
LINEAR PROGRAMMING

[V. CH10]: APPLICATION: TSP

Phillip Keldenich Ahmad Moradi

Department of Computer Science
Algorithms Department

TU Braunschweig

February 6, 2024

DEFINITION & MODEL

DEFINITION & MODEL

CUTTING PLANES

BRANCH, CUT & PRICE

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 2 / 27

DEFINITION & MODEL

TRAVELING SALESMAN PROBLEM

For a given set V of n cities, (sometimes also called vertices) with given costs cab = cba for going
from any city a to any city b, compute the shortest round trip through all cities, visiting each city
exactly once.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 3 / 27

DEFINITION & MODEL

INTEGER PROGRAMMING MODEL
How can we model this as an integer program?

One variable xvw ∈ {0, 1} per undirected edge {v, w} = vw ∈ E =
(V
2

)
.

min
∑

cexe

One constraint per city v ∈ V :
∑

e∈δ({v})
xe = 2.

Subtour elimination constraints: ∀S ⊊ V, S ̸= ∅ :
∑

e∈δ(S)

xe ≥ 2.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 4 / 27

DEFINITION & MODEL

INTEGER PROGRAMMING MODEL
How can we model this as an integer program?

One variable xvw ∈ {0, 1} per undirected edge {v, w} = vw ∈ E =
(V
2

)
.

min
∑

cexe

One constraint per city v ∈ V :
∑

e∈δ({v})
xe = 2.

Subtour elimination constraints: ∀S ⊊ V, S ̸= ∅ :
∑

e∈δ(S)

xe ≥ 2.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 4 / 27

DEFINITION & MODEL

INTEGER PROGRAMMING MODEL
How can we model this as an integer program?

One variable xvw ∈ {0, 1} per undirected edge {v, w} = vw ∈ E =
(V
2

)
.

min
∑

cexe

One constraint per city v ∈ V :
∑

e∈δ({v})
xe = 2.

Subtour elimination constraints: ∀S ⊊ V, S ̸= ∅ :
∑

e∈δ(S)

xe ≥ 2.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 4 / 27

DEFINITION & MODEL

INTEGER PROGRAMMING MODEL
How can we model this as an integer program?

One variable xvw ∈ {0, 1} per undirected edge {v, w} = vw ∈ E =
(V
2

)
.

min
∑

cexe

One constraint per city v ∈ V :
∑

e∈δ({v})
xe = 2.

Subtour elimination constraints: ∀S ⊊ V, S ̸= ∅ :
∑

e∈δ(S)

xe ≥ 2.

Subtour S1

Subtour S2

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 4 / 27

DEFINITION & MODEL

INTEGER PROGRAMMING MODEL
How can we model this as an integer program?

One variable xvw ∈ {0, 1} per undirected edge {v, w} = vw ∈ E =
(V
2

)
.

min
∑

cexe

One constraint per city v ∈ V :
∑

e∈δ({v})
xe = 2.

Subtour elimination constraints: ∀S ⊊ V, S ̸= ∅ :
∑

e∈δ(S)

xe ≥ 2.

Subtour S1

Subtour S2

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 4 / 27

DEFINITION & MODEL

ABOUT THE MODEL

This model is called the Dantzig or Dantzig-Fulkerson-Johnson formulation of the TSP.

As written, the model has exponentially many constraints!

We do not add the subtour elimination constraints at the beginning.

Instead, we generate them lazily (lazy constraints) when we find solutions that violate them.

There are alternative models with polynomial size, but they usually perform much worse.

When embedded in a Branch & Cut algorithm, lazy constraints are added after solving a
linear relaxation.

This is very similar to cutting plane generation (which is part of the algorithm anyways).

How hard is it to separate subtours?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 5 / 27

DEFINITION & MODEL

ABOUT THE MODEL

This model is called the Dantzig or Dantzig-Fulkerson-Johnson formulation of the TSP.

As written, the model has exponentially many constraints!

We do not add the subtour elimination constraints at the beginning.

Instead, we generate them lazily (lazy constraints) when we find solutions that violate them.

There are alternative models with polynomial size, but they usually perform much worse.

When embedded in a Branch & Cut algorithm, lazy constraints are added after solving a
linear relaxation.

This is very similar to cutting plane generation (which is part of the algorithm anyways).

How hard is it to separate subtours?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 5 / 27

DEFINITION & MODEL

ABOUT THE MODEL

This model is called the Dantzig or Dantzig-Fulkerson-Johnson formulation of the TSP.

As written, the model has exponentially many constraints!

We do not add the subtour elimination constraints at the beginning.

Instead, we generate them lazily (lazy constraints) when we find solutions that violate them.

There are alternative models with polynomial size, but they usually perform much worse.

When embedded in a Branch & Cut algorithm, lazy constraints are added after solving a
linear relaxation.

This is very similar to cutting plane generation (which is part of the algorithm anyways).

How hard is it to separate subtours?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 5 / 27

DEFINITION & MODEL

ABOUT THE MODEL

This model is called the Dantzig or Dantzig-Fulkerson-Johnson formulation of the TSP.

As written, the model has exponentially many constraints!

We do not add the subtour elimination constraints at the beginning.

Instead, we generate them lazily (lazy constraints) when we find solutions that violate them.

There are alternative models with polynomial size, but they usually perform much worse.

When embedded in a Branch & Cut algorithm, lazy constraints are added after solving a
linear relaxation.

This is very similar to cutting plane generation (which is part of the algorithm anyways).

How hard is it to separate subtours?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 5 / 27

DEFINITION & MODEL

ABOUT THE MODEL

This model is called the Dantzig or Dantzig-Fulkerson-Johnson formulation of the TSP.

As written, the model has exponentially many constraints!

We do not add the subtour elimination constraints at the beginning.

Instead, we generate them lazily (lazy constraints) when we find solutions that violate them.

There are alternative models with polynomial size, but they usually perform much worse.

When embedded in a Branch & Cut algorithm, lazy constraints are added after solving a
linear relaxation.

This is very similar to cutting plane generation (which is part of the algorithm anyways).

How hard is it to separate subtours?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 5 / 27

DEFINITION & MODEL

ABOUT THE MODEL

This model is called the Dantzig or Dantzig-Fulkerson-Johnson formulation of the TSP.

As written, the model has exponentially many constraints!

We do not add the subtour elimination constraints at the beginning.

Instead, we generate them lazily (lazy constraints) when we find solutions that violate them.

There are alternative models with polynomial size, but they usually perform much worse.

When embedded in a Branch & Cut algorithm, lazy constraints are added after solving a
linear relaxation.

This is very similar to cutting plane generation (which is part of the algorithm anyways).

How hard is it to separate subtours?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 5 / 27

DEFINITION & MODEL

ABOUT THE MODEL

This model is called the Dantzig or Dantzig-Fulkerson-Johnson formulation of the TSP.

As written, the model has exponentially many constraints!

We do not add the subtour elimination constraints at the beginning.

Instead, we generate them lazily (lazy constraints) when we find solutions that violate them.

There are alternative models with polynomial size, but they usually perform much worse.

When embedded in a Branch & Cut algorithm, lazy constraints are added after solving a
linear relaxation.

This is very similar to cutting plane generation (which is part of the algorithm anyways).

How hard is it to separate subtours?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 5 / 27

DEFINITION & MODEL

ABOUT THE MODEL

This model is called the Dantzig or Dantzig-Fulkerson-Johnson formulation of the TSP.

As written, the model has exponentially many constraints!

We do not add the subtour elimination constraints at the beginning.

Instead, we generate them lazily (lazy constraints) when we find solutions that violate them.

There are alternative models with polynomial size, but they usually perform much worse.

When embedded in a Branch & Cut algorithm, lazy constraints are added after solving a
linear relaxation.

This is very similar to cutting plane generation (which is part of the algorithm anyways).

How hard is it to separate subtours?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 5 / 27

DEFINITION & MODEL

SEPARATING SUBTOUR CONSTRAINTS

Integral:

Easy (BFS/DFS):
∑

e∈δ(S1)

xe = 0 < 2 → add (violated) constraint
∑

e∈δ(S1)

xe ≥ 2

Subtour S1

Subtour S2

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 6 / 27

DEFINITION & MODEL

SEPARATING SUBTOUR CONSTRAINTS

Integral:

Easy (BFS/DFS):
∑

e∈δ(S1)

xe = 0 < 2 → add (violated) constraint
∑

e∈δ(S1)

xe ≥ 2

Subtour S1

Subtour S2

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 6 / 27

DEFINITION & MODEL

SEPARATING SUBTOUR CONSTRAINTS

Integral: Easy (BFS/DFS):
∑

e∈δ(S1)

xe = 0 < 2 → add (violated) constraint
∑

e∈δ(S1)

xe ≥ 2

Subtour S1

Subtour S2

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 6 / 27

DEFINITION & MODEL

SEPARATING SUBTOUR CONSTRAINTS

Fractional:

0.5

0.5

0.5
0.5

0.5
0.5

Algorithms: BFS/DFS connected components, biconnected components (DFS-style).
Exact separation? Minimum graph cut (Stoer-Wagner algorithm).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 7 / 27

DEFINITION & MODEL

SEPARATING SUBTOUR CONSTRAINTS

Fractional:

0.5

0.5

0.5
0.5

0.5
0.5

Algorithms: BFS/DFS connected components, biconnected components (DFS-style).
Exact separation? Minimum graph cut (Stoer-Wagner algorithm).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 7 / 27

DEFINITION & MODEL

SEPARATING SUBTOUR CONSTRAINTS

Fractional:

0.5

0.5

0.5
0.5

0.5
0.5

Algorithms: BFS/DFS connected components, biconnected components (DFS-style).

Exact separation? Minimum graph cut (Stoer-Wagner algorithm).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 7 / 27

DEFINITION & MODEL

SEPARATING SUBTOUR CONSTRAINTS

Fractional:

0.5

0.5

0.5
0.5

0.5
0.5

Algorithms: BFS/DFS connected components, biconnected components (DFS-style).
Exact separation?

Minimum graph cut (Stoer-Wagner algorithm).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 7 / 27

DEFINITION & MODEL

SEPARATING SUBTOUR CONSTRAINTS

Fractional:

0.5

0.5

0.5
0.5

0.5
0.5

Algorithms: BFS/DFS connected components, biconnected components (DFS-style).
Exact separation? Minimum graph cut (Stoer-Wagner algorithm).

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 7 / 27

DEFINITION & MODEL

MINIMUM GRAPH CUT

Given a graph G = (V,E) with weighted undirected edges w(e) ≥ 0, find a partition

V = S ∪ T, S ∩ T = ∅, S, T ̸= ∅, which minimizes∑
e∈δ(S)

w(e).

In our case, we have w(e) = xe, and we drop edges with xe = 0.

The algorithm of Stoer & Wagner solves this problem in O(|V ||E|+ |V |2 log |V |).
If the minimum cut is strictly below 2, S and T are vertex sets of violated subtour constraints.

The high running time may not be worth it — usually, at the very least, one should run the
cheaper methods first.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 8 / 27

DEFINITION & MODEL

MINIMUM GRAPH CUT

Given a graph G = (V,E) with weighted undirected edges w(e) ≥ 0, find a partition

V = S ∪ T, S ∩ T = ∅, S, T ̸= ∅, which minimizes∑
e∈δ(S)

w(e).

In our case, we have w(e) = xe, and we drop edges with xe = 0.

The algorithm of Stoer & Wagner solves this problem in O(|V ||E|+ |V |2 log |V |).
If the minimum cut is strictly below 2, S and T are vertex sets of violated subtour constraints.

The high running time may not be worth it — usually, at the very least, one should run the
cheaper methods first.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 8 / 27

DEFINITION & MODEL

MINIMUM GRAPH CUT

Given a graph G = (V,E) with weighted undirected edges w(e) ≥ 0, find a partition

V = S ∪ T, S ∩ T = ∅, S, T ̸= ∅, which minimizes∑
e∈δ(S)

w(e).

In our case, we have w(e) = xe, and we drop edges with xe = 0.

The algorithm of Stoer & Wagner solves this problem in O(|V ||E|+ |V |2 log |V |).

If the minimum cut is strictly below 2, S and T are vertex sets of violated subtour constraints.

The high running time may not be worth it — usually, at the very least, one should run the
cheaper methods first.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 8 / 27

DEFINITION & MODEL

MINIMUM GRAPH CUT

Given a graph G = (V,E) with weighted undirected edges w(e) ≥ 0, find a partition

V = S ∪ T, S ∩ T = ∅, S, T ̸= ∅, which minimizes∑
e∈δ(S)

w(e).

In our case, we have w(e) = xe, and we drop edges with xe = 0.

The algorithm of Stoer & Wagner solves this problem in O(|V ||E|+ |V |2 log |V |).
If the minimum cut is strictly below 2, S and T are vertex sets of violated subtour constraints.

The high running time may not be worth it — usually, at the very least, one should run the
cheaper methods first.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 8 / 27

DEFINITION & MODEL

MINIMUM GRAPH CUT

Given a graph G = (V,E) with weighted undirected edges w(e) ≥ 0, find a partition

V = S ∪ T, S ∩ T = ∅, S, T ̸= ∅, which minimizes∑
e∈δ(S)

w(e).

In our case, we have w(e) = xe, and we drop edges with xe = 0.

The algorithm of Stoer & Wagner solves this problem in O(|V ||E|+ |V |2 log |V |).
If the minimum cut is strictly below 2, S and T are vertex sets of violated subtour constraints.

The high running time may not be worth it — usually, at the very least, one should run the
cheaper methods first.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 8 / 27

DEFINITION & MODEL

EXAMPLE TIME

Interactive example at https://www.math.uwaterloo.ca/tsp/app/diy.html.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 9 / 27

https://www.math.uwaterloo.ca/tsp/app/diy.html

CUTTING PLANES

DEFINITION & MODEL

CUTTING PLANES

BRANCH, CUT & PRICE

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 10 / 27

CUTTING PLANES

CUTTING PLANES FOR TOURS

Besides subtours, what else are good cutting planes for the TSP?

L

Notes:

All subtour constraints are satisfied.

For L → ∞, the relaxation solution is 3L+ 4 ≈ 3L.

For L → ∞, the optimal integral solution is 4L+ ε ≈ 4L (ε = 0 for even L).

The (asymptotic) integrality gap of this TSP formulation (with all subtours) is at least 4/3.
4/3-conjecture: This is actually the integrality gap, i.e., there are no worse instances than this.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 11 / 27

CUTTING PLANES

CUTTING PLANES FOR TOURS

Besides subtours, what else are good cutting planes for the TSP?

L

Notes:

All subtour constraints are satisfied.

For L → ∞, the relaxation solution is 3L+ 4 ≈ 3L.

For L → ∞, the optimal integral solution is 4L+ ε ≈ 4L (ε = 0 for even L).

The (asymptotic) integrality gap of this TSP formulation (with all subtours) is at least 4/3.
4/3-conjecture: This is actually the integrality gap, i.e., there are no worse instances than this.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 11 / 27

CUTTING PLANES

CUTTING PLANES FOR TOURS

Besides subtours, what else are good cutting planes for the TSP?

L

Notes:

All subtour constraints are satisfied.

For L → ∞, the relaxation solution is 3L+ 4 ≈ 3L.

For L → ∞, the optimal integral solution is 4L+ ε ≈ 4L (ε = 0 for even L).

The (asymptotic) integrality gap of this TSP formulation (with all subtours) is at least 4/3.
4/3-conjecture: This is actually the integrality gap, i.e., there are no worse instances than this.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 11 / 27

CUTTING PLANES

CUTTING PLANES FOR TOURS

Besides subtours, what else are good cutting planes for the TSP?

L

Notes:

All subtour constraints are satisfied.

For L → ∞, the relaxation solution is 3L+ 4 ≈ 3L.

For L → ∞, the optimal integral solution is 4L+ ε ≈ 4L (ε = 0 for even L).

The (asymptotic) integrality gap of this TSP formulation (with all subtours) is at least 4/3.
4/3-conjecture: This is actually the integrality gap, i.e., there are no worse instances than this.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 11 / 27

CUTTING PLANES

CUTTING PLANES FOR TOURS

Besides subtours, what else are good cutting planes for the TSP?

L

Notes:

All subtour constraints are satisfied.

For L → ∞, the relaxation solution is 3L+ 4 ≈ 3L.

For L → ∞, the optimal integral solution is 4L+ ε ≈ 4L (ε = 0 for even L).

The (asymptotic) integrality gap of this TSP formulation (with all subtours) is at least 4/3.

4/3-conjecture: This is actually the integrality gap, i.e., there are no worse instances than this.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 11 / 27

CUTTING PLANES

CUTTING PLANES FOR TOURS

Besides subtours, what else are good cutting planes for the TSP?

L

Notes:

All subtour constraints are satisfied.

For L → ∞, the relaxation solution is 3L+ 4 ≈ 3L.

For L → ∞, the optimal integral solution is 4L+ ε ≈ 4L (ε = 0 for even L).

The (asymptotic) integrality gap of this TSP formulation (with all subtours) is at least 4/3.
4/3-conjecture: This is actually the integrality gap, i.e., there are no worse instances than this.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 11 / 27

CUTTING PLANES

COMB INEQUALITIES

How do we find cuts for this solution?

L

Intuition: We have to leave each side 2 or 4 times, not 3 times!
Translation to a single valid inequality: not easy to see!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 12 / 27

CUTTING PLANES

COMB INEQUALITIES

How do we find cuts for this solution?

L

Intuition: We have to leave each side 2 or 4 times, not 3 times!

Translation to a single valid inequality: not easy to see!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 12 / 27

CUTTING PLANES

COMB INEQUALITIES

How do we find cuts for this solution?

L

Intuition: We have to leave each side 2 or 4 times, not 3 times!
Translation to a single valid inequality: not easy to see!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 12 / 27

CUTTING PLANES

COMB INEQUALITIES

How do we find cuts for this solution?

L

Intuition: We have to leave each side 2 or 4 times, not 3 times!
Translation to a single valid inequality: not easy to see!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 12 / 27

CUTTING PLANES

COMB INEQUALITIES

H T1

T2

T3

Suppose we have H,T1, . . . , Tk ⊂ V :

∀i ∈ {1, . . . , k} : H ∩ Ti ̸= ∅ (handle meets each tooth),

∀i ∈ {1, . . . , k} : Ti \H ̸= ∅ (teeth have vertex outside handle),

∀i ̸= j ∈ {1, . . . , k} : Ti ∩ Tj = ∅ (teeth are disjoint),

k is odd,

then every valid tour has ∑
e∈δ(H)

xe +

k∑
i=1

∑
e∈δ(Ti)

xe ≥ 3k + 1.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 13 / 27

CUTTING PLANES

COMB INEQUALITIES: OUR EXAMPLE

L

Here, we have: ∑
e∈δ(H)

xe = 3,
∑

e∈δ(Ti)

xe = 2,

∑
e∈δ(H)

xe +
k∑

i=1

∑
e∈δ(Ti)

xe = 3 + 3 · 2 = 9 < 10 = 3k + 1,

thus this comb inequality is a violated cutting plane!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 14 / 27

CUTTING PLANES

COMB INEQUALITIES: CORRECTNESS PROOF

H T1

T2

T3

Let H,T1, . . . , Tk be a comb, and let S =
∑

e∈δ(H)

xe +
k∑

i=1

∑
e∈δ(Ti)

xe.

First, consider a single Ti and some tour R through all cities.

Both H ∩ Ti and Ti \H are nonempty!

Therefore, the tour has to enter and exit each such set at least once.
If R contains an edge ei from H ∩ Ti to H \ Ti:

Edge ei contributes 1 to the sum S (crosses H).
Furthermore, ei does not cross Ti, so there must be two more edges in R crossing Ti.
Ti contributes at least 3 to the sum S.

Otherwise, R enters and leaves Ti at least twice and Ti contributes at least 4 to S.

Because teeth are disjoint, we can sum up these contributions: S ≥ 3k.

k is odd, so 3k is also odd, but S must be even!

⇒ S ≥ 3k + 1.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 15 / 27

CUTTING PLANES

COMB INEQUALITIES: CORRECTNESS PROOF

H T1

T2

T3

Let H,T1, . . . , Tk be a comb, and let S =
∑

e∈δ(H)

xe +
k∑

i=1

∑
e∈δ(Ti)

xe.

First, consider a single Ti and some tour R through all cities.

Both H ∩ Ti and Ti \H are nonempty!

Therefore, the tour has to enter and exit each such set at least once.
If R contains an edge ei from H ∩ Ti to H \ Ti:

Edge ei contributes 1 to the sum S (crosses H).
Furthermore, ei does not cross Ti, so there must be two more edges in R crossing Ti.
Ti contributes at least 3 to the sum S.

Otherwise, R enters and leaves Ti at least twice and Ti contributes at least 4 to S.

Because teeth are disjoint, we can sum up these contributions: S ≥ 3k.

k is odd, so 3k is also odd, but S must be even!

⇒ S ≥ 3k + 1.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 15 / 27

CUTTING PLANES

COMB INEQUALITIES: CORRECTNESS PROOF

H T1

T2

T3

Let H,T1, . . . , Tk be a comb, and let S =
∑

e∈δ(H)

xe +
k∑

i=1

∑
e∈δ(Ti)

xe.

First, consider a single Ti and some tour R through all cities.

Both H ∩ Ti and Ti \H are nonempty!

Therefore, the tour has to enter and exit each such set at least once.
If R contains an edge ei from H ∩ Ti to H \ Ti:

Edge ei contributes 1 to the sum S (crosses H).
Furthermore, ei does not cross Ti, so there must be two more edges in R crossing Ti.
Ti contributes at least 3 to the sum S.

Otherwise, R enters and leaves Ti at least twice and Ti contributes at least 4 to S.

Because teeth are disjoint, we can sum up these contributions: S ≥ 3k.

k is odd, so 3k is also odd, but S must be even!

⇒ S ≥ 3k + 1.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 15 / 27

CUTTING PLANES

COMB INEQUALITIES: CORRECTNESS PROOF

H T1

T2

T3

Let H,T1, . . . , Tk be a comb, and let S =
∑

e∈δ(H)

xe +
k∑

i=1

∑
e∈δ(Ti)

xe.

First, consider a single Ti and some tour R through all cities.

Both H ∩ Ti and Ti \H are nonempty!

Therefore, the tour has to enter and exit each such set at least once.

If R contains an edge ei from H ∩ Ti to H \ Ti:

Edge ei contributes 1 to the sum S (crosses H).
Furthermore, ei does not cross Ti, so there must be two more edges in R crossing Ti.
Ti contributes at least 3 to the sum S.

Otherwise, R enters and leaves Ti at least twice and Ti contributes at least 4 to S.

Because teeth are disjoint, we can sum up these contributions: S ≥ 3k.

k is odd, so 3k is also odd, but S must be even!

⇒ S ≥ 3k + 1.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 15 / 27

CUTTING PLANES

COMB INEQUALITIES: CORRECTNESS PROOF

H T1

T2

T3

Let H,T1, . . . , Tk be a comb, and let S =
∑

e∈δ(H)

xe +
k∑

i=1

∑
e∈δ(Ti)

xe.

First, consider a single Ti and some tour R through all cities.

Both H ∩ Ti and Ti \H are nonempty!

Therefore, the tour has to enter and exit each such set at least once.
If R contains an edge ei from H ∩ Ti to H \ Ti:

Edge ei contributes 1 to the sum S (crosses H).
Furthermore, ei does not cross Ti, so there must be two more edges in R crossing Ti.
Ti contributes at least 3 to the sum S.

Otherwise, R enters and leaves Ti at least twice and Ti contributes at least 4 to S.

Because teeth are disjoint, we can sum up these contributions: S ≥ 3k.

k is odd, so 3k is also odd, but S must be even!

⇒ S ≥ 3k + 1.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 15 / 27

CUTTING PLANES

COMB INEQUALITIES: CORRECTNESS PROOF

H T1

T2

T3

Let H,T1, . . . , Tk be a comb, and let S =
∑

e∈δ(H)

xe +
k∑

i=1

∑
e∈δ(Ti)

xe.

First, consider a single Ti and some tour R through all cities.

Both H ∩ Ti and Ti \H are nonempty!

Therefore, the tour has to enter and exit each such set at least once.
If R contains an edge ei from H ∩ Ti to H \ Ti:

Edge ei contributes 1 to the sum S (crosses H).

Furthermore, ei does not cross Ti, so there must be two more edges in R crossing Ti.
Ti contributes at least 3 to the sum S.

Otherwise, R enters and leaves Ti at least twice and Ti contributes at least 4 to S.

Because teeth are disjoint, we can sum up these contributions: S ≥ 3k.

k is odd, so 3k is also odd, but S must be even!

⇒ S ≥ 3k + 1.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 15 / 27

CUTTING PLANES

COMB INEQUALITIES: CORRECTNESS PROOF

H T1

T2

T3

Let H,T1, . . . , Tk be a comb, and let S =
∑

e∈δ(H)

xe +
k∑

i=1

∑
e∈δ(Ti)

xe.

First, consider a single Ti and some tour R through all cities.

Both H ∩ Ti and Ti \H are nonempty!

Therefore, the tour has to enter and exit each such set at least once.
If R contains an edge ei from H ∩ Ti to H \ Ti:

Edge ei contributes 1 to the sum S (crosses H).
Furthermore, ei does not cross Ti, so there must be two more edges in R crossing Ti.

Ti contributes at least 3 to the sum S.

Otherwise, R enters and leaves Ti at least twice and Ti contributes at least 4 to S.

Because teeth are disjoint, we can sum up these contributions: S ≥ 3k.

k is odd, so 3k is also odd, but S must be even!

⇒ S ≥ 3k + 1.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 15 / 27

CUTTING PLANES

COMB INEQUALITIES: CORRECTNESS PROOF

H T1

T2

T3

Let H,T1, . . . , Tk be a comb, and let S =
∑

e∈δ(H)

xe +
k∑

i=1

∑
e∈δ(Ti)

xe.

First, consider a single Ti and some tour R through all cities.

Both H ∩ Ti and Ti \H are nonempty!

Therefore, the tour has to enter and exit each such set at least once.
If R contains an edge ei from H ∩ Ti to H \ Ti:

Edge ei contributes 1 to the sum S (crosses H).
Furthermore, ei does not cross Ti, so there must be two more edges in R crossing Ti.
Ti contributes at least 3 to the sum S.

Otherwise, R enters and leaves Ti at least twice and Ti contributes at least 4 to S.

Because teeth are disjoint, we can sum up these contributions: S ≥ 3k.

k is odd, so 3k is also odd, but S must be even!

⇒ S ≥ 3k + 1.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 15 / 27

CUTTING PLANES

COMB INEQUALITIES: CORRECTNESS PROOF

H T1

T2

T3

Let H,T1, . . . , Tk be a comb, and let S =
∑

e∈δ(H)

xe +
k∑

i=1

∑
e∈δ(Ti)

xe.

First, consider a single Ti and some tour R through all cities.

Both H ∩ Ti and Ti \H are nonempty!

Therefore, the tour has to enter and exit each such set at least once.
If R contains an edge ei from H ∩ Ti to H \ Ti:

Edge ei contributes 1 to the sum S (crosses H).
Furthermore, ei does not cross Ti, so there must be two more edges in R crossing Ti.
Ti contributes at least 3 to the sum S.

Otherwise, R enters and leaves Ti at least twice and Ti contributes at least 4 to S.

Because teeth are disjoint, we can sum up these contributions: S ≥ 3k.

k is odd, so 3k is also odd, but S must be even!

⇒ S ≥ 3k + 1.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 15 / 27

CUTTING PLANES

COMB INEQUALITIES: CORRECTNESS PROOF

H T1

T2

T3

Let H,T1, . . . , Tk be a comb, and let S =
∑

e∈δ(H)

xe +
k∑

i=1

∑
e∈δ(Ti)

xe.

First, consider a single Ti and some tour R through all cities.

Both H ∩ Ti and Ti \H are nonempty!

Therefore, the tour has to enter and exit each such set at least once.
If R contains an edge ei from H ∩ Ti to H \ Ti:

Edge ei contributes 1 to the sum S (crosses H).
Furthermore, ei does not cross Ti, so there must be two more edges in R crossing Ti.
Ti contributes at least 3 to the sum S.

Otherwise, R enters and leaves Ti at least twice and Ti contributes at least 4 to S.

Because teeth are disjoint, we can sum up these contributions: S ≥ 3k.

k is odd, so 3k is also odd, but S must be even!

⇒ S ≥ 3k + 1.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 15 / 27

CUTTING PLANES

COMB INEQUALITIES: CORRECTNESS PROOF

H T1

T2

T3

Let H,T1, . . . , Tk be a comb, and let S =
∑

e∈δ(H)

xe +
k∑

i=1

∑
e∈δ(Ti)

xe.

First, consider a single Ti and some tour R through all cities.

Both H ∩ Ti and Ti \H are nonempty!

Therefore, the tour has to enter and exit each such set at least once.
If R contains an edge ei from H ∩ Ti to H \ Ti:

Edge ei contributes 1 to the sum S (crosses H).
Furthermore, ei does not cross Ti, so there must be two more edges in R crossing Ti.
Ti contributes at least 3 to the sum S.

Otherwise, R enters and leaves Ti at least twice and Ti contributes at least 4 to S.

Because teeth are disjoint, we can sum up these contributions: S ≥ 3k.

k is odd, so 3k is also odd, but S must be even!

⇒ S ≥ 3k + 1.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 15 / 27

CUTTING PLANES

COMB INEQUALITIES: CORRECTNESS PROOF

H T1

T2

T3

Let H,T1, . . . , Tk be a comb, and let S =
∑

e∈δ(H)

xe +
k∑

i=1

∑
e∈δ(Ti)

xe.

First, consider a single Ti and some tour R through all cities.

Both H ∩ Ti and Ti \H are nonempty!

Therefore, the tour has to enter and exit each such set at least once.
If R contains an edge ei from H ∩ Ti to H \ Ti:

Edge ei contributes 1 to the sum S (crosses H).
Furthermore, ei does not cross Ti, so there must be two more edges in R crossing Ti.
Ti contributes at least 3 to the sum S.

Otherwise, R enters and leaves Ti at least twice and Ti contributes at least 4 to S.

Because teeth are disjoint, we can sum up these contributions: S ≥ 3k.

k is odd, so 3k is also odd, but S must be even!

⇒ S ≥ 3k + 1.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 15 / 27

CUTTING PLANES

EXAMPLE TIME: COMBS

Interactive example at https://www.math.uwaterloo.ca/tsp/app/diy.html.
Random seed: 1234, 50 cities.
Optimal solution (through comb and subtour cuts only): 51991.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 16 / 27

https://www.math.uwaterloo.ca/tsp/app/diy.html

CUTTING PLANES

COMB SEPARATION

It is not known whether separating combs is NP-hard or in P.

In practice, this problem is usually solved with heuristics, e.g., based on components spanned by
fractional edges (for handles) and edges crossing them (for teeth), like we did in the example.

For more, see
David L. Applegate, Robert E. Bixby, Vašek Chvatál and William J. Cook.
The Traveling Salesman Problem: A Computational Study.
Princeton Series in Applied Mathematics (2006), Princeton University Press.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 17 / 27

CUTTING PLANES

COMB SEPARATION

It is not known whether separating combs is NP-hard or in P.

In practice, this problem is usually solved with heuristics, e.g., based on components spanned by
fractional edges (for handles) and edges crossing them (for teeth), like we did in the example.

For more, see
David L. Applegate, Robert E. Bixby, Vašek Chvatál and William J. Cook.
The Traveling Salesman Problem: A Computational Study.
Princeton Series in Applied Mathematics (2006), Princeton University Press.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 17 / 27

CUTTING PLANES

COMB SEPARATION

It is not known whether separating combs is NP-hard or in P.

In practice, this problem is usually solved with heuristics, e.g., based on components spanned by
fractional edges (for handles) and edges crossing them (for teeth), like we did in the example.

For more, see
David L. Applegate, Robert E. Bixby, Vašek Chvatál and William J. Cook.
The Traveling Salesman Problem: A Computational Study.
Princeton Series in Applied Mathematics (2006), Princeton University Press.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 17 / 27

BRANCH, CUT & PRICE

DEFINITION & MODEL

CUTTING PLANES

BRANCH, CUT & PRICE

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 18 / 27

BRANCH, CUT & PRICE

PRICING: MOTIVATION

Solving TSP instances with this approach works well for relatively large instances.

Going up to 100k cities however runs into one big problem:
even keeping a list of all edges takes too much memory!
And we need more space than that per edge!

Solution: Do not consider all edges all the time — most are, after all, never useful!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 19 / 27

BRANCH, CUT & PRICE

PRICING: MOTIVATION

Solving TSP instances with this approach works well for relatively large instances.

Going up to 100k cities however runs into one big problem:
even keeping a list of all edges takes too much memory!
And we need more space than that per edge!

Solution: Do not consider all edges all the time — most are, after all, never useful!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 19 / 27

BRANCH, CUT & PRICE

PRICING: MOTIVATION

Solving TSP instances with this approach works well for relatively large instances.

Going up to 100k cities however runs into one big problem:
even keeping a list of all edges takes too much memory!
And we need more space than that per edge!

Solution: Do not consider all edges all the time — most are, after all, never useful!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 19 / 27

BRANCH, CUT & PRICE

PRICING: IDEA

Growing (or fully dynamic) edge set E (Branch, Cut & Price):

Initially, select a candidate set of edges E (e.g., from heuristic tours, nearest neighbors,
triangulations, . . .).

Solve the relaxation, potentially generating cuts and repeating.

Price: Check for edges we have missed that improve the relaxation.

Potentially delete edges and cuts that have been inactive for long.

Several challenges:

Which edges that are not in the LP could yield an improvement?

How do cutting planes interact with this?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 20 / 27

BRANCH, CUT & PRICE

PRICING: IDEA

Growing (or fully dynamic) edge set E (Branch, Cut & Price):

Initially, select a candidate set of edges E (e.g., from heuristic tours, nearest neighbors,
triangulations, . . .).

Solve the relaxation, potentially generating cuts and repeating.

Price: Check for edges we have missed that improve the relaxation.

Potentially delete edges and cuts that have been inactive for long.

Several challenges:

Which edges that are not in the LP could yield an improvement?

How do cutting planes interact with this?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 20 / 27

BRANCH, CUT & PRICE

PRICING: IDEA

Growing (or fully dynamic) edge set E (Branch, Cut & Price):

Initially, select a candidate set of edges E (e.g., from heuristic tours, nearest neighbors,
triangulations, . . .).

Solve the relaxation, potentially generating cuts and repeating.

Price: Check for edges we have missed that improve the relaxation.

Potentially delete edges and cuts that have been inactive for long.

Several challenges:

Which edges that are not in the LP could yield an improvement?

How do cutting planes interact with this?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 20 / 27

BRANCH, CUT & PRICE

PRICING: IDEA

Growing (or fully dynamic) edge set E (Branch, Cut & Price):

Initially, select a candidate set of edges E (e.g., from heuristic tours, nearest neighbors,
triangulations, . . .).

Solve the relaxation, potentially generating cuts and repeating.

Price: Check for edges we have missed that improve the relaxation.

Potentially delete edges and cuts that have been inactive for long.

Several challenges:

Which edges that are not in the LP could yield an improvement?

How do cutting planes interact with this?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 20 / 27

BRANCH, CUT & PRICE

PRICING: IDEA

Growing (or fully dynamic) edge set E (Branch, Cut & Price):

Initially, select a candidate set of edges E (e.g., from heuristic tours, nearest neighbors,
triangulations, . . .).

Solve the relaxation, potentially generating cuts and repeating.

Price: Check for edges we have missed that improve the relaxation.

Potentially delete edges and cuts that have been inactive for long.

Several challenges:

Which edges that are not in the LP could yield an improvement?

How do cutting planes interact with this?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 20 / 27

BRANCH, CUT & PRICE

PRICING: IDEA

Growing (or fully dynamic) edge set E (Branch, Cut & Price):

Initially, select a candidate set of edges E (e.g., from heuristic tours, nearest neighbors,
triangulations, . . .).

Solve the relaxation, potentially generating cuts and repeating.

Price: Check for edges we have missed that improve the relaxation.

Potentially delete edges and cuts that have been inactive for long.

Several challenges:

Which edges that are not in the LP could yield an improvement?

How do cutting planes interact with this?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 20 / 27

BRANCH, CUT & PRICE

PRICING: IDEA

Growing (or fully dynamic) edge set E (Branch, Cut & Price):

Initially, select a candidate set of edges E (e.g., from heuristic tours, nearest neighbors,
triangulations, . . .).

Solve the relaxation, potentially generating cuts and repeating.

Price: Check for edges we have missed that improve the relaxation.

Potentially delete edges and cuts that have been inactive for long.

Several challenges:

Which edges that are not in the LP could yield an improvement?

How do cutting planes interact with this?

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 20 / 27

BRANCH, CUT & PRICE

PRICING

Primal simplex optimality check: z∗N ≥ 0.
Equivalently: Check for dual feasibility.

With an understanding of our problem and its dual, we can sometimes check for dual feasibility
even of variables that were not in the LP!

This allows us to leave variables out at first and add them only if they look necessary later on.

If all these variables have satisfied dual constraints, our solution is optimal!

Otherwise, we need to find some variables with violated dual constraints and add them.

Of course, we have to integrate cutting planes into the dual — as dual variables.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 21 / 27

BRANCH, CUT & PRICE

PRICING

Primal simplex optimality check: z∗N ≥ 0.
Equivalently: Check for dual feasibility.

With an understanding of our problem and its dual, we can sometimes check for dual feasibility
even of variables that were not in the LP!

This allows us to leave variables out at first and add them only if they look necessary later on.

If all these variables have satisfied dual constraints, our solution is optimal!

Otherwise, we need to find some variables with violated dual constraints and add them.

Of course, we have to integrate cutting planes into the dual — as dual variables.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 21 / 27

BRANCH, CUT & PRICE

PRICING

Primal simplex optimality check: z∗N ≥ 0.
Equivalently: Check for dual feasibility.

With an understanding of our problem and its dual, we can sometimes check for dual feasibility
even of variables that were not in the LP!

This allows us to leave variables out at first and add them only if they look necessary later on.

If all these variables have satisfied dual constraints, our solution is optimal!

Otherwise, we need to find some variables with violated dual constraints and add them.

Of course, we have to integrate cutting planes into the dual — as dual variables.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 21 / 27

BRANCH, CUT & PRICE

PRICING

Primal simplex optimality check: z∗N ≥ 0.
Equivalently: Check for dual feasibility.

With an understanding of our problem and its dual, we can sometimes check for dual feasibility
even of variables that were not in the LP!

This allows us to leave variables out at first and add them only if they look necessary later on.

If all these variables have satisfied dual constraints, our solution is optimal!

Otherwise, we need to find some variables with violated dual constraints and add them.

Of course, we have to integrate cutting planes into the dual — as dual variables.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 21 / 27

BRANCH, CUT & PRICE

PRICING

Primal simplex optimality check: z∗N ≥ 0.
Equivalently: Check for dual feasibility.

With an understanding of our problem and its dual, we can sometimes check for dual feasibility
even of variables that were not in the LP!

This allows us to leave variables out at first and add them only if they look necessary later on.

If all these variables have satisfied dual constraints, our solution is optimal!

Otherwise, we need to find some variables with violated dual constraints and add them.

Of course, we have to integrate cutting planes into the dual — as dual variables.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 21 / 27

BRANCH, CUT & PRICE

PRICING

Primal simplex optimality check: z∗N ≥ 0.
Equivalently: Check for dual feasibility.

With an understanding of our problem and its dual, we can sometimes check for dual feasibility
even of variables that were not in the LP!

This allows us to leave variables out at first and add them only if they look necessary later on.

If all these variables have satisfied dual constraints, our solution is optimal!

Otherwise, we need to find some variables with violated dual constraints and add them.

Of course, we have to integrate cutting planes into the dual — as dual variables.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 21 / 27

BRANCH, CUT & PRICE

DUAL OF THE TSP

min cT x s.t.

∀v ∈ V :
∑

e∈δ({v})
xe = 2,

∀S ⊊ V, S ̸= ∅ :
∑

e∈δ(S)

xe ≥ 2.

0 ≤ xe ≤ 1

Dualize:

max 2
∑
v∈V

yv + 2
∑
S

zS −
∑
e∈E

ye

∀vw ∈ E : yv + yw +
∑

S:vw∈δ(S)

zS − ye ≤ ce

yv free, ye, zS ≥ 0

Intuition/Geometry: Zone & Moat packing — see
https://www.math.uwaterloo.ca/tsp/app/diy.html.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 22 / 27

https://www.math.uwaterloo.ca/tsp/app/diy.html

BRANCH, CUT & PRICE

DUAL OF THE TSP

min cT x s.t.

∀v ∈ V :
∑

e∈δ({v})
xe = 2,

∀S ⊊ V, S ̸= ∅ :
∑

e∈δ(S)

xe ≥ 2.

0 ≤ xe ≤ 1

Dualize:
max 2

∑
v∈V

yv + 2
∑
S

zS −
∑
e∈E

ye

∀vw ∈ E : yv + yw +
∑

S:vw∈δ(S)

zS − ye ≤ ce

yv free, ye, zS ≥ 0

Intuition/Geometry: Zone & Moat packing — see
https://www.math.uwaterloo.ca/tsp/app/diy.html.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 22 / 27

https://www.math.uwaterloo.ca/tsp/app/diy.html

BRANCH, CUT & PRICE

DUAL OF THE TSP

min cT x s.t.

∀v ∈ V :
∑

e∈δ({v})
xe = 2,

∀S ⊊ V, S ̸= ∅ :
∑

e∈δ(S)

xe ≥ 2.

0 ≤ xe ≤ 1

Dualize:
max 2

∑
v∈V

yv + 2
∑
S

zS −
∑
e∈E

ye

∀vw ∈ E : yv + yw +
∑

S:vw∈δ(S)

zS − ye ≤ ce

yv free, ye, zS ≥ 0

Intuition/Geometry: Zone & Moat packing — see
https://www.math.uwaterloo.ca/tsp/app/diy.html.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 22 / 27

https://www.math.uwaterloo.ca/tsp/app/diy.html

BRANCH, CUT & PRICE

CUT REPRESENTATION FOR THE TSP

We represent each cut as follows:

It has a set F = {S1, . . . , Sj} of vertex sets Si ⊂ V .

It has a right-hand side value µ.

The represented inequality is
∑

Si∈F

∑
e∈δ(F)

xe ≥ µ.

This allows to represent

subtours: F = {S}, µ = 2,

combs: F = {H,T1, . . . , Tk}, µ = 3k + 1,

even more advanced cuts (Concorde uses this representation).

We know how to add new edges to cuts in this representation!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 23 / 27

BRANCH, CUT & PRICE

CUT REPRESENTATION FOR THE TSP

We represent each cut as follows:

It has a set F = {S1, . . . , Sj} of vertex sets Si ⊂ V .

It has a right-hand side value µ.

The represented inequality is
∑

Si∈F

∑
e∈δ(F)

xe ≥ µ.

This allows to represent

subtours: F = {S}, µ = 2,

combs: F = {H,T1, . . . , Tk}, µ = 3k + 1,

even more advanced cuts (Concorde uses this representation).

We know how to add new edges to cuts in this representation!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 23 / 27

BRANCH, CUT & PRICE

CUT REPRESENTATION FOR THE TSP

We represent each cut as follows:

It has a set F = {S1, . . . , Sj} of vertex sets Si ⊂ V .

It has a right-hand side value µ.

The represented inequality is
∑

Si∈F

∑
e∈δ(F)

xe ≥ µ.

This allows to represent

subtours: F = {S}, µ = 2,

combs: F = {H,T1, . . . , Tk}, µ = 3k + 1,

even more advanced cuts (Concorde uses this representation).

We know how to add new edges to cuts in this representation!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 23 / 27

BRANCH, CUT & PRICE

CUT REPRESENTATION FOR THE TSP

We represent each cut as follows:

It has a set F = {S1, . . . , Sj} of vertex sets Si ⊂ V .

It has a right-hand side value µ.

The represented inequality is
∑

Si∈F

∑
e∈δ(F)

xe ≥ µ.

This allows to represent

subtours: F = {S}, µ = 2,

combs: F = {H,T1, . . . , Tk}, µ = 3k + 1,

even more advanced cuts (Concorde uses this representation).

We know how to add new edges to cuts in this representation!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 23 / 27

BRANCH, CUT & PRICE

CUT REPRESENTATION FOR THE TSP

We represent each cut as follows:

It has a set F = {S1, . . . , Sj} of vertex sets Si ⊂ V .

It has a right-hand side value µ.

The represented inequality is
∑

Si∈F

∑
e∈δ(F)

xe ≥ µ.

This allows to represent

subtours: F = {S}, µ = 2,

combs: F = {H,T1, . . . , Tk}, µ = 3k + 1,

even more advanced cuts (Concorde uses this representation).

We know how to add new edges to cuts in this representation!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 23 / 27

BRANCH, CUT & PRICE

CUT REPRESENTATION FOR THE TSP

We represent each cut as follows:

It has a set F = {S1, . . . , Sj} of vertex sets Si ⊂ V .

It has a right-hand side value µ.

The represented inequality is
∑

Si∈F

∑
e∈δ(F)

xe ≥ µ.

This allows to represent

subtours: F = {S}, µ = 2,

combs: F = {H,T1, . . . , Tk}, µ = 3k + 1,

even more advanced cuts (Concorde uses this representation).

We know how to add new edges to cuts in this representation!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 23 / 27

BRANCH, CUT & PRICE

CUT REPRESENTATION FOR THE TSP

We represent each cut as follows:

It has a set F = {S1, . . . , Sj} of vertex sets Si ⊂ V .

It has a right-hand side value µ.

The represented inequality is
∑

Si∈F

∑
e∈δ(F)

xe ≥ µ.

This allows to represent

subtours: F = {S}, µ = 2,

combs: F = {H,T1, . . . , Tk}, µ = 3k + 1,

even more advanced cuts (Concorde uses this representation).

We know how to add new edges to cuts in this representation!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 23 / 27

BRANCH, CUT & PRICE

CUT REPRESENTATION FOR THE TSP

We represent each cut as follows:

It has a set F = {S1, . . . , Sj} of vertex sets Si ⊂ V .

It has a right-hand side value µ.

The represented inequality is
∑

Si∈F

∑
e∈δ(F)

xe ≥ µ.

This allows to represent

subtours: F = {S}, µ = 2,

combs: F = {H,T1, . . . , Tk}, µ = 3k + 1,

even more advanced cuts (Concorde uses this representation).

We know how to add new edges to cuts in this representation!

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 23 / 27

BRANCH, CUT & PRICE

GENERALIZED DUAL

With cuts (including subtours) represented as set families F with associated µF :

let e(F) =
⋃

S∈F
δ(S) be the edges crossing any set in F ,

let χ(e,F) be the number of sets in F crossed by e.

The dual becomes:
max 2

∑
v∈V

yv +
∑
F

µFzF −
∑
e∈E

ye

∀vw ∈ E : yv + yw +
∑

F:vw∈e(F)

χ(e,F)zF − ye ≤ ce

yv free, ye, zF ≥ 0

So we need to find all edges with violated constraints, i.e., cases with

αe = ce − yv − yw + ye −
∑

F:vw∈e(F)

χ(e,F)zF < 0.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 24 / 27

BRANCH, CUT & PRICE

GENERALIZED DUAL

With cuts (including subtours) represented as set families F with associated µF :

let e(F) =
⋃

S∈F
δ(S) be the edges crossing any set in F ,

let χ(e,F) be the number of sets in F crossed by e.

The dual becomes:
max 2

∑
v∈V

yv +
∑
F

µFzF −
∑
e∈E

ye

∀vw ∈ E : yv + yw +
∑

F:vw∈e(F)

χ(e,F)zF − ye ≤ ce

yv free, ye, zF ≥ 0

So we need to find all edges with violated constraints, i.e., cases with

αe = ce − yv − yw + ye −
∑

F:vw∈e(F)

χ(e,F)zF < 0.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 24 / 27

BRANCH, CUT & PRICE

GENERALIZED DUAL

With cuts (including subtours) represented as set families F with associated µF :

let e(F) =
⋃

S∈F
δ(S) be the edges crossing any set in F ,

let χ(e,F) be the number of sets in F crossed by e.

The dual becomes:
max 2

∑
v∈V

yv +
∑
F

µFzF −
∑
e∈E

ye

∀vw ∈ E : yv + yw +
∑

F:vw∈e(F)

χ(e,F)zF − ye ≤ ce

yv free, ye, zF ≥ 0

So we need to find all edges with violated constraints, i.e., cases with

αe = ce − yv − yw + ye −
∑

F:vw∈e(F)

χ(e,F)zF < 0.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 24 / 27

BRANCH, CUT & PRICE

QUICK REDUCED COST ESTIMATE

So we need to find all edges with violated constraints, i.e., cases with

αe = ce − yv − yw + ye −
∑

F:vw∈e(F)

χ(e,F)zF < 0.

If we consider our solution to be a basic solution to the system with the full set of variables reached
by primal simplex, all unconsidered edges will have xe = 0 < 1 ⇒ ye = 0 (complementarity).

αe = ce − yv − yw −
∑

F:vw∈e(F)

χ(e,F)zF < 0.

We have everything we need to compute αe. But it’s too slow because of the sum of cuts.
We need a way to (quickly) underestimate αe ≤ αe; then check αe only if αe < 0.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 25 / 27

BRANCH, CUT & PRICE

QUICK REDUCED COST ESTIMATE

So we need to find all edges with violated constraints, i.e., cases with

αe = ce − yv − yw + ye −
∑

F:vw∈e(F)

χ(e,F)zF < 0.

If we consider our solution to be a basic solution to the system with the full set of variables reached
by primal simplex, all unconsidered edges will have xe = 0 < 1 ⇒ ye = 0 (complementarity).

αe = ce − yv − yw −
∑

F:vw∈e(F)

χ(e,F)zF < 0.

We have everything we need to compute αe. But it’s too slow because of the sum of cuts.
We need a way to (quickly) underestimate αe ≤ αe; then check αe only if αe < 0.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 25 / 27

BRANCH, CUT & PRICE

QUICK REDUCED COST ESTIMATE

So we need to find all edges with violated constraints, i.e., cases with

αe = ce − yv − yw + ye −
∑

F:vw∈e(F)

χ(e,F)zF < 0.

If we consider our solution to be a basic solution to the system with the full set of variables reached
by primal simplex, all unconsidered edges will have xe = 0 < 1 ⇒ ye = 0 (complementarity).

αe = ce − yv − yw −
∑

F:vw∈e(F)

χ(e,F)zF < 0.

We have everything we need to compute αe. But it’s too slow because of the sum of cuts.

We need a way to (quickly) underestimate αe ≤ αe; then check αe only if αe < 0.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 25 / 27

BRANCH, CUT & PRICE

QUICK REDUCED COST ESTIMATE

So we need to find all edges with violated constraints, i.e., cases with

αe = ce − yv − yw + ye −
∑

F:vw∈e(F)

χ(e,F)zF < 0.

If we consider our solution to be a basic solution to the system with the full set of variables reached
by primal simplex, all unconsidered edges will have xe = 0 < 1 ⇒ ye = 0 (complementarity).

αe = ce − yv − yw −
∑

F:vw∈e(F)

χ(e,F)zF < 0.

We have everything we need to compute αe. But it’s too slow because of the sum of cuts.
We need a way to (quickly) underestimate αe ≤ αe; then check αe only if αe < 0.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 25 / 27

BRANCH, CUT & PRICE

OVERESTIMATING DUAL CUT SUMS

Observe that ∑
F:vw∈e(F)

χ(e,F)zF =
∑
F

∑
S∈F:vw∈δ(S)

zF

=
∑
F

∑
S∈F:v∈S

zF +
∑
F

∑
S∈F:w∈S

zF − 2
∑
F

∑
S∈F:{v,w}⊆S

zF .

≤
∑
F

∑
S∈F:v∈S

zF +
∑
F

∑
S∈F:w∈S

zF .

We set
yv = yv +

∑
F

∑
S∈F:v∈S

zF and αe = ce − yv − yw ≤ αe.

This check can be done reasonably quickly, apparently even for about 106 cities.
Geometry can be used to speed this up even further.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 26 / 27

BRANCH, CUT & PRICE

CONCLUSION

With a clever combination and extensions of LP/IP techniques:

One can tackle very large TSP instances,

even those for which writing down the full model is impossible,

even those for which the variable set alone is too large.

A stock MIP solver (Gurobi, CPLEX, . . .) cannot replicate this easily.

Lazy constraints and user-generated cuts are usually possible (also in a MIP).

Pricing on a pure LP can easily be implemented (just repeatedly solve).

Branch, Cut & Price can normally not be implemented on top of their MIP capabilities.

That would need access to the automatically generated cuts (and may not work with them).

Some toolkits such as SCIP (or a manual Branch & Bound implementation) allow this.

Overall approach in Concorde is much more cut-y and much less branch-y.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 27 / 27

BRANCH, CUT & PRICE

CONCLUSION

With a clever combination and extensions of LP/IP techniques:

One can tackle very large TSP instances,

even those for which writing down the full model is impossible,

even those for which the variable set alone is too large.

A stock MIP solver (Gurobi, CPLEX, . . .) cannot replicate this easily.

Lazy constraints and user-generated cuts are usually possible (also in a MIP).

Pricing on a pure LP can easily be implemented (just repeatedly solve).

Branch, Cut & Price can normally not be implemented on top of their MIP capabilities.

That would need access to the automatically generated cuts (and may not work with them).

Some toolkits such as SCIP (or a manual Branch & Bound implementation) allow this.

Overall approach in Concorde is much more cut-y and much less branch-y.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 27 / 27

BRANCH, CUT & PRICE

CONCLUSION

With a clever combination and extensions of LP/IP techniques:

One can tackle very large TSP instances,

even those for which writing down the full model is impossible,

even those for which the variable set alone is too large.

A stock MIP solver (Gurobi, CPLEX, . . .) cannot replicate this easily.

Lazy constraints and user-generated cuts are usually possible (also in a MIP).

Pricing on a pure LP can easily be implemented (just repeatedly solve).

Branch, Cut & Price can normally not be implemented on top of their MIP capabilities.

That would need access to the automatically generated cuts (and may not work with them).

Some toolkits such as SCIP (or a manual Branch & Bound implementation) allow this.

Overall approach in Concorde is much more cut-y and much less branch-y.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 27 / 27

BRANCH, CUT & PRICE

CONCLUSION

With a clever combination and extensions of LP/IP techniques:

One can tackle very large TSP instances,

even those for which writing down the full model is impossible,

even those for which the variable set alone is too large.

A stock MIP solver (Gurobi, CPLEX, . . .) cannot replicate this easily.

Lazy constraints and user-generated cuts are usually possible (also in a MIP).

Pricing on a pure LP can easily be implemented (just repeatedly solve).

Branch, Cut & Price can normally not be implemented on top of their MIP capabilities.

That would need access to the automatically generated cuts (and may not work with them).

Some toolkits such as SCIP (or a manual Branch & Bound implementation) allow this.

Overall approach in Concorde is much more cut-y and much less branch-y.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 27 / 27

BRANCH, CUT & PRICE

CONCLUSION

With a clever combination and extensions of LP/IP techniques:

One can tackle very large TSP instances,

even those for which writing down the full model is impossible,

even those for which the variable set alone is too large.

A stock MIP solver (Gurobi, CPLEX, . . .) cannot replicate this easily.

Lazy constraints and user-generated cuts are usually possible (also in a MIP).

Pricing on a pure LP can easily be implemented (just repeatedly solve).

Branch, Cut & Price can normally not be implemented on top of their MIP capabilities.

That would need access to the automatically generated cuts (and may not work with them).

Some toolkits such as SCIP (or a manual Branch & Bound implementation) allow this.

Overall approach in Concorde is much more cut-y and much less branch-y.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 27 / 27

BRANCH, CUT & PRICE

CONCLUSION

With a clever combination and extensions of LP/IP techniques:

One can tackle very large TSP instances,

even those for which writing down the full model is impossible,

even those for which the variable set alone is too large.

A stock MIP solver (Gurobi, CPLEX, . . .) cannot replicate this easily.

Lazy constraints and user-generated cuts are usually possible (also in a MIP).

Pricing on a pure LP can easily be implemented (just repeatedly solve).

Branch, Cut & Price can normally not be implemented on top of their MIP capabilities.

That would need access to the automatically generated cuts (and may not work with them).

Some toolkits such as SCIP (or a manual Branch & Bound implementation) allow this.

Overall approach in Concorde is much more cut-y and much less branch-y.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 27 / 27

BRANCH, CUT & PRICE

CONCLUSION

With a clever combination and extensions of LP/IP techniques:

One can tackle very large TSP instances,

even those for which writing down the full model is impossible,

even those for which the variable set alone is too large.

A stock MIP solver (Gurobi, CPLEX, . . .) cannot replicate this easily.

Lazy constraints and user-generated cuts are usually possible (also in a MIP).

Pricing on a pure LP can easily be implemented (just repeatedly solve).

Branch, Cut & Price can normally not be implemented on top of their MIP capabilities.

That would need access to the automatically generated cuts (and may not work with them).

Some toolkits such as SCIP (or a manual Branch & Bound implementation) allow this.

Overall approach in Concorde is much more cut-y and much less branch-y.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 27 / 27

BRANCH, CUT & PRICE

CONCLUSION

With a clever combination and extensions of LP/IP techniques:

One can tackle very large TSP instances,

even those for which writing down the full model is impossible,

even those for which the variable set alone is too large.

A stock MIP solver (Gurobi, CPLEX, . . .) cannot replicate this easily.

Lazy constraints and user-generated cuts are usually possible (also in a MIP).

Pricing on a pure LP can easily be implemented (just repeatedly solve).

Branch, Cut & Price can normally not be implemented on top of their MIP capabilities.

That would need access to the automatically generated cuts (and may not work with them).

Some toolkits such as SCIP (or a manual Branch & Bound implementation) allow this.

Overall approach in Concorde is much more cut-y and much less branch-y.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 27 / 27

BRANCH, CUT & PRICE

CONCLUSION

With a clever combination and extensions of LP/IP techniques:

One can tackle very large TSP instances,

even those for which writing down the full model is impossible,

even those for which the variable set alone is too large.

A stock MIP solver (Gurobi, CPLEX, . . .) cannot replicate this easily.

Lazy constraints and user-generated cuts are usually possible (also in a MIP).

Pricing on a pure LP can easily be implemented (just repeatedly solve).

Branch, Cut & Price can normally not be implemented on top of their MIP capabilities.

That would need access to the automatically generated cuts (and may not work with them).

Some toolkits such as SCIP (or a manual Branch & Bound implementation) allow this.

Overall approach in Concorde is much more cut-y and much less branch-y.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 27 / 27

BRANCH, CUT & PRICE

CONCLUSION

With a clever combination and extensions of LP/IP techniques:

One can tackle very large TSP instances,

even those for which writing down the full model is impossible,

even those for which the variable set alone is too large.

A stock MIP solver (Gurobi, CPLEX, . . .) cannot replicate this easily.

Lazy constraints and user-generated cuts are usually possible (also in a MIP).

Pricing on a pure LP can easily be implemented (just repeatedly solve).

Branch, Cut & Price can normally not be implemented on top of their MIP capabilities.

That would need access to the automatically generated cuts (and may not work with them).

Some toolkits such as SCIP (or a manual Branch & Bound implementation) allow this.

Overall approach in Concorde is much more cut-y and much less branch-y.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 27 / 27

BRANCH, CUT & PRICE

CONCLUSION

With a clever combination and extensions of LP/IP techniques:

One can tackle very large TSP instances,

even those for which writing down the full model is impossible,

even those for which the variable set alone is too large.

A stock MIP solver (Gurobi, CPLEX, . . .) cannot replicate this easily.

Lazy constraints and user-generated cuts are usually possible (also in a MIP).

Pricing on a pure LP can easily be implemented (just repeatedly solve).

Branch, Cut & Price can normally not be implemented on top of their MIP capabilities.

That would need access to the automatically generated cuts (and may not work with them).

Some toolkits such as SCIP (or a manual Branch & Bound implementation) allow this.

Overall approach in Concorde is much more cut-y and much less branch-y.

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) LINEAR PROGRAMMING FEBRUARY 6, 2024 27 / 27

	Definition & Model
	Cutting Planes
	Branch, Cut & Price

