Computational Geometry
Chapter 3: Closest Pair
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Definitions - |

Problem 3.1, ,,Closest Pair:
e Given: A finite point set P :={po,...,pn_1} C R®
e Wanted: A pair with minimal distance wrt to metric d:

(p,q) € P x P with d(p,q) = min{d(z,y) | z,y € P,x # y}
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Definitions - |

Definition 3.2
A metric is a mapping d: M x M — R>q with
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Definition 3.2
A metric isamapping d: M x M — R>q with
Ve, y e M :d(z,y) =0z =1y (Definitness)
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Definition 3.2
A metric isamapping d: M x M — R>q with
Ve, y e M :d(z,y) =0z =1y (Definitness)
2Vx,y € M : d(x,y) = d(y, ) (Symmetry)
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Definition 3.2
A metric isamapping d: M x M — R>q with
Ve, y e M :d(z,y) =0z =1y (Definitness)
2Vx,y € M : d(x,y) = d(y, ) (Symmetry)
3NV, y,z € M : d(x,z) < d(x,y) + d(y, z) (Triangle inequality)
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Examples for p, g € R%:

® FEuclidean metric:

d
q) = Z(pwz — q.7;)?
\ i=1
e Manhattan metric:
d
di(p,q) = Z p.x; — q.x;)
i=1

® Maximum metric:
doo(p; q) 1= max \pwz q.%;|

More generally:

e p-metric (p > 1):
1=1

e VpgcRij>1:i<j=di(p,q)

0«17

P, q)

doo (D, )

Definitions - |l

P 1/p
(z P )
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Superhero!

CLOSEST PEAR
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® Split (Quicksort) or combine (Mergesort)
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Divide-and-Conquer

7 31211 4
3 1047 5
3|2 615
1|2 6|7
9 6|7
2 7 8
Quicksort
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Convex Hulls of Finite
Sets of Points in Two
and Three Dimensions

F. P. Preparata and S. J. Hong
University of Illinois at Urbana-Champaign

The convex hulls of sets of n points in two and three
dimensions can be determined with O(n log n) opera-
tions. The presented algorithms use the ‘‘divide and
conquer”’ technique and recursively apply a merge
procedure for two nonintersecting convex hulls. Since
any convex hull algorithm requires at least O(n log n)
operations, the time complexity of the proposed
algorithms is optimal within a multiplicative constant.

Key Words and Phrases: computational com-
plexity, convex hull, optimal algorithms, planar set of
points, spatial set of points

CR Categories: 4.49, 5.25, 5.32

1. Introduction

The determination of the convex hull of a finite
set of points is relevant to several problems in com-
puter graphics, design automation, pattern recognition
and operations research: references [3, 4, 10]—just
to cite a few—discuss some interesting applications in
these areas, which require convex hull computation.

Copyright © 1977, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM’s copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

This work was supported in part by the Joint Services Elec-
tronics Program (U.S. Army, U.S. Navy, and U.S. Air Force)
under Contract DAAB-07-72-C-0259.

Authors’ addresses: F.P. Preparata, Coordinated Science
Laboratory, University of 1llinois, Urbana, IL 61801; S.J. Hong,
IBM Systems Product Division, Poughkeepsie, NY 12602. This
work was completed while the second author was on leave at the
University of Iilinois.

Communications February 1977
of Volume 20
the ACM Number 2
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Divide-and-Conquer [Preparata and Hong, 1977]

Basic idea:

® Balanced subdivision, solve recursively

® Analogy: Mergesort § 9 10 11 12 13 14 15 16 17
i J a . J12]2]3]4[5]6]7]..
- Split array in a balanced fashion into two arrays s . 'j s
i WS - & R |
- Sort recursively L[2]415]7 i ’ |
. T — ——————
- Combine
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Divide-and-Conquer [Preparata and Hong, 1977]

[ 1]
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Divide-and-Conquer [Preparata and Hong, 1977]

Basic idea:
® Balanced subdivision, solve recursively

® Analogy: Mergesort 8 9 10 112 13 14 1s 16 17

- Split array in a balanced fashion into two arrays

- Sort recursively

- Combine

Transfer to R?:

e Separate by x-median

® Recursively: right and left hull

® (Combine left and right hull

1L
o™ e,

53 [xg% Technisch
£

’3‘3 > Universitat
L) o
e ,.j’ Braunschweig

oIVsc?‘




Merging Two Convex Hulls - |

Assumption: General position (1. distinct z -coordinate and
2. no three points collinear)

® Split wrt. z-median = Left and right hull disjoint

o Goal: frerge(n) € O(n) .

® Then T(n) € O(nlogn)
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The Master Theorem

Theorem 3.3» (Master Theorem)_ Let T :IN—= R with

T(n) =Y T(a;-n)+0O(nk),

1=1

where a; € Rwith 0 < o; <1, m € IN and k € R. Then

e (n*) Jor ST aF <1
T(n) € { ©(n*log(n) Jfor 7", aF =1
©(n°) with 370 af =1 for 35, af > 1
e e eee—

e Runtime:
T(n) = 2T (g) + £(n) + Fmerge(n) with f(n) € O(n)

fmerge(n) :=time for merging right and left hull
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Theorem 3.3 (Master Theorem)r Let T :IN— R with

T(aj-n)+ @(nk),

=
S
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The Master Theorem
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The Master Theorem

Theorem 3.3 (Master Theorem)r Let T :IN— R with

T(n) = iT(ai -n) + @(nk),
i=1 In . n\
where o; € Rwith 0 < a; <1, m € N and k € R. Then T(n) S T ' T ' cn

108% n log,y 1 / \ / \
n In 9n_ 81n
€100 €100 €100 €0 ~— - - - -~ >
' | | | | | 8in 290 _ _ _ _p  cn
\/ c €1000  ©7000
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Medians [Blum, Floyd, Pratt, Rivest, Tarjan 1973]

< n/2 points < n/2 points
0
®
° ® ®
®
° ® ®
° ° °
°
°
° ® ® ® °

Theorem 3.4
A median for n numbers can be computed in O(n).
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Medians [Blum, Floyd, Pratt, Rivest, Tarjan 1973]

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 7, 448-461 (1973)

< n/2 points

P 0 Time Bounds for Selection*
ManveL Brum, RoBert W. FLoyDp, VAUGHAN PRraTT,
‘ RonaLp L. Rivest, AND RoBerT E. TARjAN

Department of Computer Science, Stanford University, Stanford, California 94305

‘ Received November 14, 1972

‘ The number of comparisons required to select the i-th smallest of # numbers is shown

to be at most a linear function of n by analysis of a new selection algorithm—PICK.
‘ ‘ Specifically, no more than 5.4305 n comparisons are ever required. This bound is
improved for extreme values of 7, and a new lower bound on the requisite number
of comparisons is also proved.

‘ 1. INTRODUCTION

() o In this paper we present a new selection algorithm, PICK, and derive by an analysis
of its efficiency the (surprising) result that the cost of selection is at most a linear
function of the number of input items. In addition, we prove a new lower bound
for the cost of selection.

The selection problem is perhaps best exemplified by the computation of medians.
In general, we may wish to select the i-th smallest of a set of n distinct numbers,
or the element ranking closest to a given percentile level.

Interest in this problem may be traced to the realm of sports and the design of
(traditionally, tennis) tournaments to select the first- and second-best players. In
1883, Lewis Carroll published an article [1] denouncing the unfair method by which
Th eo rem 3 4 the second-best player is usually determined in a “knockout tournament” —the loser

" of the final match is often not the second-best! (Any of the players who lost only

. . to the best player may be second-best.) Around 1930, Hugo Steinhaus brought the

A m ed 1an fo F 2 Nuum berS can be com p uted N O (n) 1 problem into the realm of algorithmic complexity by asking for the minimum number
of matches required to (correctly) select both the first- and second-best players

from a field of # contestants. In 1932, J. Schreier [8] showed that no more than

n + [logy(n)] — 2 matches are required, and in 1964, S. S. Kislitsin [6] proved

this number to be necessary as well. Schreier’s method uses a knockout tournament

to determine the winner, followed by a second knockout tournament among the

* This work was supported by the National Science Foundation under grant GJ-992.
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Medians [Blum, Floyd, Pratt, Rivest, Tarjan 1973]

Theorem 3.4
A median for n numbers can be computed in O(n).

Proof idea:
X ={1,22,10,13,24,6,18,21,4,25,11, 16, 2,20,8,17,5,12,19, 14, 3,9, 15,7, 23}

706 Wii
220 180 160 5 -
71 71 1 BE g
130 4 W20l 19 4
202500 s B 14
® Sort all quintuples. ¢ ¢ ¢ ¢ ‘
IR+ H205

3
100610 812K 7
1SPW18W 11 1148 9
2202116 )| 17} 15
24 W 25120 )| 19 | 23

® Group the numbers into sets of 5.
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Medians [Blum, Floyd, Pratt, Rivest, Tarjan 1973]

Proof idea (cont):

® Compute the median of medians. 114125

10 6] 8112
131811 | 14| 9
222116 | 17| 15
2/ 2520 19 23

® Use the median of medians as pivot to reduce the set of numbers.

5 | 4
12 | 6
11 J13[] 14
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Medians [Blum, Floyd, Pratt, Rivest, Tarjan 1973]

Theorem 3.3 (Master Theorem)_ Let T :IN — R with

T(n) = ZT(O% .n) + O(n"),

1=1

where o; € Rwith 0 < o; <1, m €N and kK € R. Then
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Medians [Blum, Floyd, Pratt, Rivest, Tarjan 1973]
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Overview
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Prelude: Solving recursions
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Lower Bounds - |

Theorem 3.5
SORTING has a lower bound of Q(nlogn).

Proof:

® Initially, we have (O(n!) possible permutations.

® Fach comparison partitions the remaining permutations into two sets.

® |n the worst case, the larger set remains.

® Thus, we can at best guarantee that half the number of permutations remain.

¢ Until we get a unique permutation we need at least §2(log(n!)) comparisons.

® log,(n!) Zlogz(z) > Z log, () > log2 (Z) = g(loggn —-1) € Q(n log(n))
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Lower Bounds For Algebraic Computation Trees

Theorem 3.6 (Preliminary Report)
Computing a closest pair for » numbers t: Michael B0

Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Abstract — A topological method is given for obtaining
lower bounds for the height of algebraic computation trees,
and algebraic decision trees. Using this method we are
able to generalize, and present in a uniform and easy way,
almost all the known nonlinear lower bounds for algebraic

PP DY § Do A N S i A N

Theorem 1. Any algebraic computation tree that solves
the n-element distinctness problem must have complezity of

at least SI(n log n).

theory in recent years, no general lower bound me!!o!

1L
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has been provided for algorithms that involve arithmetical
operations and comparisons. Much less is known if we fur-
ther allow the operation of root extraction or the algebraic
operation of finding the root of a polynomial. Consider the
following decision problem:

Example 1, Element Distinctness. Given z1,...,2, € R,
1s there a pair ¢, j withi 5 j and z; = z; ?

One can solve the element distinctness problem with the
help of any efficient sorting algorithm using O(n log n) com-
parisons, or by computing the product H.-,‘,-(I« — z;) and
comparing the computed result to zero (using O(nlogn)
mult/div). Allowing linear operations for free, we know

! Research supported by a Weizmann Postdoctoral fellowship and by
NSF grant MCS-8006938.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 ACM 0-89791-099-0/83/004/0080 $00.75

80

of no previous result that indicates why more than O(1)
operations are required to solve this problem in the model
considered here.

In this paper we provide a new topological method for
obtaining lower bounds for this general type of algorithms,
formally described as algebraic computation trees. Before
giving the detailed computational model it is worthwhile
to mention a concrete application of the method presented
here.

Theorem 1. Any algebraic computation tree that solves
the n-element distinctness problem must have complezity of
at least Q(nlogn).

This result extends the lower bounds of Dobkin and
Lipton (5] for the linear decision tree model, and the lower
bounds of Baur and Strassen [1) for the straight line com-
plexity of the above product.

Our new lower bound method rests heavily on a result
from real algebraic geometry due to Milnor [11] and Thom
[23] that bounds the “topological complexity” of real al-

gebraic varieties. 1xcept for this result the proofs of
our main theorems are elementary and require only basic

knowledge of algebra and topology. The new method also
provides a unified and easy way to prove nonlinear lower
bounds for straight line computations, algebraic decision
trees, and other previously untouchable problems such as
lower bounds for the complexity of constructions with a
ruler and compass in plane Euclidean geometry.

In the next section we rigorously specify our basic com-
putational model. The third section is devoted to a techni-
cal result needed for our main theorems that are presented
in section four. In section four we also show how to extend
our computational model to allow more algebraic opera-
tions such as taking k-th roots or computing the roots of a
polynomial.

In section five we show how to apply our method to the
bounded degree algebraic decision tree model, thus solving
the open problems in [20]. Section six is devoted to ap-
plications and in particular to the proof of the result on
the element distinctness problem (Theorem 1) mentioned
above.

m



Lower Bounds - |l [Ben-Or 1983]

Theorem 3.6
Computing a closest pair for n numbers takes at least €2(nlogn).

Ideas:

® Consider algebraic decision trees.

A Gabrielov, N Vorobjov
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Lower Bounds - |l [Ben-Or 1983]

Theorem 3.6

. | ) | -
Computing a closest pair for » numbers Theorem 7. Let W C Q" be any set, and let T be a

computation tree that solves the membership problem for W.
Then

Ideas: M(T) = O(log N — n)

where N 15 the number of connected components of W in R™
with non null interior.

® Consider algebraiC AECiSION IrEES. o m———————————

® Each set of numbers corresponds to a point in R".
® Consider subsets of R"that share the same membership properties.

® Consider the number N of connected components of R”

® Show that the height of an algebraic decision tree is at least Q(log N — n)
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Lower Bounds - |l [Ben-Or 1983]

Theorem 3.6
Computing a closest pair for n numbers takes at least €2(nlogn).

Ideas:

® Consider algebraic decision trees.

® Each set of numbers corresponds to a point in R".

® Consider subsets of R"that share the same membership properties.
® Consider the number N of connected components of R”

® Show that the height of an algebraic decision tree is at least Q(log N — n)

® Show that ELEMENT UNIQUENESS has many connected components.

® Note that determining a small minimum distance solves ELEMENT UNIQUENESS.
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Overview

1. Introduction
Prelude: Solving recursions
Lower bounds

Divide-and-conquer

o » O Db

Randomized incremental construction
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Easy Observations

Theorem 3.7

Computing a closest pair for P ¢ R can be computed in O(nlogn)

Proof: A

® Sort. I

® Run through points in order and consider distance.

Attempt: Apply to R?:

V)
e Sort (wrt.<. / <,?)

® (Closest pair does not have to be adjacent.
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Divide-and-Conquer [Bentley and Shamos 1976]

DIVIDE-AND~-CONQUER IN MULTIDIMENSIONAL SPACE

Jon Louis Bentley
Department of Computer Science
University of North Carolina
Chapel Hill, NC 27514

and

Michael Ian Shamos
Departments of Computer Science and Mathematics
Carnegie-Mellon University

Pittsburgh, PA

Abstract

15213

We investigate a divide-and-conquer technique in multidimensional space which decomposes a geometric

problem on N points in k dimensions into two problems on N/2 points in k dimensions plus a single problem

on N points in k-1 dimension.

for finding the two closest of N points in O(N log N) time in any dimension,

Special structure of the subproblems is exploited to obtain an algorithm

Related results are discussed,

along with some conjectures and unsolved geometric problems.

Introduction

A principal failing of computational geometry
[Shamos, Shamos and Hoey] is that it has not suc-
cessfully addressed problems in greater than two
dimensions. Such a study would have important
practical and theoretical benefits -- it would shed
light on linear programming, multidimensional data
analysis, geometric optimization, and retrieval on
multiple keys, as well as provide a link between
complexity and dimensionality. Some preliminary
results are known, [Preparata and Hong] show that
the convex hull of N points can be found in
O(N log N) time in three dimensions but that
O(N2) is a lower bound in any higher dimension.
The maxima of a set of vectors can be found in

O(N 1ogk'2

N) time in dimension k [Kung et al.]
and we conjecture that this time suffices to iden-

tify the extreme points of a k-dimensional set.
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The most basic questions, however, have not
been studied. These include finding nearest and
farthest points, determining separability of point
sets and other elementary properties, We intend in
this paper to begin & systematic investigation of
higher-dimensional geometry and its relation to

complexity.

Closest=Point Problems

In this section we will investigate a number
of problems dealing with the proximity of N points
in Euclidean k=-space, The most primitive closest-
point problem is that of finding the two nearest
of the N points; we will let P(N,k) denote the
worst-case time of the best possible algorithm (the
minimax complexity) for solving the closest-pair
problem., The fixed radius-near-neighbor problem
asks for all pairs of points within some fixed dis-

tance & of one another, A special case of this




Divide-and-Conquer [Bentley and Shamos 1976]
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® Subdivide the set by a median line.

T
e Solve the two subproblems recursively in 2T(§).

® Merge the two subproblems in O(n).
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Divide-and-Conquer 2 [Bentley and Shamos 1976]

<n/2points L <n/2points

e |ssue: Still ©(n) on either side possible.

® Brute-force enumeration yields @(n2).

e Additional ideas are necessary to get merge time O(n).
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Divide-and-Conquer 3 [Bentley and Shamos 1976]

® Observe: Points on one side cannot be closer than 0.
® As conseqguence, no point can have many close neighbors on the other side.

® Based on a packing arguments for 5/2 -balls; works in any fixed dimension.
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Divide-and-Conqguer 4 [Bentley and Shamos 1976]
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® Thus: Scan linear sequence on one side.

® Keep track of potential neighbors on other side.
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Divide-and-Conquer 4 [Bentley and Shamos 1976]
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® Thus: Scan linear sequence on one side.

® Keep track of potential neighbors on other side.
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Divide-and-Conquer 4 [Bentley and Shamos 1976]
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® Thus: Scan linear sequence on one side.

® Keep track of potential neighbors on other side.
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Divide-and-Conquer 4 [Bentley and Shamos 1976]
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® Thus: Scan linear sequence on one side.

® Keep track of potential neighbors on other side.
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Divide-and-Conquer 4 [Bentley and Shamos 1976]
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® Thus: Scan linear sequence on one side.

® Keep track of potential neighbors on other side.
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Divide-and-Conquer 4 [Bentley and Shamos 1976]
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® Thus: Scan linear sequence on one side.

® Keep track of potential neighbors on other side.
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Divide-and-Conquer 4 [Bentley and Shamos 1976]
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® Thus: Scan linear sequence on one side.

® Keep track of potential neighbors on other side.
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Divide-and-Conquer 4 [Bentley and Shamos 1976]

® Thus: Scan linear sequence on one side.
® Keep track of potential neighbors on other side.

e Sorting takes O(nlogn); total time O(nlog®n).
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Divide-and-Conquer 4 [Bentley and Shamos 1976]

® Thus: Scan linear sequence on one side.
® Keep track of potential neighbors on other side.

e Sorting takes O(nlogn); total time O(nlog®n).
e After global presorting: O(n) ; total time O(nlogn).
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Higher dimensions

Dividing
Plane H

® Same idea: Divide-and-conquer.

Subhash Suiri
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Higher dimensions

Dividing
Plane H
® Same idea: Divide-and-conquer. N

® Merge step: one dimension lower:
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Higher dimensions

Dividing

® Same idea: Divide-and-conquer.

® Merge step: one dimension lower:
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Higher dimensions 2

e If we could show that the problem size in
the conquer step is m < n/(logn)?~2, then
U(m,d —1) = O(m(logm)?=2) = O(n).

L

Theorem 5. (Existence of a cut-plane in k-space.)
Given a sparse collection of N points in k-space,
there exists a cut-plane P perpendicular to one of
the original coordinate axes with the following
properties: (1) Both of the subcollections A and
B induced by P contain at least N/4k of the points.
(2) There are at most keN'~'/¥ points within dis-

tance § of P,
W
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Higher dimensions 2

e If we could show that the problem size in
the conquer step is m < n/(logn)?~2, then
U(m,d —1) = O(m(logm)?=2) = O(n).

e ————— e

¢ Theorem: Given a set S with J-sparsity,
there exists a hyperplane H normal to
some axis such that

1. |Sl‘, ‘Sz‘ Z n/4d

2. Number of points within 0 of H is
O((log;r;)d—2)‘
3. H can be found in O(n) time.
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Higher dimensions 2

e If we could show that the ; waeno s L 20 - Wt
the conquer stepism < n, c .| &
U(m,d — 1) = O(m(logm)*~?) SR

o ! lo: ° .
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e¢ Theorem: Given a set S with . i :E
there exists a hyperplane H n - | R
some axis such that —
<23
1. |Sl‘, ‘SQ‘ 2 n/4d M

2. Number of points within 0 of H is
O(—25=).

(log n)d—2
3. H can be found in O(n) time.
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Higher dimensions 2

e The divide and conquer algorithm now
satisfies the recurrence

T(n,d) =2T(n/2,d) +U(m,d —1) + O(n).

e By new sparsity claim, m < n/(logn)¢ 2,

and so U(m,d — 1) = O(m(logm)?~2) = O(n).

e Thus, T'(n,d) =2T(n/2,d) + O(n) + O(n),
which solves to O(nlogn).

e Solves the Closest Pair problem in fixed d
in optimal O(nlogn) time.




Higher dimensions 2

e If we could show that the problem size in
the conquer step is m < n/(logn)?~2, then

U(m,d —1) = O(m(logm)?=2) = O(n).

m

Theorem 8. P(N,k) < O(N log N).

m
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Thank you for today!
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