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INTRODUCTION

ORGANIZATION

As usual, the module has a ,,Prüfungsleistung” and a ,,Studienleistung”.

The ,,Prüfungsleistung” will most likely be an oral exam, depending mostly on the number of
participants. The ,,Prüfungsleistung” determines your grade.

The ,,Studienleistung” is tied to the homework sheets. We will start homework sheets next
week.

You have two weeks to solve each homework assignment.

As usual, there is a lecture (one per week) and a tutorial class (one per week, every other
week being dedicated to homework discussion). The lecture is where the main content is
presented. The tutorial adds additional content, practical stuff, shows applications, examples,
and discusses questions related to the content.
There is a mailing list and a course website. Please refer to that site instead of QIS/StudIP for
information. Please sign up for the mailing list; you might miss important announcements
otherwise.

https://www.ibr.cs.tu-bs.de/courses/ws2324/mma/
https://lists.ibr.cs.tu-bs.de/postorius/lists/mma.ibr.cs.tu-bs.de
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INTRODUCTION

CONTENT

What is this course about?

The mathematics behind making optimal decisions 1

objectives , constraints , variables

decision

1https://stellato.io/downloads/teaching/orf522/01 lecture.pdf

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) MMA NOVEMBER 7, 2023 6 / 26

https://stellato.io/downloads/teaching/orf522/01_lecture.pdf


INTRODUCTION

LITERATURE

The main reference for this course:
[V] R. J. Vanderbei. Linear Programming: Foundations and Extensions. Springer Nature (2020).
Can be accessed through SpringerLink from the university network:

https://link.springer.com/book/10.1007/978-3-030-39415-8

International Series in
Operations Research & Management Science

Robert J. Vanderbei

Linear 
Programming
Foundations and Extensions

Fifth Edition
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MOTIVATION

MANAGING A PRODUCTION FACILITY

Consider a production facility which is capable of producing a variety of products, say n products.
We enumerate these products as 1, 2, . . . , n.

These products are made from certain raw materials. Suppose that there are m different raw
materials, which again we simply enumerate as 1, 2, . . . ,m.
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MOTIVATION

MANAGING A PRODUCTION FACILITY

Further properties:

– The facility has, for each raw material i = 1, 2, . . . ,m, a known amount, say bi, on hand.

– Each raw material has, at this moment in time, a known unit market value. We denote the
unit value of the ith raw material by ρi.

– Producing one unit of product j requires a certain known amount, say aij units, of raw
material i.

– The jth final product can be sold at the known market price of σj dollars per unit.
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MOTIVATION

MANAGING A PRODUCTION FACILITY

Let us assume that the production manager decides to produce one unit of the jth product.

– Revenue of one unit of product j is σj

– Cost of producing one unit of j is
m∑
i=1

ρiaij

Therefore, the net revenue associated with the production of one unit of j is the difference
between the revenue and the cost.

cj = σj −
m∑
i=1

ρiaij , j = 1, 2, . . . , n

For our optimization, we do not really care about the individual material costs; we only need to
know the net revenue cj associated with each product.
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MOTIVATION

MANAGING A PRODUCTION FACILITY

Let us capture the available information up to now:

product 1 . . . product n

c1 · · · cn

raw material 1 a11 · · · a1n b1

...
...

. . .
...

...

raw material m am1 · · · amn bm
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MOTIVATION

MAXIMIZING REVENUE

The problem we wish to consider is the one faced by the companies’ production manager.

She asks:

How to use the raw materials and get best possible net revenue?

Let xj be the amount of the jth product she decides to produce.

→ The net revenue corresponding to the production of xj units of product j is simply cjxj .

→ The total net revenue is
n∑

j=1

cjxj .

→ Her goal is to find values xj to maximize this quantity.
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MOTIVATION

CONSTRAINTS

However, there are constraints on the production levels that she can assign.

→ Each production quantity xj must be nonnegative, so she has the constraints

xj ≥ 0, j = 1, 2, . . . , n.

→ She cannot produce more product than she has raw material for. The amount of raw material
i consumed by a given production schedule is

n∑
j=1

aijxj ,

so she must adhere to the following constraints

n∑
j=1

aijxj ≤ bi, i = 1, 2, . . . ,m.
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MOTIVATION

Objective

max
n∑

j=1

cjxj

n∑

j=1

aijxj ≤ bi , i = 1, 2, · · · ,m

xj ≥ 0 , j = 1, 2, · · · , n

xj , j = 1, 2, · · · , n

Constraints

variables
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MOTIVATION

EXAMPLE

Resource allocation in a toy factory. 2

toy 1 toy 2 toy 3 toy 4 toy 5

$15 $30 $20 $25 $25

1. Red paint 0 1 0 1 3 625
2. Blue paint 3 1 0 1 0 640
3. White paint 2 1 2 0 2 1100
4. Plastic 1 5 2 2 1 875
5. Wood 3 0 3 5 5 2200
6. Glue 1 2 3 2 3 1500

2https://www.exceldemy.com/allocating-resources-in-excel-using-solver/
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MOTIVATION

EXAMPLE

max
x

15x1 + 30x2 + 20x3 + 25x4 + 25x5

s.t. 0x1 + 1x2 + 0x3 + 1x4 + 3x5 ≤ 625

3x1 + 1x2 + 0x3 + 1x4 + 0x5 ≤ 640

2x1 + 1x2 + 2x3 + 0x4 + 2x5 ≤ 1100

1x1 + 5x2 + 2x3 + 2x4 + 1x5 ≤ 875

3x1 + 0x2 + 3x3 + 5x4 + 5x5 ≤ 2200

1x1 + 2x2 + 3x3 + 2x4 + 3x5 ≤ 1500

x1, x2, x3, x4, x5 ≥ 0

(Linear Programming formulation of the problem)

toy 1 toy 2 toy 3 toy 4 toy 5

$15 $30 $20 $25 $25

1. Red paint 0 1 0 1 3 625
2. Blue paint 3 1 0 1 0 640
3. White paint 2 1 2 0 2 1100
4. Plastic 1 5 2 2 1 875
5. Wood 3 0 3 5 5 2200
6. Glue 1 2 3 2 3 1500

Blue paint cons.

Wood cons.
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DEFINITIONS

INTRODUCTION

MOTIVATION

DEFINITIONS

P. KELDENICH, A. MORADI (IBR ALGORITHMIK) MMA NOVEMBER 7, 2023 18 / 26



DEFINITIONS

LINEAR PROGRAM

Let us capture important points observed up to now:

→ In the examples, there have been variables whose values are to be decided in some optimal
fashion. These variables are referred to as decision variables. They are usually denoted as

xj , j = 1, 2, · · · , n

→ The objective is always to maximize or to minimize some linear function of these decision
variables

ζ = c1x1 + c2x2 + · · ·+ cnxn.

This function is called the objective function.

→ In addition to the objective function, the examples also had constraints. The constraints
consisted of either an equality or an inequality associated with some linear combination of the
decision variables:

a1x1 + a2x2 + · · ·+ anxn

 ≤
=
≥

 b

Note: No multiplication of decision variables with each other!
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DEFINITIONS

Converting between constraint types and objective function directions is straightforward!

→ An objective function in max sense could be converted to min and vice versa:

max
x

ζ(x) = −min
x

−ζ(x).

→ An inequality constraint
a1x1 + a2x2 + · · ·+ anxn ≤ b

can be converted to an equality constraint by adding a nonnegative variable, w, called slack
variable:

a1x1 + a2x2 + · · ·+ anxn + w = b, w ≥ 0.

→ An equality constraint
a1x1 + a2x2 + · · ·+ anxn = b

can be converted to inequality form by

introducing two inequality constraints:

a1x1 + a2x2 + · · ·+ anxn ≤ b

a1x1 + a2x2 + · · ·+ anxn ≥ b

A ≥-constraint can be transformed to ≤ by

negating both sides:∑
i

aixi ≥ bi ⇔
∑
i

−aixi ≤ −bi.
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DEFINITIONS

STANDARD FORM

There is no a priori preference for how one poses the constraints (as long as they are linear, of
course). However, from a mathematical point of view, there is a preferred presentation.

Linear program in Standard Form representation:

– Consider a max problem,

– pose the inequalities in ≤-form,

– stipulate that all the decision variables be nonnegative.

max
x

c1x1 + c2x2 + · · ·+ cnxn

subject to a11x1 + a12x2 + · · ·+ a1nxn ≤ b1

a21x1 + a22x2 + · · ·+ a2nxn ≤ b2

...

am1x1 + am2x2 + · · ·+ amnxn ≤ bm

x1, x2, . . . , xn ≥ 0.
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DEFINITIONS

SOLUTIONS & FEASIBILITY

A proposal of specific values for the decision variables is called a solution.

– A solution (x1, x2, · · · , xn) is called feasible if it satisfies all of the constraints.

– It is called optimal if, in addition to feasibility, it attains the desired maximum.

Some problems are just simply infeasible. Consider

max
x

5x1 + 4x2

s.t. x1 + x2 ≤ 2

− 2x1 − 2x2 ≤ −9

x1, x2 ≥ 0.

The second constraint implies that x1 + x2 ≥ 4.5, which contradicts the first constraint.

– If a problem has no feasible solution, then the problem itself is called infeasible.
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– If a problem has no feasible solution, then the problem itself is called infeasible.
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DEFINITIONS

UNBOUNDEDNESS

At the other extreme from infeasible problems, one finds unbounded problems.

– A problem is unbounded if it has feasible solutions with arbitrarily large objective values.

max
x

x1 − 4x2

s.t. − 2x1 + x2 ≤ −1

− x1 − 2x2 ≤ −2

x1, x2 ≥ 0

⇝ Set x2 to zero and let x1 be arbitrarily large.

⇝ As long as x1 ≥ 2, the solution will be feasible, and

⇝ As x1 gets large the objective function does too.

In addition to finding optimal solutions to linear programming problems, we are going to detect
when a problem is infeasible or unbounded.
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DEFINITIONS

EXISTENCE OF OPTIMAL SOLUTIONS

So far, we know linear programs can be infeasible or unbounded. Do they always have an optimal
solution if neither is true?

Answer: Yes!

Why?

Let X be the set of feasible solutions.

→ The objective function c is bounded on X , i.e., has a supremum s (for max).

→ The objective function c is linear, so it maps the closed set X to a closed set c[X].

→ By the definition of sup, s is in c[X] or an accumulation point of c[X]. Since c[X] is closed,
s ∈ c[X] in either case.

Why do we not allow < and > constraints in linear programs?

Because X would not be closed: maxx s.t. x < 1?
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DEFINITIONS

GEOMETRY

Find linear inequalities whose intersection makes the yellow region (feasible space).
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DEFINITIONS

GEOMETRY
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Up next: An algorithm to solve linear programs!
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