 + 0w2 ≤ ⌊11/3⌋ = 3 ⇒ x1 ≤ 3.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 21 / 35

BRANCH AND CUT

GOMORY CUT EXAMPLE CONTINUED

ζ =
179

3
−

7

27
w1 −

73

54
w2

x1 =
11

3
−

5

54
w1 −

1

54
w2

x2 =
7

3
+

1

27
w1 +

5

54
w2

w3 = 13 −
5

9
w1 −

8

9
w2

Adding x1 ≤ 3 adds a (basic, integral!) slack variable w4 = 3− x1 = 3−
11

3
+

5

54
w1 +

1

54
w2:

ζ =
179

3
−

7

27
w1 −

73

54
w2

x1 =
11

3
−

5

54
w1 −

1

54
w2

x2 =
7

3
+

1

27
w1 +

5

54
w2

w3 = 13 −
5

9
w1 −

8

9
w2

w4 = −
2

3
+

5

54
w1 +

1

54
w2

We can continue with dual Simplex.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 22 / 35

BRANCH AND CUT

GOMORY CUT EXAMPLE CONTINUED

ζ =
179

3
−

7

27
w1 −

73

54
w2

x1 =
11

3
−

5

54
w1 −

1

54
w2

x2 =
7

3
+

1

27
w1 +

5

54
w2

w3 = 13 −
5

9
w1 −

8

9
w2

Adding x1 ≤ 3 adds a (basic, integral!) slack variable w4 = 3− x1 = 3−
11

3
+

5

54
w1 +

1

54
w2:

ζ =
179

3
−

7

27
w1 −

73

54
w2

x1 =
11

3
−

5

54
w1 −

1

54
w2

x2 =
7

3
+

1

27
w1 +

5

54
w2

w3 = 13 −
5

9
w1 −

8

9
w2

w4 = −
2

3
+

5

54
w1 +

1

54
w2

We can continue with dual Simplex.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 22 / 35

BRANCH AND CUT

GOMORY CUT EXAMPLE CONTINUED

ζ =
179

3
−

7

27
w1 −

73

54
w2

x1 =
11

3
−

5

54
w1 −

1

54
w2

x2 =
7

3
+

1

27
w1 +

5

54
w2

w3 = 13 −
5

9
w1 −

8

9
w2

Adding x1 ≤ 3 adds a (basic, integral!) slack variable w4 = 3− x1 = 3−
11

3
+

5

54
w1 +

1

54
w2:

ζ =
179

3
−

7

27
w1 −

73

54
w2

x1 =
11

3
−

5

54
w1 −

1

54
w2

x2 =
7

3
+

1

27
w1 +

5

54
w2

w3 = 13 −
5

9
w1 −

8

9
w2

w4 = −
2

3
+

5

54
w1 +

1

54
w2

We can continue with dual Simplex.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 22 / 35

BRANCH AND CUT

GOMORY CUT EXAMPLE CONTINUED

ζ =
179

3
−

7

27
w1 −

73

54
w2

x1 =
11

3
−

5

54
w1 −

1

54
w2

x2 =
7

3
+

1

27
w1 +

5

54
w2

w3 = 13 −
5

9
w1 −

8

9
w2

Adding x1 ≤ 3 adds a (basic, integral!) slack variable w4 = 3− x1 = 3−
11

3
+

5

54
w1 +

1

54
w2:

ζ =
179

3
−

7

27
w1 −

73

54
w2

x1 =
11

3
−

5

54
w1 −

1

54
w2

x2 =
7

3
+

1

27
w1 +

5

54
w2

w3 = 13 −
5

9
w1 −

8

9
w2

w4 = −
2

3
+

5

54
w1 +

1

54
w2

We can continue with dual Simplex.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 22 / 35

BRANCH AND CUT

GOMORY CUT EXAMPLE CONTINUED
After one dual Simplex pivot:

ζ =
289

5
−

14

5
w4 −

13

10
w2

x1 = 3 − w4

x2 =
13

5
+

2

5
w4 +

23

270
w2

w3 = 9 − 6w4 −
7

9
w2

w1 =
36

5
+

54

5
w4 −

1

5
w2

Gomory cut on x2 −
2

5
w4 −

23

270
w2 =

13

5
: x2 − w4 − w2 ≤ 2.

ζ =
289

5
−

14

5
w4 −

13

10
w2

x1 = 3 − w4

x2 =
13

5
+

2

5
w4 +

23

270
w2

w3 = 9 − 6w4 −
7

9
w2

w1 =
36

5
+

54

5
w4 −

1

5
w2

w5 = −
3

5
+

3

5
w4 +

247

270
w2

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 23 / 35

BRANCH AND CUT

GOMORY CUT EXAMPLE CONTINUED
After one dual Simplex pivot:

ζ =
289

5
−

14

5
w4 −

13

10
w2

x1 = 3 − w4

x2 =
13

5
+

2

5
w4 +

23

270
w2

w3 = 9 − 6w4 −
7

9
w2

w1 =
36

5
+

54

5
w4 −

1

5
w2

Gomory cut on x2 −
2

5
w4 −

23

270
w2 =

13

5
: x2 − w4 − w2 ≤ 2.

ζ =
289

5
−

14

5
w4 −

13

10
w2

x1 = 3 − w4

x2 =
13

5
+

2

5
w4 +

23

270
w2

w3 = 9 − 6w4 −
7

9
w2

w1 =
36

5
+

54

5
w4 −

1

5
w2

w5 = −
3

5
+

3

5
w4 +

247

270
w2

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 23 / 35

BRANCH AND CUT

GOMORY CUT EXAMPLE CONTINUED
After one dual Simplex pivot:

ζ =
289

5
−

14

5
w4 −

13

10
w2

x1 = 3 − w4

x2 =
13

5
+

2

5
w4 +

23

270
w2

w3 = 9 − 6w4 −
7

9
w2

w1 =
36

5
+

54

5
w4 −

1

5
w2

Gomory cut on x2 −
2

5
w4 −

23

270
w2 =

13

5
: x2 − w4 − w2 ≤ 2.

ζ =
289

5
−

14

5
w4 −

13

10
w2

x1 = 3 − w4

x2 =
13

5
+

2

5
w4 +

23

270
w2

w3 = 9 − 6w4 −
7

9
w2

w1 =
36

5
+

54

5
w4 −

1

5
w2

w5 = −
3

5
+

3

5
w4 +

247

270
w2

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 23 / 35

BRANCH AND CUT

GOMORY CUTS

We could continue this for a while.
Recall that a cutting plane must, in general, have two properties:

(1) it must cut off the current LP relaxation solution, i.e., be violated by it,

(2) it must be satisfied by all integral solutions of the original (M)IP.

Because we only add constraints that are satisfied by all integral solutions:

If we reach an integral solution of the LP relaxation purely by adding cuts, it is optimal.

If we reach an infeasible LP, there is no feasible integral solution.

Because we never generate constraints that are satisfied by the current LP relaxation solution:

We never get stuck, i.e., the solution will continue to change.

One can actually prove that, for purely integral linear programs, this will eventually
terminate (in theory).

However, this does not really work in practice: it is both inefficient and introduces terrible
numerical problems.
What does work in practice? Combining cutting planes and Branch & Bound into an algorithmic
paradigm called Branch & Cut. This is the basis of all competitive modern MIP solvers.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 24 / 35

BRANCH AND CUT

GOMORY CUTS

We could continue this for a while.
Recall that a cutting plane must, in general, have two properties:

(1) it must cut off the current LP relaxation solution, i.e., be violated by it,

(2) it must be satisfied by all integral solutions of the original (M)IP.

Because we only add constraints that are satisfied by all integral solutions:

If we reach an integral solution of the LP relaxation purely by adding cuts, it is optimal.

If we reach an infeasible LP, there is no feasible integral solution.

Because we never generate constraints that are satisfied by the current LP relaxation solution:

We never get stuck, i.e., the solution will continue to change.

One can actually prove that, for purely integral linear programs, this will eventually
terminate (in theory).

However, this does not really work in practice: it is both inefficient and introduces terrible
numerical problems.
What does work in practice? Combining cutting planes and Branch & Bound into an algorithmic
paradigm called Branch & Cut. This is the basis of all competitive modern MIP solvers.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 24 / 35

BRANCH AND CUT

GOMORY CUTS

We could continue this for a while.
Recall that a cutting plane must, in general, have two properties:

(1) it must cut off the current LP relaxation solution, i.e., be violated by it,

(2) it must be satisfied by all integral solutions of the original (M)IP.

Because we only add constraints that are satisfied by all integral solutions:

If we reach an integral solution of the LP relaxation purely by adding cuts, it is optimal.

If we reach an infeasible LP, there is no feasible integral solution.

Because we never generate constraints that are satisfied by the current LP relaxation solution:

We never get stuck, i.e., the solution will continue to change.

One can actually prove that, for purely integral linear programs, this will eventually
terminate (in theory).

However, this does not really work in practice: it is both inefficient and introduces terrible
numerical problems.
What does work in practice? Combining cutting planes and Branch & Bound into an algorithmic
paradigm called Branch & Cut. This is the basis of all competitive modern MIP solvers.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 24 / 35

BRANCH AND CUT

GOMORY CUTS

We could continue this for a while.
Recall that a cutting plane must, in general, have two properties:

(1) it must cut off the current LP relaxation solution, i.e., be violated by it,

(2) it must be satisfied by all integral solutions of the original (M)IP.

Because we only add constraints that are satisfied by all integral solutions:

If we reach an integral solution of the LP relaxation purely by adding cuts, it is optimal.

If we reach an infeasible LP, there is no feasible integral solution.

Because we never generate constraints that are satisfied by the current LP relaxation solution:

We never get stuck, i.e., the solution will continue to change.

One can actually prove that, for purely integral linear programs, this will eventually
terminate (in theory).

However, this does not really work in practice: it is both inefficient and introduces terrible
numerical problems.

What does work in practice? Combining cutting planes and Branch & Bound into an algorithmic
paradigm called Branch & Cut. This is the basis of all competitive modern MIP solvers.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 24 / 35

BRANCH AND CUT

GOMORY CUTS

We could continue this for a while.
Recall that a cutting plane must, in general, have two properties:

(1) it must cut off the current LP relaxation solution, i.e., be violated by it,

(2) it must be satisfied by all integral solutions of the original (M)IP.

Because we only add constraints that are satisfied by all integral solutions:

If we reach an integral solution of the LP relaxation purely by adding cuts, it is optimal.

If we reach an infeasible LP, there is no feasible integral solution.

Because we never generate constraints that are satisfied by the current LP relaxation solution:

We never get stuck, i.e., the solution will continue to change.

One can actually prove that, for purely integral linear programs, this will eventually
terminate (in theory).

However, this does not really work in practice: it is both inefficient and introduces terrible
numerical problems.
What does work in practice? Combining cutting planes and Branch & Bound into an algorithmic
paradigm called Branch & Cut. This is the basis of all competitive modern MIP solvers.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 24 / 35

BRANCH AND CUT

BRANCH & CUT

Extension of Branch & Bound: We maintain a stack (or (priority) queue) Q of unexplored search
nodes, a set of cutting planes C, and a best current solution B with value vB and assume
maximization (minimization is analogous).

Initialize Q with P0, the original problem.

Initialize B, vB with the best known solution (or set vB = −∞, B = ⊥), set C = ∅.
While Q is non-empty:

Take the next Pi out of Q.
Repeat (as long as it seems promising to do so):

Compute the optimal solution x
i with value ζ

i for the LP relaxation of Pi ∪ C.
If Pi is infeasible or ζi ≤ vB , continue with next Pi .
If xi is integral, update B = x

i
, vB = ζ

i , and continue with next Pi .
Attempt to find a good new cutting plane (a, b) with a

T
x
i
> b.

If successful, add (a, b) to C. Otherwise, stop.

Select non-integral variable x with value θ from x
i.

Add Pi ∪ {x ≤ ⌊θ⌋} and Pi ∪ {x ≥ ⌈θ⌉} to Q.

If B = ⊥, report infeasibility. Otherwise, return optimal solution B.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 25 / 35

BRANCH AND CUT

BRANCH & CUT

Extension of Branch & Bound: We maintain a stack (or (priority) queue) Q of unexplored search
nodes, a set of cutting planes C, and a best current solution B with value vB and assume
maximization (minimization is analogous).

Initialize Q with P0, the original problem.

Initialize B, vB with the best known solution (or set vB = −∞, B = ⊥), set C = ∅.
While Q is non-empty:

Take the next Pi out of Q.
Repeat (as long as it seems promising to do so):

Compute the optimal solution x
i with value ζ

i for the LP relaxation of Pi ∪ C.
If Pi is infeasible or ζi ≤ vB , continue with next Pi .
If xi is integral, update B = x

i
, vB = ζ

i , and continue with next Pi .
Attempt to find a good new cutting plane (a, b) with a

T
x
i
> b.

If successful, add (a, b) to C. Otherwise, stop.

Select non-integral variable x with value θ from x
i.

Add Pi ∪ {x ≤ ⌊θ⌋} and Pi ∪ {x ≥ ⌈θ⌉} to Q.

If B = ⊥, report infeasibility. Otherwise, return optimal solution B.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 25 / 35

BRANCH AND CUT

BRANCH & CUT

Extension of Branch & Bound: We maintain a stack (or (priority) queue) Q of unexplored search
nodes, a set of cutting planes C, and a best current solution B with value vB and assume
maximization (minimization is analogous).

Initialize Q with P0, the original problem.

Initialize B, vB with the best known solution (or set vB = −∞, B = ⊥), set C = ∅.
While Q is non-empty:

Take the next Pi out of Q.

Repeat (as long as it seems promising to do so):

Compute the optimal solution x
i with value ζ

i for the LP relaxation of Pi ∪ C.
If Pi is infeasible or ζi ≤ vB , continue with next Pi .
If xi is integral, update B = x

i
, vB = ζ

i , and continue with next Pi .
Attempt to find a good new cutting plane (a, b) with a

T
x
i
> b.

If successful, add (a, b) to C. Otherwise, stop.

Select non-integral variable x with value θ from x
i.

Add Pi ∪ {x ≤ ⌊θ⌋} and Pi ∪ {x ≥ ⌈θ⌉} to Q.

If B = ⊥, report infeasibility. Otherwise, return optimal solution B.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 25 / 35

BRANCH AND CUT

BRANCH & CUT

Extension of Branch & Bound: We maintain a stack (or (priority) queue) Q of unexplored search
nodes, a set of cutting planes C, and a best current solution B with value vB and assume
maximization (minimization is analogous).

Initialize Q with P0, the original problem.

Initialize B, vB with the best known solution (or set vB = −∞, B = ⊥), set C = ∅.
While Q is non-empty:

Take the next Pi out of Q.
Repeat (as long as it seems promising to do so):

Compute the optimal solution x
i with value ζ

i for the LP relaxation of Pi ∪ C.
If Pi is infeasible or ζi ≤ vB , continue with next Pi .
If xi is integral, update B = x

i
, vB = ζ

i , and continue with next Pi .
Attempt to find a good new cutting plane (a, b) with a

T
x
i
> b.

If successful, add (a, b) to C. Otherwise, stop.

Select non-integral variable x with value θ from x
i.

Add Pi ∪ {x ≤ ⌊θ⌋} and Pi ∪ {x ≥ ⌈θ⌉} to Q.

If B = ⊥, report infeasibility. Otherwise, return optimal solution B.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 25 / 35

BRANCH AND CUT

BRANCH & CUT

Extension of Branch & Bound: We maintain a stack (or (priority) queue) Q of unexplored search
nodes, a set of cutting planes C, and a best current solution B with value vB and assume
maximization (minimization is analogous).

Initialize Q with P0, the original problem.

Initialize B, vB with the best known solution (or set vB = −∞, B = ⊥), set C = ∅.
While Q is non-empty:

Take the next Pi out of Q.
Repeat (as long as it seems promising to do so):

Compute the optimal solution x
i with value ζ

i for the LP relaxation of Pi ∪ C.

If Pi is infeasible or ζi ≤ vB , continue with next Pi .
If xi is integral, update B = x

i
, vB = ζ

i , and continue with next Pi .
Attempt to find a good new cutting plane (a, b) with a

T
x
i
> b.

If successful, add (a, b) to C. Otherwise, stop.

Select non-integral variable x with value θ from x
i.

Add Pi ∪ {x ≤ ⌊θ⌋} and Pi ∪ {x ≥ ⌈θ⌉} to Q.

If B = ⊥, report infeasibility. Otherwise, return optimal solution B.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 25 / 35

BRANCH AND CUT

BRANCH & CUT

Extension of Branch & Bound: We maintain a stack (or (priority) queue) Q of unexplored search
nodes, a set of cutting planes C, and a best current solution B with value vB and assume
maximization (minimization is analogous).

Initialize Q with P0, the original problem.

Initialize B, vB with the best known solution (or set vB = −∞, B = ⊥), set C = ∅.
While Q is non-empty:

Take the next Pi out of Q.
Repeat (as long as it seems promising to do so):

Compute the optimal solution x
i with value ζ

i for the LP relaxation of Pi ∪ C.
If Pi is infeasible or ζi ≤ vB , continue with next Pi .

If xi is integral, update B = x
i
, vB = ζ

i , and continue with next Pi .
Attempt to find a good new cutting plane (a, b) with a

T
x
i
> b.

If successful, add (a, b) to C. Otherwise, stop.

Select non-integral variable x with value θ from x
i.

Add Pi ∪ {x ≤ ⌊θ⌋} and Pi ∪ {x ≥ ⌈θ⌉} to Q.

If B = ⊥, report infeasibility. Otherwise, return optimal solution B.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 25 / 35

BRANCH AND CUT

BRANCH & CUT

Extension of Branch & Bound: We maintain a stack (or (priority) queue) Q of unexplored search
nodes, a set of cutting planes C, and a best current solution B with value vB and assume
maximization (minimization is analogous).

Initialize Q with P0, the original problem.

Initialize B, vB with the best known solution (or set vB = −∞, B = ⊥), set C = ∅.
While Q is non-empty:

Take the next Pi out of Q.
Repeat (as long as it seems promising to do so):

Compute the optimal solution x
i with value ζ

i for the LP relaxation of Pi ∪ C.
If Pi is infeasible or ζi ≤ vB , continue with next Pi .
If xi is integral, update B = x

i
, vB = ζ

i , and continue with next Pi .

Attempt to find a good new cutting plane (a, b) with a
T
x
i
> b.

If successful, add (a, b) to C. Otherwise, stop.

Select non-integral variable x with value θ from x
i.

Add Pi ∪ {x ≤ ⌊θ⌋} and Pi ∪ {x ≥ ⌈θ⌉} to Q.

If B = ⊥, report infeasibility. Otherwise, return optimal solution B.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 25 / 35

BRANCH AND CUT

BRANCH & CUT

Extension of Branch & Bound: We maintain a stack (or (priority) queue) Q of unexplored search
nodes, a set of cutting planes C, and a best current solution B with value vB and assume
maximization (minimization is analogous).

Initialize Q with P0, the original problem.

Initialize B, vB with the best known solution (or set vB = −∞, B = ⊥), set C = ∅.
While Q is non-empty:

Take the next Pi out of Q.
Repeat (as long as it seems promising to do so):

Compute the optimal solution x
i with value ζ

i for the LP relaxation of Pi ∪ C.
If Pi is infeasible or ζi ≤ vB , continue with next Pi .
If xi is integral, update B = x

i
, vB = ζ

i , and continue with next Pi .
Attempt to find a good new cutting plane (a, b) with a

T
x
i
> b.

If successful, add (a, b) to C. Otherwise, stop.

Select non-integral variable x with value θ from x
i.

Add Pi ∪ {x ≤ ⌊θ⌋} and Pi ∪ {x ≥ ⌈θ⌉} to Q.

If B = ⊥, report infeasibility. Otherwise, return optimal solution B.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 25 / 35

BRANCH AND CUT

BRANCH & CUT

Extension of Branch & Bound: We maintain a stack (or (priority) queue) Q of unexplored search
nodes, a set of cutting planes C, and a best current solution B with value vB and assume
maximization (minimization is analogous).

Initialize Q with P0, the original problem.

Initialize B, vB with the best known solution (or set vB = −∞, B = ⊥), set C = ∅.
While Q is non-empty:

Take the next Pi out of Q.
Repeat (as long as it seems promising to do so):

Compute the optimal solution x
i with value ζ

i for the LP relaxation of Pi ∪ C.
If Pi is infeasible or ζi ≤ vB , continue with next Pi .
If xi is integral, update B = x

i
, vB = ζ

i , and continue with next Pi .
Attempt to find a good new cutting plane (a, b) with a

T
x
i
> b.

If successful, add (a, b) to C. Otherwise, stop.

Select non-integral variable x with value θ from x
i.

Add Pi ∪ {x ≤ ⌊θ⌋} and Pi ∪ {x ≥ ⌈θ⌉} to Q.

If B = ⊥, report infeasibility. Otherwise, return optimal solution B.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 25 / 35

BRANCH AND CUT

BRANCH & CUT

Extension of Branch & Bound: We maintain a stack (or (priority) queue) Q of unexplored search
nodes, a set of cutting planes C, and a best current solution B with value vB and assume
maximization (minimization is analogous).

Initialize Q with P0, the original problem.

Initialize B, vB with the best known solution (or set vB = −∞, B = ⊥), set C = ∅.
While Q is non-empty:

Take the next Pi out of Q.
Repeat (as long as it seems promising to do so):

Compute the optimal solution x
i with value ζ

i for the LP relaxation of Pi ∪ C.
If Pi is infeasible or ζi ≤ vB , continue with next Pi .
If xi is integral, update B = x

i
, vB = ζ

i , and continue with next Pi .
Attempt to find a good new cutting plane (a, b) with a

T
x
i
> b.

If successful, add (a, b) to C. Otherwise, stop.

Select non-integral variable x with value θ from x
i.

Add Pi ∪ {x ≤ ⌊θ⌋} and Pi ∪ {x ≥ ⌈θ⌉} to Q.

If B = ⊥, report infeasibility. Otherwise, return optimal solution B.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 25 / 35

BRANCH AND CUT

BRANCH & CUT

Extension of Branch & Bound: We maintain a stack (or (priority) queue) Q of unexplored search
nodes, a set of cutting planes C, and a best current solution B with value vB and assume
maximization (minimization is analogous).

Initialize Q with P0, the original problem.

Initialize B, vB with the best known solution (or set vB = −∞, B = ⊥), set C = ∅.
While Q is non-empty:

Take the next Pi out of Q.
Repeat (as long as it seems promising to do so):

Compute the optimal solution x
i with value ζ

i for the LP relaxation of Pi ∪ C.
If Pi is infeasible or ζi ≤ vB , continue with next Pi .
If xi is integral, update B = x

i
, vB = ζ

i , and continue with next Pi .
Attempt to find a good new cutting plane (a, b) with a

T
x
i
> b.

If successful, add (a, b) to C. Otherwise, stop.

Select non-integral variable x with value θ from x
i.

Add Pi ∪ {x ≤ ⌊θ⌋} and Pi ∪ {x ≥ ⌈θ⌉} to Q.

If B = ⊥, report infeasibility. Otherwise, return optimal solution B.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 25 / 35

BRANCH AND CUT

THE CONVEX HULL

Geometrically: constraints of LP with n variables define n-dimensional polyhedron which
contains all feasible points.
Basic solutions correspond to vertices (corners) of this polyhedron.
How about integer linear programs?

If we had a set of linear constraints that defines the convex hull of the integral points, Simplex
would give us an integral solution (for any objective function), and thus solve the integer
program! However, the number of constraints is too high and they are not usually easy to find!

The strongest cutting planes we can add define so-called facets of the convex hull. Can we hope to
always do that?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 26 / 35

BRANCH AND CUT

THE CONVEX HULL

Geometrically: constraints of LP with n variables define n-dimensional polyhedron which
contains all feasible points.
Basic solutions correspond to vertices (corners) of this polyhedron.
How about integer linear programs?

If we had a set of linear constraints that defines the convex hull of the integral points, Simplex
would give us an integral solution (for any objective function), and thus solve the integer
program! However, the number of constraints is too high and they are not usually easy to find!

The strongest cutting planes we can add define so-called facets of the convex hull. Can we hope to
always do that?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 26 / 35

BRANCH AND CUT

THE CONVEX HULL

Geometrically: constraints of LP with n variables define n-dimensional polyhedron which
contains all feasible points.
Basic solutions correspond to vertices (corners) of this polyhedron.
How about integer linear programs?

If we had a set of linear constraints that defines the convex hull of the integral points, Simplex
would give us an integral solution (for any objective function), and thus solve the integer
program! However, the number of constraints is too high and they are not usually easy to find!

The strongest cutting planes we can add define so-called facets of the convex hull. Can we hope to
always do that?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 26 / 35

BRANCH AND CUT

THE CONVEX HULL

Geometrically: constraints of LP with n variables define n-dimensional polyhedron which
contains all feasible points.
Basic solutions correspond to vertices (corners) of this polyhedron.
How about integer linear programs?

If we had a set of linear constraints that defines the convex hull of the integral points, Simplex
would give us an integral solution (for any objective function), and thus solve the integer
program! However, the number of constraints is too high and they are not usually easy to find!

The strongest cutting planes we can add define so-called facets of the convex hull. Can we hope to
always do that?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 26 / 35

BRANCH AND CUT

SEPARATION PROBLEM

Given a polyhedron Q ⊆ Rn and a vector x̃ ∈ Rn, determine whether x̃ ∈ Q, and if not,
determine a linear constraint (a, b) such that aT x̃ > b and aT x ≤ b for all x ∈ Q.

Usually, when we talk about this:

Q is the convex hull of integral solutions, and

x̃ is the solution to the linear relaxation.

The Ellipsoid Method, a method to solve LP in polynomial time, can optimize over Q without an
explicit description of Q, based solely on a separation oracle.

The method has polynomial runtime in n, log T and log ∥c∥ if the separation oracle has
polynomial runtime, where

n is the number of variables, i.e., the maximum dimension of Q,

T is the maximum numerator or denominator in any coordinate of any extreme point of Q,

c ∈ Rn is the objective coefficient vector.

Very important corollary: If we can solve the separation problem in polynomial time, we can solve
linear optimization problems over Q in polynomial time!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 27 / 35

BRANCH AND CUT

SEPARATION PROBLEM

Given a polyhedron Q ⊆ Rn and a vector x̃ ∈ Rn, determine whether x̃ ∈ Q, and if not,
determine a linear constraint (a, b) such that aT x̃ > b and aT x ≤ b for all x ∈ Q.

Usually, when we talk about this:

Q is the convex hull of integral solutions, and

x̃ is the solution to the linear relaxation.

The Ellipsoid Method, a method to solve LP in polynomial time, can optimize over Q without an
explicit description of Q, based solely on a separation oracle.

The method has polynomial runtime in n, log T and log ∥c∥ if the separation oracle has
polynomial runtime, where

n is the number of variables, i.e., the maximum dimension of Q,

T is the maximum numerator or denominator in any coordinate of any extreme point of Q,

c ∈ Rn is the objective coefficient vector.

Very important corollary: If we can solve the separation problem in polynomial time, we can solve
linear optimization problems over Q in polynomial time!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 27 / 35

BRANCH AND CUT

SEPARATION PROBLEM

Given a polyhedron Q ⊆ Rn and a vector x̃ ∈ Rn, determine whether x̃ ∈ Q, and if not,
determine a linear constraint (a, b) such that aT x̃ > b and aT x ≤ b for all x ∈ Q.

Usually, when we talk about this:

Q is the convex hull of integral solutions, and

x̃ is the solution to the linear relaxation.

The Ellipsoid Method, a method to solve LP in polynomial time, can optimize over Q without an
explicit description of Q, based solely on a separation oracle.

The method has polynomial runtime in n, log T and log ∥c∥ if the separation oracle has
polynomial runtime, where

n is the number of variables, i.e., the maximum dimension of Q,

T is the maximum numerator or denominator in any coordinate of any extreme point of Q,

c ∈ Rn is the objective coefficient vector.

Very important corollary: If we can solve the separation problem in polynomial time, we can solve
linear optimization problems over Q in polynomial time!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 27 / 35

BRANCH AND CUT

SEPARATION PROBLEM

Given a polyhedron Q ⊆ Rn and a vector x̃ ∈ Rn, determine whether x̃ ∈ Q, and if not,
determine a linear constraint (a, b) such that aT x̃ > b and aT x ≤ b for all x ∈ Q.

Usually, when we talk about this:

Q is the convex hull of integral solutions, and

x̃ is the solution to the linear relaxation.

The Ellipsoid Method, a method to solve LP in polynomial time, can optimize over Q without an
explicit description of Q, based solely on a separation oracle.

The method has polynomial runtime in n, log T and log ∥c∥ if the separation oracle has
polynomial runtime, where

n is the number of variables, i.e., the maximum dimension of Q,

T is the maximum numerator or denominator in any coordinate of any extreme point of Q,

c ∈ Rn is the objective coefficient vector.

Very important corollary: If we can solve the separation problem in polynomial time, we can solve
linear optimization problems over Q in polynomial time!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 27 / 35

BRANCH AND CUT

SEPARATION PROBLEM

Given a polyhedron Q ⊆ Rn and a vector x̃ ∈ Rn, determine whether x̃ ∈ Q, and if not,
determine a linear constraint (a, b) such that aT x̃ > b and aT x ≤ b for all x ∈ Q.

Usually, when we talk about this:

Q is the convex hull of integral solutions, and

x̃ is the solution to the linear relaxation.

The Ellipsoid Method, a method to solve LP in polynomial time, can optimize over Q without an
explicit description of Q, based solely on a separation oracle.

The method has polynomial runtime in n, log T and log ∥c∥ if the separation oracle has
polynomial runtime, where

n is the number of variables, i.e., the maximum dimension of Q,

T is the maximum numerator or denominator in any coordinate of any extreme point of Q,

c ∈ Rn is the objective coefficient vector.

Very important corollary: If we can solve the separation problem in polynomial time, we can solve
linear optimization problems over Q in polynomial time!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 27 / 35

BRANCH AND CUT

THE TEMPLATE PARADIGM

Because the separation problem in general seems hard, one usually looks at restricted/simplified
versions of it to find cutting planes. Typically, either:

the solution has special properties that allow finding cuts (e.g., Gomory cuts which need
basic solutions),

the cuts have a special format so they can be efficiently found,

the separation problem is solved heuristically.

There are a lot of special cut templates for which either separation can be done efficiently, or for
which there are good heuristics.

Many of these are already implemented in modern MIP solvers. There are usually parameters to
tune how aggressively they should be generated and applied.

Knowledge of the concrete problem can often yield more cutting planes and can help identify
them easier; sometimes, it can pay off to implement this domain knowledge and add additional
constraints during or before the solve.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 28 / 35

BRANCH AND CUT

THE TEMPLATE PARADIGM

Because the separation problem in general seems hard, one usually looks at restricted/simplified
versions of it to find cutting planes. Typically, either:

the solution has special properties that allow finding cuts (e.g., Gomory cuts which need
basic solutions),

the cuts have a special format so they can be efficiently found,

the separation problem is solved heuristically.

There are a lot of special cut templates for which either separation can be done efficiently, or for
which there are good heuristics.

Many of these are already implemented in modern MIP solvers. There are usually parameters to
tune how aggressively they should be generated and applied.

Knowledge of the concrete problem can often yield more cutting planes and can help identify
them easier; sometimes, it can pay off to implement this domain knowledge and add additional
constraints during or before the solve.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 28 / 35

BRANCH AND CUT

THE TEMPLATE PARADIGM

Because the separation problem in general seems hard, one usually looks at restricted/simplified
versions of it to find cutting planes. Typically, either:

the solution has special properties that allow finding cuts (e.g., Gomory cuts which need
basic solutions),

the cuts have a special format so they can be efficiently found,

the separation problem is solved heuristically.

There are a lot of special cut templates for which either separation can be done efficiently, or for
which there are good heuristics.

Many of these are already implemented in modern MIP solvers. There are usually parameters to
tune how aggressively they should be generated and applied.

Knowledge of the concrete problem can often yield more cutting planes and can help identify
them easier; sometimes, it can pay off to implement this domain knowledge and add additional
constraints during or before the solve.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 28 / 35

BRANCH AND CUT

THE TEMPLATE PARADIGM

Because the separation problem in general seems hard, one usually looks at restricted/simplified
versions of it to find cutting planes. Typically, either:

the solution has special properties that allow finding cuts (e.g., Gomory cuts which need
basic solutions),

the cuts have a special format so they can be efficiently found,

the separation problem is solved heuristically.

There are a lot of special cut templates for which either separation can be done efficiently, or for
which there are good heuristics.

Many of these are already implemented in modern MIP solvers. There are usually parameters to
tune how aggressively they should be generated and applied.

Knowledge of the concrete problem can often yield more cutting planes and can help identify
them easier; sometimes, it can pay off to implement this domain knowledge and add additional
constraints during or before the solve.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 28 / 35

SOME CUTTING PLANE TEMPLATES

MOTIVATION

DEFINITION

BRANCH AND BOUND

BRANCH AND CUT

SOME CUTTING PLANE TEMPLATES

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 29 / 35

SOME CUTTING PLANE TEMPLATES

CLIQUE CUTS

Suppose we want to solve a program with some {0, 1}-variables. Let x, y, z ∈ {0, 1} be such
variables.

Suppose we have the constraints
x+ y ≤ 1, and

x+ 2y + z ≥ 2.

What happens when we set x = 1? What happens when we set x = 0?

x = 1: We must set y = 0 and thus also z = 1!

x = 0: We must set y = 1!

Making inferences such as these from setting some variables is also called propagation. It is crucial
for SAT and CP solver performance, but a bit less so for integer programs; it is still usually built
into MIP solvers (when branching).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 30 / 35

SOME CUTTING PLANE TEMPLATES

CLIQUE CUTS

Suppose we want to solve a program with some {0, 1}-variables. Let x, y, z ∈ {0, 1} be such
variables.

Suppose we have the constraints
x+ y ≤ 1, and

x+ 2y + z ≥ 2.

What happens when we set x = 1? What happens when we set x = 0?

x = 1: We must set y = 0 and thus also z = 1!

x = 0: We must set y = 1!

Making inferences such as these from setting some variables is also called propagation. It is crucial
for SAT and CP solver performance, but a bit less so for integer programs; it is still usually built
into MIP solvers (when branching).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 30 / 35

SOME CUTTING PLANE TEMPLATES

CLIQUE CUTS

Suppose we want to solve a program with some {0, 1}-variables. Let x, y, z ∈ {0, 1} be such
variables.

Suppose we have the constraints
x+ y ≤ 1, and

x+ 2y + z ≥ 2.

What happens when we set x = 1? What happens when we set x = 0?

x = 1: We must set y = 0 and thus also z = 1!

x = 0: We must set y = 1!

Making inferences such as these from setting some variables is also called propagation. It is crucial
for SAT and CP solver performance, but a bit less so for integer programs; it is still usually built
into MIP solvers (when branching).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 30 / 35

SOME CUTTING PLANE TEMPLATES

CLIQUE CUTS

Suppose we want to solve a program with some {0, 1}-variables. Let x, y, z ∈ {0, 1} be such
variables.

Suppose we have the constraints
x+ y ≤ 1, and

x+ 2y + z ≥ 2.

What happens when we set x = 1? What happens when we set x = 0?

x = 1: We must set y = 0 and thus also z = 1!

x = 0: We must set y = 1!

Making inferences such as these from setting some variables is also called propagation. It is crucial
for SAT and CP solver performance, but a bit less so for integer programs; it is still usually built
into MIP solvers (when branching).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 30 / 35

SOME CUTTING PLANE TEMPLATES

CLIQUE CUTS — PROBING

Before beginning to solve (during presolve), we can probe for logical implications, e.g., by setting
each individual {0, 1} variable (or some subset of them) to 0 and 1, each time performing
propagation.

This can fix variables or detect infeasibility if variables have only one (or no) possible value.

We also get a conflict graph G with two vertices xi = 0, xi = 1 for each {0, 1}-variable xi and an
edge between settings that are contradictory.

x = 0 x = 1

x+ y ≤ 1

x+ 2y + z ≥ 2

y = 0 y = 1

z = 0 z = 1

x+ z ≥ 1

What can we do with a clique C in G
(without the blue edges)?

The variable assignments in C are
mutually exclusive.

At most one of them can be
simultaneously true!

(1− x) + (1− y) + (1− z) ≤ 1 ⇔
x+ y + z ≥ 2

x+ y + (1− z) ≤ 1 ⇔ z ≥ x+ y

Neither of those are linear
combinations of the original
constraints!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 31 / 35

SOME CUTTING PLANE TEMPLATES

CLIQUE CUTS — PROBING

Before beginning to solve (during presolve), we can probe for logical implications, e.g., by setting
each individual {0, 1} variable (or some subset of them) to 0 and 1, each time performing
propagation.

This can fix variables or detect infeasibility if variables have only one (or no) possible value.

We also get a conflict graph G with two vertices xi = 0, xi = 1 for each {0, 1}-variable xi and an
edge between settings that are contradictory.

x = 0 x = 1

x+ y ≤ 1

x+ 2y + z ≥ 2

y = 0 y = 1

z = 0 z = 1

x+ z ≥ 1

What can we do with a clique C in G
(without the blue edges)?

The variable assignments in C are
mutually exclusive.

At most one of them can be
simultaneously true!

(1− x) + (1− y) + (1− z) ≤ 1 ⇔
x+ y + z ≥ 2

x+ y + (1− z) ≤ 1 ⇔ z ≥ x+ y

Neither of those are linear
combinations of the original
constraints!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 31 / 35

SOME CUTTING PLANE TEMPLATES

CLIQUE CUTS — PROBING

Before beginning to solve (during presolve), we can probe for logical implications, e.g., by setting
each individual {0, 1} variable (or some subset of them) to 0 and 1, each time performing
propagation.

This can fix variables or detect infeasibility if variables have only one (or no) possible value.

We also get a conflict graph G with two vertices xi = 0, xi = 1 for each {0, 1}-variable xi and an
edge between settings that are contradictory.

x = 0 x = 1

x+ y ≤ 1

x+ 2y + z ≥ 2

y = 0 y = 1

z = 0 z = 1

x+ z ≥ 1

What can we do with a clique C in G
(without the blue edges)?

The variable assignments in C are
mutually exclusive.

At most one of them can be
simultaneously true!

(1− x) + (1− y) + (1− z) ≤ 1 ⇔
x+ y + z ≥ 2

x+ y + (1− z) ≤ 1 ⇔ z ≥ x+ y

Neither of those are linear
combinations of the original
constraints!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 31 / 35

SOME CUTTING PLANE TEMPLATES

CLIQUE CUTS — PROBING

Before beginning to solve (during presolve), we can probe for logical implications, e.g., by setting
each individual {0, 1} variable (or some subset of them) to 0 and 1, each time performing
propagation.

This can fix variables or detect infeasibility if variables have only one (or no) possible value.

We also get a conflict graph G with two vertices xi = 0, xi = 1 for each {0, 1}-variable xi and an
edge between settings that are contradictory.

x = 0 x = 1

x+ y ≤ 1

x+ 2y + z ≥ 2

y = 0 y = 1

z = 0 z = 1

x+ z ≥ 1

What can we do with a clique C in G
(without the blue edges)?

The variable assignments in C are
mutually exclusive.

At most one of them can be
simultaneously true!

(1− x) + (1− y) + (1− z) ≤ 1 ⇔
x+ y + z ≥ 2

x+ y + (1− z) ≤ 1 ⇔ z ≥ x+ y

Neither of those are linear
combinations of the original
constraints!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 31 / 35

SOME CUTTING PLANE TEMPLATES

CLIQUE CUTS — PROBING

Before beginning to solve (during presolve), we can probe for logical implications, e.g., by setting
each individual {0, 1} variable (or some subset of them) to 0 and 1, each time performing
propagation.

This can fix variables or detect infeasibility if variables have only one (or no) possible value.

We also get a conflict graph G with two vertices xi = 0, xi = 1 for each {0, 1}-variable xi and an
edge between settings that are contradictory.

x = 0 x = 1

x+ y ≤ 1

x+ 2y + z ≥ 2

y = 0 y = 1

z = 0 z = 1

x+ z ≥ 1

What can we do with a clique C in G
(without the blue edges)?

The variable assignments in C are
mutually exclusive.

At most one of them can be
simultaneously true!

(1− x) + (1− y) + (1− z) ≤ 1 ⇔
x+ y + z ≥ 2

x+ y + (1− z) ≤ 1 ⇔ z ≥ x+ y

Neither of those are linear
combinations of the original
constraints!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 31 / 35

SOME CUTTING PLANE TEMPLATES

CLIQUE CUTS — PROBING

Before beginning to solve (during presolve), we can probe for logical implications, e.g., by setting
each individual {0, 1} variable (or some subset of them) to 0 and 1, each time performing
propagation.

This can fix variables or detect infeasibility if variables have only one (or no) possible value.

We also get a conflict graph G with two vertices xi = 0, xi = 1 for each {0, 1}-variable xi and an
edge between settings that are contradictory.

x = 0 x = 1

x+ y ≤ 1

x+ 2y + z ≥ 2

y = 0 y = 1

z = 0 z = 1

x+ z ≥ 1

What can we do with a clique C in G
(without the blue edges)?

The variable assignments in C are
mutually exclusive.

At most one of them can be
simultaneously true!

(1− x) + (1− y) + (1− z) ≤ 1 ⇔
x+ y + z ≥ 2

x+ y + (1− z) ≤ 1 ⇔ z ≥ x+ y

Neither of those are linear
combinations of the original
constraints!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 31 / 35

SOME CUTTING PLANE TEMPLATES

CLIQUE CUTS — PROBING

Before beginning to solve (during presolve), we can probe for logical implications, e.g., by setting
each individual {0, 1} variable (or some subset of them) to 0 and 1, each time performing
propagation.

This can fix variables or detect infeasibility if variables have only one (or no) possible value.

We also get a conflict graph G with two vertices xi = 0, xi = 1 for each {0, 1}-variable xi and an
edge between settings that are contradictory.

x = 0 x = 1

x+ y ≤ 1

x+ 2y + z ≥ 2

y = 0 y = 1

z = 0 z = 1

x+ z ≥ 1

What can we do with a clique C in G
(without the blue edges)?

The variable assignments in C are
mutually exclusive.

At most one of them can be
simultaneously true!

(1− x) + (1− y) + (1− z) ≤ 1 ⇔
x+ y + z ≥ 2

x+ y + (1− z) ≤ 1 ⇔ z ≥ x+ y

Neither of those are linear
combinations of the original
constraints!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 31 / 35

SOME CUTTING PLANE TEMPLATES

CLIQUE CUTS — PROBING

Before beginning to solve (during presolve), we can probe for logical implications, e.g., by setting
each individual {0, 1} variable (or some subset of them) to 0 and 1, each time performing
propagation.

This can fix variables or detect infeasibility if variables have only one (or no) possible value.

We also get a conflict graph G with two vertices xi = 0, xi = 1 for each {0, 1}-variable xi and an
edge between settings that are contradictory.

x = 0 x = 1

x+ y ≤ 1

x+ 2y + z ≥ 2

y = 0 y = 1

z = 0 z = 1

x+ z ≥ 1

What can we do with a clique C in G
(without the blue edges)?

The variable assignments in C are
mutually exclusive.

At most one of them can be
simultaneously true!

(1− x) + (1− y) + (1− z) ≤ 1 ⇔
x+ y + z ≥ 2

x+ y + (1− z) ≤ 1 ⇔ z ≥ x+ y

Neither of those are linear
combinations of the original
constraints!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 31 / 35

SOME CUTTING PLANE TEMPLATES

CLIQUE CUTS — PROBING

Before beginning to solve (during presolve), we can probe for logical implications, e.g., by setting
each individual {0, 1} variable (or some subset of them) to 0 and 1, each time performing
propagation.

This can fix variables or detect infeasibility if variables have only one (or no) possible value.

We also get a conflict graph G with two vertices xi = 0, xi = 1 for each {0, 1}-variable xi and an
edge between settings that are contradictory.

x = 0 x = 1

x+ y ≤ 1

x+ 2y + z ≥ 2

y = 0 y = 1

z = 0 z = 1

x+ z ≥ 1

What can we do with a clique C in G
(without the blue edges)?

The variable assignments in C are
mutually exclusive.

At most one of them can be
simultaneously true!

(1− x) + (1− y) + (1− z) ≤ 1 ⇔
x+ y + z ≥ 2

x+ y + (1− z) ≤ 1 ⇔ z ≥ x+ y

Neither of those are linear
combinations of the original
constraints!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 31 / 35

SOME CUTTING PLANE TEMPLATES

CLIQUE CUTS — PROBING

Before beginning to solve (during presolve), we can probe for logical implications, e.g., by setting
each individual {0, 1} variable (or some subset of them) to 0 and 1, each time performing
propagation.

This can fix variables or detect infeasibility if variables have only one (or no) possible value.

We also get a conflict graph G with two vertices xi = 0, xi = 1 for each {0, 1}-variable xi and an
edge between settings that are contradictory.

x = 0 x = 1

x+ y ≤ 1

x+ 2y + z ≥ 2

y = 0 y = 1

z = 0 z = 1

x+ z ≥ 1

What can we do with a clique C in G
(without the blue edges)?

The variable assignments in C are
mutually exclusive.

At most one of them can be
simultaneously true!

(1− x) + (1− y) + (1− z) ≤ 1 ⇔
x+ y + z ≥ 2

x+ y + (1− z) ≤ 1 ⇔ z ≥ x+ y

Neither of those are linear
combinations of the original
constraints!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 31 / 35

SOME CUTTING PLANE TEMPLATES

MORE PRESOLVE

Bounds strengthening ({0, 1}x, y, z):

x+ 2y + 4z = 4, x, y, z ∈ {0, 1} ⇒ z ≥
1

4
(4− 2− 1) ⇒ z = 1, x = y = 0.

GCD reduction (pure integer x, y, z):

3x+ 6y + 9z ≤ 11, divide by 3 and round: x+ 2y + 3z ≤ 3

Coefficient reduction (binary x, y):

2x+ y ≥ 1: have a slack of ≥ 1 for x = 1 ⇒ x+ y ≥ 1

Much, much more. . .

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 32 / 35

SOME CUTTING PLANE TEMPLATES

ZERO-HALF CUTS

Suppose x1, . . . , x5 ∈ Z and we have the constraints

x1 + x2 + x3 + 3x4 + 2x5 ≤ 10,

x1 + x2 + 3x3 + x4 + 2x5 ≤ 5.

Adding them gives
2x1 + 2x2 + 4x3 + 4x4 + 4x5 ≤ 15.

The right-hand side is odd, the left-hand side is even. Dividing by 2 and round:

x1 + x2 + 2x3 + 2x4 + 2x5 ≤ 7

In general: Try to find ways to add up constraints such that all variable coefficients are even but
the right-hand side is odd.

There are decent heuristics to find such cutting planes; in general, the separation problem for these
cuts is NP-hard.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 33 / 35

SOME CUTTING PLANE TEMPLATES

ZERO-HALF CUTS

Suppose x1, . . . , x5 ∈ Z and we have the constraints

x1 + x2 + x3 + 3x4 + 2x5 ≤ 10,

x1 + x2 + 3x3 + x4 + 2x5 ≤ 5.

Adding them gives
2x1 + 2x2 + 4x3 + 4x4 + 4x5 ≤ 15.

The right-hand side is odd, the left-hand side is even. Dividing by 2 and round:

x1 + x2 + 2x3 + 2x4 + 2x5 ≤ 7

In general: Try to find ways to add up constraints such that all variable coefficients are even but
the right-hand side is odd.

There are decent heuristics to find such cutting planes; in general, the separation problem for these
cuts is NP-hard.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 33 / 35

SOME CUTTING PLANE TEMPLATES

ZERO-HALF CUTS

Suppose x1, . . . , x5 ∈ Z and we have the constraints

x1 + x2 + x3 + 3x4 + 2x5 ≤ 10,

x1 + x2 + 3x3 + x4 + 2x5 ≤ 5.

Adding them gives
2x1 + 2x2 + 4x3 + 4x4 + 4x5 ≤ 15.

The right-hand side is odd, the left-hand side is even. Dividing by 2 and round:

x1 + x2 + 2x3 + 2x4 + 2x5 ≤ 7

In general: Try to find ways to add up constraints such that all variable coefficients are even but
the right-hand side is odd.

There are decent heuristics to find such cutting planes; in general, the separation problem for these
cuts is NP-hard.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 33 / 35

SOME CUTTING PLANE TEMPLATES

ZERO-HALF CUTS

Suppose x1, . . . , x5 ∈ Z and we have the constraints

x1 + x2 + x3 + 3x4 + 2x5 ≤ 10,

x1 + x2 + 3x3 + x4 + 2x5 ≤ 5.

Adding them gives
2x1 + 2x2 + 4x3 + 4x4 + 4x5 ≤ 15.

The right-hand side is odd, the left-hand side is even. Dividing by 2 and round:

x1 + x2 + 2x3 + 2x4 + 2x5 ≤ 7

In general: Try to find ways to add up constraints such that all variable coefficients are even but
the right-hand side is odd.

There are decent heuristics to find such cutting planes; in general, the separation problem for these
cuts is NP-hard.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 33 / 35

SOME CUTTING PLANE TEMPLATES

ZERO-HALF CUTS

Suppose x1, . . . , x5 ∈ Z and we have the constraints

x1 + x2 + x3 + 3x4 + 2x5 ≤ 10,

x1 + x2 + 3x3 + x4 + 2x5 ≤ 5.

Adding them gives
2x1 + 2x2 + 4x3 + 4x4 + 4x5 ≤ 15.

The right-hand side is odd, the left-hand side is even. Dividing by 2 and round:

x1 + x2 + 2x3 + 2x4 + 2x5 ≤ 7

In general: Try to find ways to add up constraints such that all variable coefficients are even but
the right-hand side is odd.

There are decent heuristics to find such cutting planes; in general, the separation problem for these
cuts is NP-hard.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 33 / 35

SOME CUTTING PLANE TEMPLATES

COVER CUTS

The previous cutting planes (except for Gomory cuts) were generated from multiple valid
inequalities. Here, valid inequality means an inequality that is not violated by any integer feasible
solution.

There are also ways to generate cuts from a single valid inequality (this is a well-researched topic).
A single inequality is often called a Knapsack constraint, because Knapsack is:

max cT x

aT x ≤ z

Suppose x ∈ {0, 1}n. It is easy to generate minimal covers for a Knapsack constraint: minimal sets
C with ∑

i∈C

aixi > z.

Cover Cut:
∑
i∈C

xi ≤ |C| − 1.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 34 / 35

SOME CUTTING PLANE TEMPLATES

COVER CUTS

The previous cutting planes (except for Gomory cuts) were generated from multiple valid
inequalities. Here, valid inequality means an inequality that is not violated by any integer feasible
solution.

There are also ways to generate cuts from a single valid inequality (this is a well-researched topic).
A single inequality is often called a Knapsack constraint, because Knapsack is:

max cT x

aT x ≤ z

Suppose x ∈ {0, 1}n. It is easy to generate minimal covers for a Knapsack constraint: minimal sets
C with ∑

i∈C

aixi > z.

Cover Cut:
∑
i∈C

xi ≤ |C| − 1.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 34 / 35

SOME CUTTING PLANE TEMPLATES

COVER CUTS

The previous cutting planes (except for Gomory cuts) were generated from multiple valid
inequalities. Here, valid inequality means an inequality that is not violated by any integer feasible
solution.

There are also ways to generate cuts from a single valid inequality (this is a well-researched topic).
A single inequality is often called a Knapsack constraint, because Knapsack is:

max cT x

aT x ≤ z

Suppose x ∈ {0, 1}n. It is easy to generate minimal covers for a Knapsack constraint: minimal sets
C with ∑

i∈C

aixi > z.

Cover Cut:
∑
i∈C

xi ≤ |C| − 1.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 34 / 35

SOME CUTTING PLANE TEMPLATES

COVER CUTS

The previous cutting planes (except for Gomory cuts) were generated from multiple valid
inequalities. Here, valid inequality means an inequality that is not violated by any integer feasible
solution.

There are also ways to generate cuts from a single valid inequality (this is a well-researched topic).
A single inequality is often called a Knapsack constraint, because Knapsack is:

max cT x

aT x ≤ z

Suppose x ∈ {0, 1}n. It is easy to generate minimal covers for a Knapsack constraint: minimal sets
C with ∑

i∈C

aixi > z.

Cover Cut:
∑
i∈C

xi ≤ |C| − 1.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 34 / 35

SOME CUTTING PLANE TEMPLATES

MORE CUTTING PLANES

There are many more cutting plane templates:

There are generalizations of Gomory cuts for mixed integer programs (mixed-integer
rounding (MIR) cuts).

There are attempts for solving the separation problem for mixed-integer Knapsacks exactly,
i.e., taking a single mixed-integer constraint and separating w.r.t. the convex hull
conv({aT x ≤ b, x ∈ Zk × Rℓ}); this requires solving mixed-integer Knapsack problems
many times.

There are cuts based on detecting network flow-type problems in the problem.

. . .

A lot of research goes into finding efficient routines to generate effective cuts.
It takes a lot of work to balance time needed for finding cuts vs. time saved by better bounds and
earlier pruning. It is very hard to build a competitive MIP solver!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 30, 2024 35 / 35

	Motivation
	Definition
	Branch and Bound
	Branch and Cut
	Some Cutting Plane Templates

