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b) What is the fastest feasible runtime guarantee of an algorithm which computes it?

¢) What is your favorite algorithm that computes the convex hull? Explain why!

Question 2 (Closest pair): (3 Points points)

a) Explain the basic idea of the divide-and-conquer algorithm for computing the closest
pair of a set of points.

b) What is the key observation in the merging step of Bentley’s and Shamos’ algorithm?

¢) Is it possible for the closest pair to lie on the convex hull of the point set? Why?

Question 3 (Voronoi diagram): (4 Points points)
a) In your own words, what is the intuitive idea of a Voronoi diagram?
b) Explain the relationship between Voronoi cells, Voronoi vertices, and Voronoi edges.
c¢) Is there a relationship between the convex hull of a point set and its Voronoi diagram?

d) What is your favorite property of a Voronoi diagram? Why?

Question 4 (Miscellaneous): (3 Points points)

a) What does it mean for an algorithm to be output-sensitive? Describe a scenario in
which such an algorithm may be preferable over another with better runtime bounds.

b) What is a randomized algorithm? Do you know any? Explain its idea.

¢) How and how fast can we compute the median of a set of n integers? And of a set
of n points in the plane?
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Convex Layers & Polygons



Convex Layers of Point Sets

“Onion Decomposition”

The convex layers of a point set —

9 are a decomposition based on

repeated deletion of the convex

hull vertices of &, until there are (ZE)
no points left.

How (quickly) can we compute this?

Applications: Outlier Detection, Central Tendency (Probabilistic Analysis), ...



Convex Layers of Point Sets

Chazelle, 1985

This is possible in O(nlog n) time.
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Fig. 2. Upper and lower chains. Fig. 3. Hull graph of §S.

Applications: Outlier Detection, Central Tendency (Probabilistic Analysis), ...
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On the Convex Layers of a Planar Set

BERNARD CHAZELLE

Abstract—Let S be a set of n points in the Euclidean plane. The convex
layers of S are the convex polygons obtained by iterating on the following
procedure: compute the convex hull of S and remove its vertices from S.
This process of peeling a planar point set is central in the study of robust
estimators in statistics. It also provides valuable information on the mor-
phology of a set of sites and has proven to be an efficient preconditioning
for range search problems. An optimal algorithm is described for comput-
ing the convex layers of S. The algorithm runs in O(nlogn) time and
requires O(n) space. Also addressed is the problem of determining the
depth of a query point within the convex layers of S, i.e., the number of
layers that enclose the query point. This is essentially a planar point
location problem, for which optimal solutions are therefore known. Taking
advantage of structural properties of the problem, however, a much simpler
optimal solution is derived.

I. INTRODUCTION

ET S = {py,-++, p,—1} be a set of n points in the

Euclidean plane. The set of convex layers of S, de-
noted C(S) in the following, is the set of convex polygons
defined iteratively as follows: compute the convex hull of §
and remove its vertices from S (Fig. 1). The convex layers
of a point set can be seen as a natural extension of its
convex hull. In [17) Shamos mentions applications of this
concept to pattern recognition and statistics. A central
problem in robust estimation is that of evaluating an
unbiased estimator that is not too sensitive to outliers, i.e.,
observations lying abnormally far from the others. To
tackle the two-dimensional version of this problem, Tukey
has suggested removing the outliers of a point set by
peeling or shelling the set in the manner described above,
iterating on this process until only a prescribed fraction of
the original points remain [9).

Another illustration of the importance of convex layers
in computational geometry has come up recently in the
context of a well-known retrieval problem. The halfplane
range search problem involves preprocessing n points in
the Euclidean plane so that for any query line L, the subset
of points lying on a given side of L can be reported
effectively. The use of convex layers allowed Chazelle,
Guibas, and Lee [6] to derive an optimal solution to this
problem.
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Fig. 1. Convex layers of point set.

Besides its practical relevance, the problem of computing
the convex layers of a point set is also interesting in its own
right, for it intuitively represents a geometric “equivalent”
to sorting. Indeed, considering the various algorithms
known for computing the convex hull of a set of points,
one is tempted to draw a parallel with sorting algorithms.
The Jarvis march [10] resembles selection sort, Bentley and
Shamos’s method [3] smacks of merge sort, and Eddy’s
algorithm [7] is strongly reminiscent of quicksort. There is,
however, a fundamental difference that often makes com-
puting convex hulls easier than sorting; this is the fact that
the output is a convex polygon that may contain only a
small fraction of the original points. This is what allows the
existence of linear-expected-time algorithms for computing
convex hulls under certain distributions of the points
[21,13],[18]. Knowing that similar results are provably im-
possible to obtain in the case of sorting [1], one can
appreciate the intrinsic difference between the two prob-
lems. One way of bridging this complexity gap is precisely
to require the explicit computation of all the convex layers
of the set of points, for it then becomes impossible to take
advantage of the possible scarcity of the output in order to
bound the time complexity of the problem.

This paper describes an O(n) space, O(nlogn) time
algorithm for computing the convex layers of S. Because
the convex hull of S is one of the convex layers, computing
C(S) requires Q(nlogn) time [17],{20]. Our algorithm is
therefore optimal. A number of O(n?) time algorithms for
computing convex layers have been found (8], [17], but the
most efficient method previously known for this problem
requires O(nlog?n) time [13]. It is based on 4 general
technique for maintaining the convex hull of a point set in
a dynamic environment. Any point can be inserted or
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Boolean Operations on Convex Polygons

Given two convex Polygons P and O,
we seek to determine:

PNnQO,PUQ,P\Q, (O\P)

Which properties of the resulting
polygons can you think of?



Boolean Operations on Convex Polygons

Given two convex Polygons P and O,
we seek to determine:

PNQ,PUQ, P\Q, (O\P)
Which properties of the resulting
polygons can you think of?

Which concepts from the lecture
could we use?




