
LINEAR PROGRAMMING

[V. CH8]: IMPLEMENTATION CONSIDERATIONS

Phillip Keldenich Ahmad Moradi

Department of Computer Science
Algorithms Department

TU Braunschweig

January 8, 2024



RECAP

RECAP

IMPLEMENTATION AND RUNTIME

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 2 / 16



RECAP

Before the Christmas break, we rewrote Simplex in matrix notation.

max
x

n∑
j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi, i = 1, 2, · · · ,m

xj ≥ 0, j = 1, 2, · · · , n

We introduced slack variables as follows:

xn+i = bi −
n∑

j=1

aijxj , i = 1, . . . ,m

wi is renamed as xn+i .

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 3 / 16



RECAP

With these slack variables, we wrote our problem in matrix form:

max
x

cT x

subject to Ax = b
x ≥ 0

where

A =


a1,1 a1,2 · · · a1,n 1
a2,1 a2,2 · · · a2,n 1

...
...

. . .
...

. . .
am,1 am,2 · · · am,n 1

 , b =


b1
b2
...

bm

 , c =



c1
c2
...
cn
0
...
0


, x =



x1

x2

...
xn

xn+1

...
xn+m



P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 4 / 16



RECAP

We reordered the variables (columns of A, components of c, x) depending on the sets B,N of basic
and non-basic variables such that the basic variables come first. Note that B,N change in each
Simplex iteration.

We wrote A and x in a partitioned-matrix form as: A = [B N ] , x =

[
xB
xN

]
.

We also wrote

Ax = [B N ]

[
xB
xN

]
= BxB +NxN ,

cT x =

[
cB
cN

]T [
xB
xN

]
= cTBxB + cTNxN .

Previously, we used dictionaries to express the basic values xB in terms of non-basic variables. We
can do that with matrices as well:

Ax = BxB +NxN = b ⇔ xB = B−1b−B−1NxN

The objective function was also expressed in terms of non-basic variables:

ζ = cTBxB + cTNxN

= cTB
(
B−1b−B−1NxN

)
+ cTNxN

= cTBB−1b−
((

B−1N
)T

cB − cN
)T

xN

Question: How do we obtain the dictionary solution (basic solution)?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 5 / 16



RECAP

We reordered the variables (columns of A, components of c, x) depending on the sets B,N of basic
and non-basic variables such that the basic variables come first. Note that B,N change in each
Simplex iteration.

We wrote A and x in a partitioned-matrix form as: A = [B N ] , x =

[
xB
xN

]
.

We also wrote

Ax = [B N ]

[
xB
xN

]
= BxB +NxN ,

cT x =

[
cB
cN

]T [
xB
xN

]
= cTBxB + cTNxN .

Previously, we used dictionaries to express the basic values xB in terms of non-basic variables. We
can do that with matrices as well:

Ax = BxB +NxN = b ⇔ xB = B−1b−B−1NxN

The objective function was also expressed in terms of non-basic variables:

ζ = cTBxB + cTNxN

= cTB
(
B−1b−B−1NxN

)
+ cTNxN

= cTBB−1b−
((

B−1N
)T

cB − cN
)T

xN

Question: How do we obtain the dictionary solution (basic solution)?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 5 / 16



RECAP

We reordered the variables (columns of A, components of c, x) depending on the sets B,N of basic
and non-basic variables such that the basic variables come first. Note that B,N change in each
Simplex iteration.

We wrote A and x in a partitioned-matrix form as: A = [B N ] , x =

[
xB
xN

]
.

We also wrote

Ax = [B N ]

[
xB
xN

]
= BxB +NxN ,

cT x =

[
cB
cN

]T [
xB
xN

]
= cTBxB + cTNxN .

Previously, we used dictionaries to express the basic values xB in terms of non-basic variables. We
can do that with matrices as well:

Ax = BxB +NxN = b ⇔ xB = B−1b−B−1NxN

The objective function was also expressed in terms of non-basic variables:

ζ = cTBxB + cTNxN

= cTB
(
B−1b−B−1NxN

)
+ cTNxN

= cTBB−1b−
((

B−1N
)T

cB − cN
)T

xN

Question: How do we obtain the dictionary solution (basic solution)?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 5 / 16



RECAP

We reordered the variables (columns of A, components of c, x) depending on the sets B,N of basic
and non-basic variables such that the basic variables come first. Note that B,N change in each
Simplex iteration.

We wrote A and x in a partitioned-matrix form as: A = [B N ] , x =

[
xB
xN

]
.

We also wrote

Ax = [B N ]

[
xB
xN

]
= BxB +NxN ,

cT x =

[
cB
cN

]T [
xB
xN

]
= cTBxB + cTNxN .

Previously, we used dictionaries to express the basic values xB in terms of non-basic variables. We
can do that with matrices as well:

Ax = BxB +NxN = b ⇔ xB = B−1b−B−1NxN

The objective function was also expressed in terms of non-basic variables:

ζ = cTBxB + cTNxN

= cTB
(
B−1b−B−1NxN

)
+ cTNxN

= cTBB−1b−
((

B−1N
)T

cB − cN
)T

xN

Question: How do we obtain the dictionary solution (basic solution)?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 5 / 16



RECAP

We reordered the variables (columns of A, components of c, x) depending on the sets B,N of basic
and non-basic variables such that the basic variables come first. Note that B,N change in each
Simplex iteration.

We wrote A and x in a partitioned-matrix form as: A = [B N ] , x =

[
xB
xN

]
.

We also wrote

Ax = [B N ]

[
xB
xN

]
= BxB +NxN ,

cT x =

[
cB
cN

]T [
xB
xN

]
= cTBxB + cTNxN .

Previously, we used dictionaries to express the basic values xB in terms of non-basic variables. We
can do that with matrices as well:

Ax = BxB +NxN = b ⇔ xB = B−1b−B−1NxN

The objective function was also expressed in terms of non-basic variables:

ζ = cTBxB + cTNxN

= cTB
(
B−1b−B−1NxN

)
+ cTNxN

= cTBB−1b−
((

B−1N
)T

cB − cN
)T

xN

Question: How do we obtain the dictionary solution (basic solution)?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 5 / 16



RECAP

We also considered the dual Simplex and corresponding dictionaries. The dual slacks are
complementary to primal originals and vice versa. We accordingly re-order the dual variables

(z1, . . . , zn, y1, . . . , ym) = (z1, . . . , zn, zn+1, . . . , zn+m).

We also split the dual into basic and non-basic parts zB, zN ; a dictionary expressed zN in terms of
zB . With matrices:

zN =
((

B−1N
)T

cB − cN
)
+B−1NzB.

Primal and dual dictionary solutions x∗, z∗ are obtained with xN = 0, zB = 0:

x∗
B = B−1b, x∗

N = 0, z∗B = 0, z∗N =
((

B−1N
)T

cB − cN
)
, ζ∗ = cTBx∗

B.

Primal dictionary:
ζ = ζ∗ − (z∗N )T xN

xB = x∗
B −B−1NxN

Dual dictionary:
−ξ = −ζ∗ − (x∗

B)
T zB

zN = z∗N +B−1NzB

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 6 / 16



RECAP

We also considered the dual Simplex and corresponding dictionaries. The dual slacks are
complementary to primal originals and vice versa. We accordingly re-order the dual variables

(z1, . . . , zn, y1, . . . , ym) = (z1, . . . , zn, zn+1, . . . , zn+m).

We also split the dual into basic and non-basic parts zB, zN ; a dictionary expressed zN in terms of
zB . With matrices:

zN =
((

B−1N
)T

cB − cN
)
+B−1NzB.

Primal and dual dictionary solutions x∗, z∗ are obtained with xN = 0, zB = 0:

x∗
B = B−1b, x∗

N = 0, z∗B = 0, z∗N =
((

B−1N
)T

cB − cN
)
, ζ∗ = cTBx∗

B.

Primal dictionary:
ζ = ζ∗ − (z∗N )T xN

xB = x∗
B −B−1NxN

Dual dictionary:
−ξ = −ζ∗ − (x∗

B)
T zB

zN = z∗N +B−1NzB

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 6 / 16



RECAP

We also considered the dual Simplex and corresponding dictionaries. The dual slacks are
complementary to primal originals and vice versa. We accordingly re-order the dual variables

(z1, . . . , zn, y1, . . . , ym) = (z1, . . . , zn, zn+1, . . . , zn+m).

We also split the dual into basic and non-basic parts zB, zN ; a dictionary expressed zN in terms of
zB . With matrices:

zN =
((

B−1N
)T

cB − cN
)
+B−1NzB.

Primal and dual dictionary solutions x∗, z∗ are obtained with xN = 0, zB = 0:

x∗
B = B−1b, x∗

N = 0, z∗B = 0, z∗N =
((

B−1N
)T

cB − cN
)
, ζ∗ = cTBx∗

B.

Primal dictionary:
ζ = ζ∗ − (z∗N )T xN

xB = x∗
B −B−1NxN

Dual dictionary:
−ξ = −ζ∗ − (x∗

B)
T zB

zN = z∗N +B−1NzB

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 6 / 16



RECAP

We also considered the dual Simplex and corresponding dictionaries. The dual slacks are
complementary to primal originals and vice versa. We accordingly re-order the dual variables

(z1, . . . , zn, y1, . . . , ym) = (z1, . . . , zn, zn+1, . . . , zn+m).

We also split the dual into basic and non-basic parts zB, zN ; a dictionary expressed zN in terms of
zB . With matrices:

zN =
((

B−1N
)T

cB − cN
)
+B−1NzB.

Primal and dual dictionary solutions x∗, z∗ are obtained with xN = 0, zB = 0:

x∗
B = B−1b, x∗

N = 0, z∗B = 0, z∗N =
((

B−1N
)T

cB − cN
)
, ζ∗ = cTBx∗

B.

Primal dictionary:
ζ = ζ∗ − (z∗N )T xN

xB = x∗
B −B−1NxN

Dual dictionary:
−ξ = −ζ∗ − (x∗

B)
T zB

zN = z∗N +B−1NzB

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 6 / 16



RECAP

We also considered the dual Simplex and corresponding dictionaries. The dual slacks are
complementary to primal originals and vice versa. We accordingly re-order the dual variables

(z1, . . . , zn, y1, . . . , ym) = (z1, . . . , zn, zn+1, . . . , zn+m).

We also split the dual into basic and non-basic parts zB, zN ; a dictionary expressed zN in terms of
zB . With matrices:

zN =
((

B−1N
)T

cB − cN
)
+B−1NzB.

Primal and dual dictionary solutions x∗, z∗ are obtained with xN = 0, zB = 0:

x∗
B = B−1b, x∗

N = 0, z∗B = 0, z∗N =
((

B−1N
)T

cB − cN
)
, ζ∗ = cTBx∗

B.

Primal dictionary:
ζ = ζ∗ − (z∗N )T xN

xB = x∗
B −B−1NxN

Dual dictionary:
−ξ = −ζ∗ − (x∗

B)
T zB

zN = z∗N +B−1NzB

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 6 / 16



IMPLEMENTATION AND RUNTIME

RECAP

IMPLEMENTATION AND RUNTIME

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 7 / 16



IMPLEMENTATION AND RUNTIME

FACTORS OF SIMPLEX TOTAL RUNTIME

There are two factors for the total runtime of the Simplex algorithm:

Number of iterations,

Time per iteration.

Recall: The number of iterations depends mostly on the instance and the pivot strategy. Decent in
practice, but we still have major open theoretical questions.

Today: We consider the time per iteration. We are going to focus mostly on the average time per
iteration (or amortized time), allowing us to have some more expensive iterations as long as the
total time is low.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 8 / 16



IMPLEMENTATION AND RUNTIME

TIME PER ITERATION: DICTIONARIES

If we have n (original) variables and m constraints in our problem:

How many rows does the dictionary have?

How many columns does the dictionary have?

The dictionary has m+ 1 rows and n+ 1 columns.

In a naı̈ve approach, the dictionary has to be completely updated (rewritten) in each iteration
(during substitution).

In a careful implementation, we can get away with O(1) time per updated entry, so we get a
running time of O(nm).

The other steps (selecting leaving/entering variable, reformulating one row) are cheaper than that.

This runtime is actually often okay (unless n >> m); however, this approach cannot make use of
matrices with many zeros and also has numerical problems (stability).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 9 / 16



IMPLEMENTATION AND RUNTIME

TIME PER ITERATION: DICTIONARIES

If we have n (original) variables and m constraints in our problem:

How many rows does the dictionary have?

How many columns does the dictionary have?

The dictionary has m+ 1 rows and n+ 1 columns.

In a naı̈ve approach, the dictionary has to be completely updated (rewritten) in each iteration
(during substitution).

In a careful implementation, we can get away with O(1) time per updated entry, so we get a
running time of O(nm).

The other steps (selecting leaving/entering variable, reformulating one row) are cheaper than that.

This runtime is actually often okay (unless n >> m); however, this approach cannot make use of
matrices with many zeros and also has numerical problems (stability).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 9 / 16



IMPLEMENTATION AND RUNTIME

TIME PER ITERATION: DICTIONARIES

If we have n (original) variables and m constraints in our problem:

How many rows does the dictionary have?

How many columns does the dictionary have?

The dictionary has m+ 1 rows and n+ 1 columns.

In a naı̈ve approach, the dictionary has to be completely updated (rewritten) in each iteration
(during substitution).

In a careful implementation, we can get away with O(1) time per updated entry, so we get a
running time of O(nm).

The other steps (selecting leaving/entering variable, reformulating one row) are cheaper than that.

This runtime is actually often okay (unless n >> m); however, this approach cannot make use of
matrices with many zeros and also has numerical problems (stability).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 9 / 16



IMPLEMENTATION AND RUNTIME

TIME PER ITERATION: DICTIONARIES

If we have n (original) variables and m constraints in our problem:

How many rows does the dictionary have?

How many columns does the dictionary have?

The dictionary has m+ 1 rows and n+ 1 columns.

In a naı̈ve approach, the dictionary has to be completely updated (rewritten) in each iteration
(during substitution).

In a careful implementation, we can get away with O(1) time per updated entry, so we get a
running time of O(nm).

The other steps (selecting leaving/entering variable, reformulating one row) are cheaper than that.

This runtime is actually often okay (unless n >> m); however, this approach cannot make use of
matrices with many zeros and also has numerical problems (stability).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 9 / 16



IMPLEMENTATION AND RUNTIME

TIME PER ITERATION: DICTIONARIES

If we have n (original) variables and m constraints in our problem:

How many rows does the dictionary have?

How many columns does the dictionary have?

The dictionary has m+ 1 rows and n+ 1 columns.

In a naı̈ve approach, the dictionary has to be completely updated (rewritten) in each iteration
(during substitution).

In a careful implementation, we can get away with O(1) time per updated entry, so we get a
running time of O(nm).

The other steps (selecting leaving/entering variable, reformulating one row) are cheaper than that.

This runtime is actually often okay (unless n >> m); however, this approach cannot make use of
matrices with many zeros and also has numerical problems (stability).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 9 / 16



IMPLEMENTATION AND RUNTIME

TIME PER ITERATION: DICTIONARIES

If we have n (original) variables and m constraints in our problem:

How many rows does the dictionary have?

How many columns does the dictionary have?

The dictionary has m+ 1 rows and n+ 1 columns.

In a naı̈ve approach, the dictionary has to be completely updated (rewritten) in each iteration
(during substitution).

In a careful implementation, we can get away with O(1) time per updated entry, so we get a
running time of O(nm).

The other steps (selecting leaving/entering variable, reformulating one row) are cheaper than that.

This runtime is actually often okay (unless n >> m); however, this approach cannot make use of
matrices with many zeros and also has numerical problems (stability).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 9 / 16



IMPLEMENTATION AND RUNTIME

MATRIX NOTATION VERSION

What might be the expensive part of each iteration?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 10 / 16



IMPLEMENTATION AND RUNTIME

Most expensive operations (primal, dual is analogous): ∆xB = B−1Nej ,∆zN = −(B−1N)T ei.

In a naive implementation using matrices, we have to find B−1 in each iteration — this takes
O(mω logk m), where k is some constant and ω < 2.3729 is the matrix multiplication exponent;
straightforward Gaussian elimination takes O(m3). Matrix multiplication of B−1N also brings in
the dependency on n. In practice, we never compute B−1.

∆xB = B−1Nej = B−1aj is the solution to Bx = aj .
∆zN = −NT v, where v is the solution to BT v = ei (proof based on (BT )−1 = (B−1)T ).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 11 / 16



IMPLEMENTATION AND RUNTIME

Most expensive operations (primal, dual is analogous): ∆xB = B−1Nej ,∆zN = −(B−1N)T ei.

In a naive implementation using matrices, we have to find B−1 in each iteration — this takes
O(mω logk m), where k is some constant and ω < 2.3729 is the matrix multiplication exponent;
straightforward Gaussian elimination takes O(m3). Matrix multiplication of B−1N also brings in
the dependency on n. In practice, we never compute B−1.

∆xB = B−1Nej = B−1aj is the solution to Bx = aj .
∆zN = −NT v, where v is the solution to BT v = ei (proof based on (BT )−1 = (B−1)T ).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 11 / 16



IMPLEMENTATION AND RUNTIME

Most expensive operations (primal, dual is analogous): ∆xB = B−1Nej ,∆zN = −(B−1N)T ei.

In a naive implementation using matrices, we have to find B−1 in each iteration — this takes
O(mω logk m), where k is some constant and ω < 2.3729 is the matrix multiplication exponent;
straightforward Gaussian elimination takes O(m3). Matrix multiplication of B−1N also brings in
the dependency on n. In practice, we never compute B−1.

∆xB = B−1Nej = B−1aj is the solution to Bx = aj .

∆zN = −NT v, where v is the solution to BT v = ei (proof based on (BT )−1 = (B−1)T ).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 11 / 16



IMPLEMENTATION AND RUNTIME

Most expensive operations (primal, dual is analogous): ∆xB = B−1Nej ,∆zN = −(B−1N)T ei.

In a naive implementation using matrices, we have to find B−1 in each iteration — this takes
O(mω logk m), where k is some constant and ω < 2.3729 is the matrix multiplication exponent;
straightforward Gaussian elimination takes O(m3). Matrix multiplication of B−1N also brings in
the dependency on n. In practice, we never compute B−1.

∆xB = B−1Nej = B−1aj is the solution to Bx = aj .
∆zN = −NT v, where v is the solution to BT v = ei (proof based on (BT )−1 = (B−1)T ).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 11 / 16



IMPLEMENTATION AND RUNTIME

How do we solve these systems?

If we look at solving the linear equation systems in isolation, we gain almost nothing. However, if
we find a way to preprocess B such that

solving the linear equation systems is easy/fast,

updating the preprocessed datastructure to incorporate a base change is easy/fast,

we can speed up the process.

Idea: LU factorization B = LU , where L is a lower and U is an upper triangular matrix.
Basic approach: Gaussian elimination (there are faster methods).

See example on the board (for later reference, see Chapter 8 in the reference book by Vanderbei).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 12 / 16



IMPLEMENTATION AND RUNTIME

How do we solve these systems?

If we look at solving the linear equation systems in isolation, we gain almost nothing.

However, if
we find a way to preprocess B such that

solving the linear equation systems is easy/fast,

updating the preprocessed datastructure to incorporate a base change is easy/fast,

we can speed up the process.

Idea: LU factorization B = LU , where L is a lower and U is an upper triangular matrix.
Basic approach: Gaussian elimination (there are faster methods).

See example on the board (for later reference, see Chapter 8 in the reference book by Vanderbei).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 12 / 16



IMPLEMENTATION AND RUNTIME

How do we solve these systems?

If we look at solving the linear equation systems in isolation, we gain almost nothing. However, if
we find a way to preprocess B such that

solving the linear equation systems is easy/fast,

updating the preprocessed datastructure to incorporate a base change is easy/fast,

we can speed up the process.

Idea: LU factorization B = LU , where L is a lower and U is an upper triangular matrix.
Basic approach: Gaussian elimination (there are faster methods).

See example on the board (for later reference, see Chapter 8 in the reference book by Vanderbei).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 12 / 16



IMPLEMENTATION AND RUNTIME

How do we solve these systems?

If we look at solving the linear equation systems in isolation, we gain almost nothing. However, if
we find a way to preprocess B such that

solving the linear equation systems is easy/fast,

updating the preprocessed datastructure to incorporate a base change is easy/fast,

we can speed up the process.

Idea: LU factorization B = LU , where L is a lower and U is an upper triangular matrix.
Basic approach: Gaussian elimination (there are faster methods).

See example on the board (for later reference, see Chapter 8 in the reference book by Vanderbei).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 12 / 16



IMPLEMENTATION AND RUNTIME

How do we solve these systems?

If we look at solving the linear equation systems in isolation, we gain almost nothing. However, if
we find a way to preprocess B such that

solving the linear equation systems is easy/fast,

updating the preprocessed datastructure to incorporate a base change is easy/fast,

we can speed up the process.

Idea: LU factorization B = LU , where L is a lower and U is an upper triangular matrix.

Basic approach: Gaussian elimination (there are faster methods).

See example on the board (for later reference, see Chapter 8 in the reference book by Vanderbei).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 12 / 16



IMPLEMENTATION AND RUNTIME

How do we solve these systems?

If we look at solving the linear equation systems in isolation, we gain almost nothing. However, if
we find a way to preprocess B such that

solving the linear equation systems is easy/fast,

updating the preprocessed datastructure to incorporate a base change is easy/fast,

we can speed up the process.

Idea: LU factorization B = LU , where L is a lower and U is an upper triangular matrix.
Basic approach: Gaussian elimination (there are faster methods).

See example on the board (for later reference, see Chapter 8 in the reference book by Vanderbei).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 12 / 16



IMPLEMENTATION AND RUNTIME

How do we solve these systems?

If we look at solving the linear equation systems in isolation, we gain almost nothing. However, if
we find a way to preprocess B such that

solving the linear equation systems is easy/fast,

updating the preprocessed datastructure to incorporate a base change is easy/fast,

we can speed up the process.

Idea: LU factorization B = LU , where L is a lower and U is an upper triangular matrix.
Basic approach: Gaussian elimination (there are faster methods).

See example on the board (for later reference, see Chapter 8 in the reference book by Vanderbei).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 12 / 16



IMPLEMENTATION AND RUNTIME

USING LU-FACTORIZATIONS

Assume we have an LU -factorization B = LU and want to solve Bx = LUx = y. How can we do
that quickly?

First, we solve Lz = y for z, then Ux = z for x. How to solve the individual systems?

Approach: Forward substitution (for lower triangular matrices) and backward substitution (for
upper triangular matrices).
Example: See board (for later reference, see Chapter 8 of the Vanderbei book).

What is the runtime of forward/backward substitution?

Note that BT = (LU)T = UTLT gives an LU-factorization of BT , which also allows the second
solve we need in Simplex.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 13 / 16



IMPLEMENTATION AND RUNTIME

USING LU-FACTORIZATIONS

Assume we have an LU -factorization B = LU and want to solve Bx = LUx = y. How can we do
that quickly?

First, we solve Lz = y for z, then Ux = z for x. How to solve the individual systems?

Approach: Forward substitution (for lower triangular matrices) and backward substitution (for
upper triangular matrices).
Example: See board (for later reference, see Chapter 8 of the Vanderbei book).

What is the runtime of forward/backward substitution?

Note that BT = (LU)T = UTLT gives an LU-factorization of BT , which also allows the second
solve we need in Simplex.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 13 / 16



IMPLEMENTATION AND RUNTIME

USING LU-FACTORIZATIONS

Assume we have an LU -factorization B = LU and want to solve Bx = LUx = y. How can we do
that quickly?

First, we solve Lz = y for z, then Ux = z for x. How to solve the individual systems?

Approach: Forward substitution (for lower triangular matrices) and backward substitution (for
upper triangular matrices).
Example: See board (for later reference, see Chapter 8 of the Vanderbei book).

What is the runtime of forward/backward substitution?

Note that BT = (LU)T = UTLT gives an LU-factorization of BT , which also allows the second
solve we need in Simplex.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 13 / 16



IMPLEMENTATION AND RUNTIME

USING LU-FACTORIZATIONS

Assume we have an LU -factorization B = LU and want to solve Bx = LUx = y. How can we do
that quickly?

First, we solve Lz = y for z, then Ux = z for x. How to solve the individual systems?

Approach: Forward substitution (for lower triangular matrices) and backward substitution (for
upper triangular matrices).
Example: See board (for later reference, see Chapter 8 of the Vanderbei book).

What is the runtime of forward/backward substitution?

Note that BT = (LU)T = UTLT gives an LU-factorization of BT , which also allows the second
solve we need in Simplex.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 13 / 16



IMPLEMENTATION AND RUNTIME

USING LU-FACTORIZATIONS

Assume we have an LU -factorization B = LU and want to solve Bx = LUx = y. How can we do
that quickly?

First, we solve Lz = y for z, then Ux = z for x. How to solve the individual systems?

Approach: Forward substitution (for lower triangular matrices) and backward substitution (for
upper triangular matrices).
Example: See board (for later reference, see Chapter 8 of the Vanderbei book).

What is the runtime of forward/backward substitution?

Note that BT = (LU)T = UTLT gives an LU-factorization of BT , which also allows the second
solve we need in Simplex.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 13 / 16



IMPLEMENTATION AND RUNTIME

SPARSITY

One very important notion is sparsity.

How many zeros (compared to all entries) do our matrices
and vectors have? A sparse matrix (as opposed to a dense matrix) has only relatively few
non-zeros.

In very many practical applications, only a small fraction of matrix entries is non-zero (also, slack
variables). Special datastructures storing only non-zeros and algorithms adapted to them can
make use of this to reduce the amount of work if the matrix is sparse. That’s also why we left
zeros blank in the examples!

We want to keep the number of non-zeros added by our procedures low (minimize the so-called
fill-in). Strictly minimizing the fill-in of an LU-factorization is NP-hard (but there are decent
heuristics).

We can (and sometimes have to) swap rows and columns (this is nothing but relabeling variables
and constraints) while computing an LU-factorization. This can be used (heuristically) to reduce
fill-in using the so-called minimum degree heuristic:

Before eliminating non-zeros below a pivot in a column, scan for a row with minimum
number of uneliminated non-zeros, and swap that row to be the new pivot row.

Then scan the uneliminated non-zeros in this row and select the one in whose column there
are the fewest possible uneliminated non-zeros. Swap this column to be the new pivot
column.

One step example: see board. In practice, there are more considerations (numerics, other
heuristics).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 14 / 16



IMPLEMENTATION AND RUNTIME

SPARSITY

One very important notion is sparsity. How many zeros (compared to all entries) do our matrices
and vectors have? A sparse matrix (as opposed to a dense matrix) has only relatively few
non-zeros.

In very many practical applications, only a small fraction of matrix entries is non-zero (also, slack
variables). Special datastructures storing only non-zeros and algorithms adapted to them can
make use of this to reduce the amount of work if the matrix is sparse. That’s also why we left
zeros blank in the examples!

We want to keep the number of non-zeros added by our procedures low (minimize the so-called
fill-in). Strictly minimizing the fill-in of an LU-factorization is NP-hard (but there are decent
heuristics).

We can (and sometimes have to) swap rows and columns (this is nothing but relabeling variables
and constraints) while computing an LU-factorization. This can be used (heuristically) to reduce
fill-in using the so-called minimum degree heuristic:

Before eliminating non-zeros below a pivot in a column, scan for a row with minimum
number of uneliminated non-zeros, and swap that row to be the new pivot row.

Then scan the uneliminated non-zeros in this row and select the one in whose column there
are the fewest possible uneliminated non-zeros. Swap this column to be the new pivot
column.

One step example: see board. In practice, there are more considerations (numerics, other
heuristics).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 14 / 16



IMPLEMENTATION AND RUNTIME

SPARSITY

One very important notion is sparsity. How many zeros (compared to all entries) do our matrices
and vectors have? A sparse matrix (as opposed to a dense matrix) has only relatively few
non-zeros.

In very many practical applications, only a small fraction of matrix entries is non-zero (also, slack
variables). Special datastructures storing only non-zeros and algorithms adapted to them can
make use of this to reduce the amount of work if the matrix is sparse. That’s also why we left
zeros blank in the examples!

We want to keep the number of non-zeros added by our procedures low (minimize the so-called
fill-in). Strictly minimizing the fill-in of an LU-factorization is NP-hard (but there are decent
heuristics).

We can (and sometimes have to) swap rows and columns (this is nothing but relabeling variables
and constraints) while computing an LU-factorization. This can be used (heuristically) to reduce
fill-in using the so-called minimum degree heuristic:

Before eliminating non-zeros below a pivot in a column, scan for a row with minimum
number of uneliminated non-zeros, and swap that row to be the new pivot row.

Then scan the uneliminated non-zeros in this row and select the one in whose column there
are the fewest possible uneliminated non-zeros. Swap this column to be the new pivot
column.

One step example: see board. In practice, there are more considerations (numerics, other
heuristics).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 14 / 16



IMPLEMENTATION AND RUNTIME

SPARSITY

One very important notion is sparsity. How many zeros (compared to all entries) do our matrices
and vectors have? A sparse matrix (as opposed to a dense matrix) has only relatively few
non-zeros.

In very many practical applications, only a small fraction of matrix entries is non-zero (also, slack
variables). Special datastructures storing only non-zeros and algorithms adapted to them can
make use of this to reduce the amount of work if the matrix is sparse. That’s also why we left
zeros blank in the examples!

We want to keep the number of non-zeros added by our procedures low (minimize the so-called
fill-in). Strictly minimizing the fill-in of an LU-factorization is NP-hard (but there are decent
heuristics).

We can (and sometimes have to) swap rows and columns (this is nothing but relabeling variables
and constraints) while computing an LU-factorization. This can be used (heuristically) to reduce
fill-in using the so-called minimum degree heuristic:

Before eliminating non-zeros below a pivot in a column, scan for a row with minimum
number of uneliminated non-zeros, and swap that row to be the new pivot row.

Then scan the uneliminated non-zeros in this row and select the one in whose column there
are the fewest possible uneliminated non-zeros. Swap this column to be the new pivot
column.

One step example: see board. In practice, there are more considerations (numerics, other
heuristics).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 14 / 16



IMPLEMENTATION AND RUNTIME

SPARSITY

One very important notion is sparsity. How many zeros (compared to all entries) do our matrices
and vectors have? A sparse matrix (as opposed to a dense matrix) has only relatively few
non-zeros.

In very many practical applications, only a small fraction of matrix entries is non-zero (also, slack
variables). Special datastructures storing only non-zeros and algorithms adapted to them can
make use of this to reduce the amount of work if the matrix is sparse. That’s also why we left
zeros blank in the examples!

We want to keep the number of non-zeros added by our procedures low (minimize the so-called
fill-in). Strictly minimizing the fill-in of an LU-factorization is NP-hard (but there are decent
heuristics).

We can (and sometimes have to) swap rows and columns (this is nothing but relabeling variables
and constraints) while computing an LU-factorization. This can be used (heuristically) to reduce
fill-in using the so-called minimum degree heuristic:

Before eliminating non-zeros below a pivot in a column, scan for a row with minimum
number of uneliminated non-zeros, and swap that row to be the new pivot row.

Then scan the uneliminated non-zeros in this row and select the one in whose column there
are the fewest possible uneliminated non-zeros. Swap this column to be the new pivot
column.

One step example: see board. In practice, there are more considerations (numerics, other
heuristics).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 14 / 16



IMPLEMENTATION AND RUNTIME

SPARSITY

One very important notion is sparsity. How many zeros (compared to all entries) do our matrices
and vectors have? A sparse matrix (as opposed to a dense matrix) has only relatively few
non-zeros.

In very many practical applications, only a small fraction of matrix entries is non-zero (also, slack
variables). Special datastructures storing only non-zeros and algorithms adapted to them can
make use of this to reduce the amount of work if the matrix is sparse. That’s also why we left
zeros blank in the examples!

We want to keep the number of non-zeros added by our procedures low (minimize the so-called
fill-in). Strictly minimizing the fill-in of an LU-factorization is NP-hard (but there are decent
heuristics).

We can (and sometimes have to) swap rows and columns (this is nothing but relabeling variables
and constraints) while computing an LU-factorization. This can be used (heuristically) to reduce
fill-in using the so-called minimum degree heuristic:

Before eliminating non-zeros below a pivot in a column, scan for a row with minimum
number of uneliminated non-zeros, and swap that row to be the new pivot row.

Then scan the uneliminated non-zeros in this row and select the one in whose column there
are the fewest possible uneliminated non-zeros. Swap this column to be the new pivot
column.

One step example: see board. In practice, there are more considerations (numerics, other
heuristics).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 14 / 16



IMPLEMENTATION AND RUNTIME

SPARSITY

One very important notion is sparsity. How many zeros (compared to all entries) do our matrices
and vectors have? A sparse matrix (as opposed to a dense matrix) has only relatively few
non-zeros.

In very many practical applications, only a small fraction of matrix entries is non-zero (also, slack
variables). Special datastructures storing only non-zeros and algorithms adapted to them can
make use of this to reduce the amount of work if the matrix is sparse. That’s also why we left
zeros blank in the examples!

We want to keep the number of non-zeros added by our procedures low (minimize the so-called
fill-in). Strictly minimizing the fill-in of an LU-factorization is NP-hard (but there are decent
heuristics).

We can (and sometimes have to) swap rows and columns (this is nothing but relabeling variables
and constraints) while computing an LU-factorization. This can be used (heuristically) to reduce
fill-in using the so-called minimum degree heuristic:

Before eliminating non-zeros below a pivot in a column, scan for a row with minimum
number of uneliminated non-zeros, and swap that row to be the new pivot row.

Then scan the uneliminated non-zeros in this row and select the one in whose column there
are the fewest possible uneliminated non-zeros. Swap this column to be the new pivot
column.

One step example: see board. In practice, there are more considerations (numerics, other
heuristics).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 14 / 16



IMPLEMENTATION AND RUNTIME

SPARSITY

One very important notion is sparsity. How many zeros (compared to all entries) do our matrices
and vectors have? A sparse matrix (as opposed to a dense matrix) has only relatively few
non-zeros.

In very many practical applications, only a small fraction of matrix entries is non-zero (also, slack
variables). Special datastructures storing only non-zeros and algorithms adapted to them can
make use of this to reduce the amount of work if the matrix is sparse. That’s also why we left
zeros blank in the examples!

We want to keep the number of non-zeros added by our procedures low (minimize the so-called
fill-in). Strictly minimizing the fill-in of an LU-factorization is NP-hard (but there are decent
heuristics).

We can (and sometimes have to) swap rows and columns (this is nothing but relabeling variables
and constraints) while computing an LU-factorization. This can be used (heuristically) to reduce
fill-in using the so-called minimum degree heuristic:

Before eliminating non-zeros below a pivot in a column, scan for a row with minimum
number of uneliminated non-zeros, and swap that row to be the new pivot row.

Then scan the uneliminated non-zeros in this row and select the one in whose column there
are the fewest possible uneliminated non-zeros. Swap this column to be the new pivot
column.

One step example: see board. In practice, there are more considerations (numerics, other
heuristics).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 14 / 16



IMPLEMENTATION AND RUNTIME

UPDATING OR REUSING A FACTORIZATION

From one iteration to the next, the basis matrix B only changes by one column being replaced
with another.

In other words, Bnew = B + (aj − ai)e
T
i .

We can reinterpret this as Bnew = B (I +B−1(aj − ai)e
T
i )︸ ︷︷ ︸

=:E

.

We have B−1aj = ∆xB (which we computed anyway) and B−1ai = ei.
Therefore, E = (I + (∆xB − ei)︸ ︷︷ ︸

=:u

eTi︸︷︷︸
=:vT

).

We have E−1 = I −
1

1 + vTu
uvT . Let’s prove that (board).

Because we can easily invert E (the inverse even has a nice form) we can still solve systems w.r.t.
Bnew instead of B. This works across multiple iterations (i.e., solving BE0E1E2 · · ·Ekx = y, but
becomes less efficient the more Es we add.

We can solve this by periodically re-factorizing the new B; in this way, we need much less of the
expensive LU-factorizations.

The method presented here is only one possibility; it’s also possible to actually update the
factorization of B. This often leads to suboptimal fill-in and may also run into numerical issues,
which means that it also requires re-factorization. For more, see the reference book.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 15 / 16



IMPLEMENTATION AND RUNTIME

UPDATING OR REUSING A FACTORIZATION

From one iteration to the next, the basis matrix B only changes by one column being replaced
with another. In other words, Bnew = B + (aj − ai)e

T
i .

We can reinterpret this as Bnew = B (I +B−1(aj − ai)e
T
i )︸ ︷︷ ︸

=:E

.

We have B−1aj = ∆xB (which we computed anyway) and B−1ai = ei.
Therefore, E = (I + (∆xB − ei)︸ ︷︷ ︸

=:u

eTi︸︷︷︸
=:vT

).

We have E−1 = I −
1

1 + vTu
uvT . Let’s prove that (board).

Because we can easily invert E (the inverse even has a nice form) we can still solve systems w.r.t.
Bnew instead of B. This works across multiple iterations (i.e., solving BE0E1E2 · · ·Ekx = y, but
becomes less efficient the more Es we add.

We can solve this by periodically re-factorizing the new B; in this way, we need much less of the
expensive LU-factorizations.

The method presented here is only one possibility; it’s also possible to actually update the
factorization of B. This often leads to suboptimal fill-in and may also run into numerical issues,
which means that it also requires re-factorization. For more, see the reference book.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 15 / 16



IMPLEMENTATION AND RUNTIME

UPDATING OR REUSING A FACTORIZATION

From one iteration to the next, the basis matrix B only changes by one column being replaced
with another. In other words, Bnew = B + (aj − ai)e

T
i .

We can reinterpret this as Bnew = B (I +B−1(aj − ai)e
T
i )︸ ︷︷ ︸

=:E

.

We have B−1aj = ∆xB (which we computed anyway) and B−1ai = ei.
Therefore, E = (I + (∆xB − ei)︸ ︷︷ ︸

=:u

eTi︸︷︷︸
=:vT

).

We have E−1 = I −
1

1 + vTu
uvT . Let’s prove that (board).

Because we can easily invert E (the inverse even has a nice form) we can still solve systems w.r.t.
Bnew instead of B. This works across multiple iterations (i.e., solving BE0E1E2 · · ·Ekx = y, but
becomes less efficient the more Es we add.

We can solve this by periodically re-factorizing the new B; in this way, we need much less of the
expensive LU-factorizations.

The method presented here is only one possibility; it’s also possible to actually update the
factorization of B. This often leads to suboptimal fill-in and may also run into numerical issues,
which means that it also requires re-factorization. For more, see the reference book.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 15 / 16



IMPLEMENTATION AND RUNTIME

UPDATING OR REUSING A FACTORIZATION

From one iteration to the next, the basis matrix B only changes by one column being replaced
with another. In other words, Bnew = B + (aj − ai)e

T
i .

We can reinterpret this as Bnew = B (I +B−1(aj − ai)e
T
i )︸ ︷︷ ︸

=:E

.

We have B−1aj = ∆xB (which we computed anyway) and B−1ai = ei.

Therefore, E = (I + (∆xB − ei)︸ ︷︷ ︸
=:u

eTi︸︷︷︸
=:vT

).

We have E−1 = I −
1

1 + vTu
uvT . Let’s prove that (board).

Because we can easily invert E (the inverse even has a nice form) we can still solve systems w.r.t.
Bnew instead of B. This works across multiple iterations (i.e., solving BE0E1E2 · · ·Ekx = y, but
becomes less efficient the more Es we add.

We can solve this by periodically re-factorizing the new B; in this way, we need much less of the
expensive LU-factorizations.

The method presented here is only one possibility; it’s also possible to actually update the
factorization of B. This often leads to suboptimal fill-in and may also run into numerical issues,
which means that it also requires re-factorization. For more, see the reference book.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 15 / 16



IMPLEMENTATION AND RUNTIME

UPDATING OR REUSING A FACTORIZATION

From one iteration to the next, the basis matrix B only changes by one column being replaced
with another. In other words, Bnew = B + (aj − ai)e

T
i .

We can reinterpret this as Bnew = B (I +B−1(aj − ai)e
T
i )︸ ︷︷ ︸

=:E

.

We have B−1aj = ∆xB (which we computed anyway) and B−1ai = ei.
Therefore, E = (I + (∆xB − ei)︸ ︷︷ ︸

=:u

eTi︸︷︷︸
=:vT

).

We have E−1 = I −
1

1 + vTu
uvT . Let’s prove that (board).

Because we can easily invert E (the inverse even has a nice form) we can still solve systems w.r.t.
Bnew instead of B. This works across multiple iterations (i.e., solving BE0E1E2 · · ·Ekx = y, but
becomes less efficient the more Es we add.

We can solve this by periodically re-factorizing the new B; in this way, we need much less of the
expensive LU-factorizations.

The method presented here is only one possibility; it’s also possible to actually update the
factorization of B. This often leads to suboptimal fill-in and may also run into numerical issues,
which means that it also requires re-factorization. For more, see the reference book.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 15 / 16



IMPLEMENTATION AND RUNTIME

UPDATING OR REUSING A FACTORIZATION

From one iteration to the next, the basis matrix B only changes by one column being replaced
with another. In other words, Bnew = B + (aj − ai)e

T
i .

We can reinterpret this as Bnew = B (I +B−1(aj − ai)e
T
i )︸ ︷︷ ︸

=:E

.

We have B−1aj = ∆xB (which we computed anyway) and B−1ai = ei.
Therefore, E = (I + (∆xB − ei)︸ ︷︷ ︸

=:u

eTi︸︷︷︸
=:vT

).

We have E−1 = I −
1

1 + vTu
uvT . Let’s prove that (board).

Because we can easily invert E (the inverse even has a nice form) we can still solve systems w.r.t.
Bnew instead of B. This works across multiple iterations (i.e., solving BE0E1E2 · · ·Ekx = y, but
becomes less efficient the more Es we add.

We can solve this by periodically re-factorizing the new B; in this way, we need much less of the
expensive LU-factorizations.

The method presented here is only one possibility; it’s also possible to actually update the
factorization of B. This often leads to suboptimal fill-in and may also run into numerical issues,
which means that it also requires re-factorization. For more, see the reference book.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 15 / 16



IMPLEMENTATION AND RUNTIME

UPDATING OR REUSING A FACTORIZATION

From one iteration to the next, the basis matrix B only changes by one column being replaced
with another. In other words, Bnew = B + (aj − ai)e

T
i .

We can reinterpret this as Bnew = B (I +B−1(aj − ai)e
T
i )︸ ︷︷ ︸

=:E

.

We have B−1aj = ∆xB (which we computed anyway) and B−1ai = ei.
Therefore, E = (I + (∆xB − ei)︸ ︷︷ ︸

=:u

eTi︸︷︷︸
=:vT

).

We have E−1 = I −
1

1 + vTu
uvT . Let’s prove that (board).

Because we can easily invert E (the inverse even has a nice form) we can still solve systems w.r.t.
Bnew instead of B. This works across multiple iterations (i.e., solving BE0E1E2 · · ·Ekx = y, but
becomes less efficient the more Es we add.

We can solve this by periodically re-factorizing the new B; in this way, we need much less of the
expensive LU-factorizations.

The method presented here is only one possibility; it’s also possible to actually update the
factorization of B. This often leads to suboptimal fill-in and may also run into numerical issues,
which means that it also requires re-factorization. For more, see the reference book.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 15 / 16



IMPLEMENTATION AND RUNTIME

UPDATING OR REUSING A FACTORIZATION

From one iteration to the next, the basis matrix B only changes by one column being replaced
with another. In other words, Bnew = B + (aj − ai)e

T
i .

We can reinterpret this as Bnew = B (I +B−1(aj − ai)e
T
i )︸ ︷︷ ︸

=:E

.

We have B−1aj = ∆xB (which we computed anyway) and B−1ai = ei.
Therefore, E = (I + (∆xB − ei)︸ ︷︷ ︸

=:u

eTi︸︷︷︸
=:vT

).

We have E−1 = I −
1

1 + vTu
uvT . Let’s prove that (board).

Because we can easily invert E (the inverse even has a nice form) we can still solve systems w.r.t.
Bnew instead of B. This works across multiple iterations (i.e., solving BE0E1E2 · · ·Ekx = y, but
becomes less efficient the more Es we add.

We can solve this by periodically re-factorizing the new B; in this way, we need much less of the
expensive LU-factorizations.

The method presented here is only one possibility; it’s also possible to actually update the
factorization of B. This often leads to suboptimal fill-in and may also run into numerical issues,
which means that it also requires re-factorization. For more, see the reference book.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 15 / 16



IMPLEMENTATION AND RUNTIME

UPDATING OR REUSING A FACTORIZATION

From one iteration to the next, the basis matrix B only changes by one column being replaced
with another. In other words, Bnew = B + (aj − ai)e

T
i .

We can reinterpret this as Bnew = B (I +B−1(aj − ai)e
T
i )︸ ︷︷ ︸

=:E

.

We have B−1aj = ∆xB (which we computed anyway) and B−1ai = ei.
Therefore, E = (I + (∆xB − ei)︸ ︷︷ ︸

=:u

eTi︸︷︷︸
=:vT

).

We have E−1 = I −
1

1 + vTu
uvT . Let’s prove that (board).

Because we can easily invert E (the inverse even has a nice form) we can still solve systems w.r.t.
Bnew instead of B. This works across multiple iterations (i.e., solving BE0E1E2 · · ·Ekx = y, but
becomes less efficient the more Es we add.

We can solve this by periodically re-factorizing the new B; in this way, we need much less of the
expensive LU-factorizations.

The method presented here is only one possibility; it’s also possible to actually update the
factorization of B. This often leads to suboptimal fill-in and may also run into numerical issues,
which means that it also requires re-factorization. For more, see the reference book.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 15 / 16



IMPLEMENTATION AND RUNTIME

Methods to solve these systems in the most efficient and numerically stable way, in particular
those that make use of and maintain sparsity, are actively researched. Many things have to be
balanced (numerical stability vs. theoretical efficiency vs. practical efficiency); in practice, it is not
always the best theoretical algorithm (w.r.t. O-notation) that is the most useful.

To the best of our knowledge, the best current approach needs O(d0.7c m1.9 +m2+o(1) + dcn) time
for a simplex iteration in which a new LU-factorization is computed, where dc is the maximum
number of non-zeros in any column; this beats the Gaussian elimination (at least in theory even
for dense matrices). On the theoretical side, the time needed per iteration is quite difficult to
analyze in an amortized fashion, considering multiple Simplex iterations.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 16 / 16



IMPLEMENTATION AND RUNTIME

Methods to solve these systems in the most efficient and numerically stable way, in particular
those that make use of and maintain sparsity, are actively researched. Many things have to be
balanced (numerical stability vs. theoretical efficiency vs. practical efficiency); in practice, it is not
always the best theoretical algorithm (w.r.t. O-notation) that is the most useful.

To the best of our knowledge, the best current approach needs O(d0.7c m1.9 +m2+o(1) + dcn) time
for a simplex iteration in which a new LU-factorization is computed, where dc is the maximum
number of non-zeros in any column; this beats the Gaussian elimination (at least in theory even
for dense matrices). On the theoretical side, the time needed per iteration is quite difficult to
analyze in an amortized fashion, considering multiple Simplex iterations.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING JANUARY 8, 2024 16 / 16


	Recap
	Implementation and Runtime

