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Scissors congruence



Congruence

Two polygons are congruent if there
exists a transformation consisting of

only translation and rotation for one
into the other.




Scissors congruence

Two simple polygons P and Q are scissors congruent if we can subdivide their
area into polygons Py, ..., P, and Q,, ..., O, such that forany: € [1,k], the

polygon P; is congruent to (.. (This corresponds to cutting and glueing...)
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Scissors congruence

Two simple polygons P and Q are scissors congruent if we can subdivide their
area into polygons Py, ..., P, and Q,, ..., O, such that forany: € [1,k], the

polygon P; is congruent to (.. (This corresponds to cutting and glueing...)

We want to show that any two simple polygons of equal area are scissors congruent.
Start with rectangles and triangles!



Scissors congruence

Triangles to rectangles... to other rectangles



Visualizing scissors congruence

The Wallace-Bolyai-Gerwien theorem

http://dmsm.qgithub.io/scissors-congruence/
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Abstract
Consider two simple polygons with equal area. The Wallace-Bolyai—Gerwien theorem states that
these polygons are scissors congruent, that is, they can be dissected into finitely many congruent
polygonal pieces. We present an interactive application that visualizes this constructive proof.
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1 Introduction
At the dawn of the 19th century, William Wallace and John Lowry [1] posed the following:

Is it possible in every case to divide each of two equal but dissimilar rectilinear figures,
into the same number of triangles, such that those which constitute the one figure are
respectively identical with those which constitute the other?

This sparked an active area of research, which culminated in the discovery of the following
theorem, independently by Wallace-Lowry [1], Wolfgang Bolyai [2] and Paul Gerwien [3].

» Theorem 1 (Wallace—Bolyai—Gerwien). Any two simple polygons of equal area are scissors
congruent, i.e. they can be dissected into a finite number of congruent polygonal pieces.

David Hilbert himself recognized the importance of this theorem, including it as “Theorem
30" in his The Foundations of Geometry [4]. Furthermore, he posed a three-dimensional
generalization of Wallace’s question as number three of his famous 23 problems [5]: Given
any two polyhedra of equal volume, can they be dissected into finitely many congruent
tetrahedra? This problem was solved by Hilbert’s own student Max Dehn, who provided
(unlike the 2D case) a negative answer by constructing counterexamples [6].

The beauty of the original proof of WBG is that it is constructive: it describes an actual
algorithm for constructing the polygonal pieces. To gain a deeper appreciation for this result,
we built an interactive application that visualizes the algorithm in an intuitive and didactic
manner. Instructors have taught the Wallace-Bolyai—Gerwien procedure using physical
materials [7], and this application provides a digital analog.
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Scissors congruence - Notes and open problems
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ON DIVIDING A SQUARE INTO TRIANGLES

EXPLORATIONS ON THE WALLACE-BOLYAI-GERWIEN THEOREM

Pavy Moxsky, Brandeis University and Kyoto University ANRAVANAGH

S'O"\Ctinlc ago in th 1S M ONTHLY Fred R ichman and JOh n Thomas [ 1 ] asked ABSTRACT. In this survey paper, we present a proof of the Wallace-Bolyai-Gerwien theorem, namely,

. ® . . ' that any two plane polygons of the same area may be decomposed into the same number of pairwise

tllc (0"0“1““ pU Zleng (lUt’Sth" - congruent triangles. Several generalisations and closely related theorems will be considered, and an
Can a square S be divided into an odd number of nonoverlapping iriangles T, original example will be explored.

all of the same area?

1. INTRODUCTION

MonSky'S Theorem (1 970) In 1814, Wallace [WL14] posed:

Is it possible in every case to divide each of two equal but dissimilar rectilinear figures,

A square can never be divided into an odd number ey demet i e i ot ot
O F non-ove Fla p p | n g tria n g leS OF eq ud l alreada. https://rak.ac/files/papers/wallace-bolyai-gerwien.pdf

Open Question #1

Can Monsky's Theorem be generalized for cubes of
higher dimension?

Open Question #2

/ Is it possible to bound from below the number of
cuts required to show that two polygons have the
\ same area?

https://en.wikipedia.org/wiki/Monsky%27s theorem



https://en.wikipedia.org/wiki/Monsky's_theorem
https://rak.ac/files/papers/wallace-bolyai-gerwien.pdf

Voronoi diagrams




Voronoi diagrams

Properties

A Voronoi diagram Vor(P) divides
the hyperplane based on which

element of a discrete point set P is
closest by some metric.

How do the unbounded faces relate
to the convex hullconv(P)?

What if we wanted to divide based
on which two points are closest?




Voronoi diagrams

Higher orders

An 1th order Voronoi diagram of P
divides the hyperplane based on

which 1 points of P are closest.

Here: 2nd order Voronoi diagram.

How can we compute this?
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Voronoi diagrams

Higher orders

An 1th order Voronoi diagram of P
divides the hyperplane based on

which 1 points of P are closest.
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... using Vor(P).




Voronoi diagrams
Farthest-point, (n — 1)th order

An (n — 1)th order Voronoi
diagram divides the hyperplane
based on which element of a

discrete point set P is farthest by
some metric.

Can you think of some relation to
the convex hullconv(P)?




Voronoi diagrams
Farthest-point, (7 — 1)th order

An (n — 1)th order Voronoi
diagram divides the hyperplane
based on which element of a

discrete point set P is farthest by
some metric.

All cells are unbounded, i.e., the

dual graphis atree. Apointp € P

has a non-empty Voronoi region
exactly if it lies on the boundary of

the convex hull conv(P).




Farthest-point Voronoi diagrams

Properties of edges and vertices




Farthest-point Voronoi diagrams

Properties of edges and vertices
I '

Edges are equidistant to two Vertices are equidistant to at least
sites, closer to all others. three sites, closer to all others.




Degenerate cases: Collinearity

What if all points lie on a line?




Enclosing disks



Smallest enclosing disk

In general position (no four points on a common circle this time)!

Given: Points P :=py, ..., p, inthe
plane, in general position.

Wanted: An enclosing disk md(P) of
minimal radius r.

Can you characterise md(P) based on P?

Can you think of a fast approximation
method? Which factor can you achieve?




Smallest enclosing disk
A y2-approximation N
Given: Points P :=py, ..., p, inthe

plane, in general position.

Idea: Compute in @O(n) an axis-
aligned bounding box via min

and max coordinates, use
the smallest enclosing disk.

The diameter of this disk is larger than

max{9,, o, }, which bounds the
diameter of any enclosing disk from

below, by a factor of no more than \/5



