Computational Geometry
 Tutorial \#4 - Voronoi diagrams, cutting and glueing

Scissors congruence

Congruence

Two polygons are congruent if there exists a transformation consisting of only translation and rotation for one into the other.

Scissors congruence

Two simple polygons P and Q are scissors congruent if we can subdivide their area into polygons P_{1}, \ldots, P_{k} and Q_{1}, \ldots, Q_{k} such that for any $i \in[1, k]$, the polygon P_{i} is congruent to Q_{i}. (This corresponds to cutting and glueing...)

P

Q

Scissors Congruence

Two simple polygons P and Q are scissors congruent if we can subdivide their area into polygons P_{1}, \ldots, P_{k} and Q_{1}, \ldots, Q_{k} such that for any $i \in[1, k]$, the polygon P_{i} is congruent to Q_{i}. (This corresponds to cutting and glueing...)

Scissors congruence

Two simple polygons P and Q are scissors congruent if we can subdivide their area into polygons P_{1}, \ldots, P_{k} and Q_{1}, \ldots, Q_{k} such that for any $i \in[1, k]$, the polygon P_{i} is congruent to Q_{i}. (This corresponds to cutting and glueing...)

We want to show that any two simple polygons of equal area are scissors congruent. Start with rectangles and triangles!

Scissors congruence

Triangles to rectangles... to other rectangles

Visualizing scissors congruence

The Wallace-Bolyai-Gerwien theorem

http://dmsm.github.io/scissors-congruence/

Visualizing Scissors Congruence
Satyan L. Devadoss ${ }^{1}$, Ziv Epstein ${ }^{2}$, and Dmitriy Smirnov ${ }^{2}$
Mathematics Department, Willliams College, Willims, US Mathematics Department, Williams College, Williams, USA
satyan. devadososill iams.odul

Computer Science Department, Pomona College, Claremont, USA | Computer Science Department, Pomona College, Claremont, USA |
| :--- |
| ziv.aptein $\begin{array}{l}\text { Coponana edu } \\ \text { Computer Science Department, Pomona College, Claremont, USA }\end{array}$ | dmitriy, smirnovopponona. edu

 Ader wo simple polygos scisons congruent, that is the Wallace Bolyai- Gerwien theorem states the theses polyggns are scissors congruent, that is, they can be dissected into fnitely many congruent
polygonal pieces. We present an interactive applicition that visualies this constructive proof.

1998 ACM Subject Classification I.3.5 [Computational Geometry and Object Modeling Geo etric Algorithms, languages and sytems, K.3.1 IComputer Uses in Education Compute

- \rightarrow der

Digital Object Identifier 10.4230/LLPCes.SocG. 2016.66
Category Multimedia Contribution
1 Introduction
t the dawn of the 19th century, William Wallace and John Lowry [1] posed the following
Is it possible in every case to divide each of two equal but disimilar rectiliear figures
into the same number of triangles, such that those which constitute the one fiure are into hhe same number of triangeses, shch that those wich const
respectively identical with those which constitute the other?
This sparked an active area of research, which culminated in the discovery of the following
theorem, independently by Wallace-Lowry [1], Wolfgang Bolyai $[7$ and Paul Gerwien $[3]$. Theorem 1 (Wallace-Bolyi-Gerwien). Any two simple polygons of equal area are sciss. David Hilbert thimself recognized the importance of this theorem, including it as "Theoren generalization of Wallace's question as number three of his famous 23 problems [5]: Given any two polyhedra of equal volume, can they be dissected into finitely many congruent (unlike the 2D case) a negative answer by constructing counterexamples [6].
The beauty of the original proof of WBG is that it is constructive: it describes an actiol
Igorithm for constructing the polygonal pieces. To gain a deeper appreciation for this resut,
we built an interactive application that visulizes the algorithm in an intuitive and didactic namner. Instructors have taught the Wallace- Bolyai-Gervien procedure using physical rias $\lceil\uparrow$, and this application provides a digital analog

Scissors congruence - Notes and open problems

MATHEMATICAL NOTES

Edited by David Drasin

Mansscripts for this Department should be sent to David Drasin, Division of Mathematical Sciences, Purdue Unisersity, Lefayctte, IN 47907.

ON DIVIDING A SQUARE INTO TRIANGLES

Paul Mossky, Brandeis University and Kyoto University
Sometime ago in this Monthly, Fred Richman and John Thomas [1] asked the following puzzling question:

Can a square S be divided into an odd number of nonoverlapping triangles T_{i}, all of the same area?

Monsky's Theorem (1970)

A square can never be divided into an odd number of non-overlapping triangles of equal area.

EXPLORATIONS ON THE WALLACE-BOLYAI-GERWIEN THEOREM
ryan kavanagh
Abstract. In this survey paper, we present a proof of the Wallace-Bolyai-Gerwien theorem, namely, that any two plane polygons of the same area may be decomposed into the same number of pairwise ongruent triangles. Several generalisations and closely related theorems will be considered, and a original example will be explored.

In 1814, Wallace [WL14] posed
Is it possible in every case to divide each of two equal but dissimilar rectilinear figures into the same number of triangles, such, that those which constitute the one figure are respectively identical with those which constitute the other?
https://rak.ac/files/papers/wallace-bolyai-gerwien.pdf

Open Question \#1

Can Monsky's Theorem be generalized for cubes of higher dimension?
Open Question \#2
Is it possible to bound from below the number of cuts required to show that two polygons have the same area?

Voronoi diagrams

Voronoi diagrams

Properties

A Voronoi diagram $\operatorname{Vor}(P)$ divides the hyperplane based on which element of a discrete point set P is closest by some metric.

How do the unbounded faces relate to the convex hull $\operatorname{conv}(P)$?

What if we wanted to divide based
 on which two points are closest?

Voronoi diagrams

Higher orders

An i th order Voronoi diagram of P divides the hyperplane based on which i points of P are closest.
Here: 2nd order Voronoi diagram.

How can we compute this?

Voronoi diagrams

Higher orders

An i th order Voronoi diagram of P divides the hyperplane based on which i points of P are closest.
Here: 2nd order Voronoi diagram.

How can we compute this?
... using $\operatorname{Vor}(P)$.

Voronoi diagrams

Higher orders

An i th order Voronoi diagram of P divides the hyperplane based on which i points of P are closest.
Here: 1st order Voronoi diagram.

How can we compute this?
... using $\operatorname{Vor}(P)$.

Voronoi diagrams

Farthest-point, $(n-1)$ th order

An ($n-1$)th order Voronoi diagram divides the hyperplane based on which element of a discrete point set P is farthest by some metric.

Can you think of some relation to the convex hull conv (P) ?

Voronoi diagrams

Farthest-point, $(n-1)$ th order

An ($n-1$)th order Voronoi diagram divides the hyperplane based on which element of a discrete point set P is farthest by some metric.

All cells are unbounded, i.e., the dual graph is a tree. A point $p \in P$ has a non-empty Voronoi region exactly if it lies on the boundary of
 the convex hull $\operatorname{conv}(P)$.

Farthest-point Voronoi diagrams

Properties of edges and vertices

Farthest-point Voronoi diagrams

Properties of edges and vertices

Edges are equidistant to two sites, closer to all others.

Vertices are equidistant to at least three sites, closer to all others.

Degenerate cases: Collinearity

What if all points lie on a line?

1st

2nd

3rd

4th

5th

Enclosing disks

Smallest enclosing disk

In general position (no four points on a common circle this time)!

Given: Points $P:=p_{1}, \ldots, p_{n}$ in the plane, in general position.

Wanted: An enclosing disk $\operatorname{md}(P)$ of minimal radius r.

Can you characterise $\operatorname{md}(P)$ based on P ?
Can you think of a fast approximation method? Which factor can you achieve?

Smallest enclosing disk

 A $\sqrt{2}$-approximationGiven: Points $P:=p_{1}, \ldots, p_{n}$ in the plane, in general position.

Idea: Compute in $\mathcal{O}(n)$ an axisaligned bounding box via min and max coordinates, use the smallest enclosing disk.

The diameter of this disk is larger than $\max \left\{\delta_{x}, \delta_{y}\right\}$, which bounds the diameter of any enclosing disk from below, by a factor of no more than $\sqrt{2}$.

