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that for any polyhedral norm, the problem of finding a tour ofmaximumlength can be solved in
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polynomial time. If arithmetic operations are assumed to take unit time, our algorithms run in time
O(n f−2 logn), where f is the number of facets of the polyhedron determining the polyhedral norm.
Thus, for example, we haveO(n2 logn) algorithms for the cases of points in the plane under the
Rectilinear and Sup norms. This is in contrast to the fact that finding aminimumlength tour in each
case is NP-hard. Our approach can be extended to the more general case ofquasi-normswith a not
necessarily symmetric unit ball, where we get a complexity ofO(n2 f−2 logn).

For the special case of two-dimensional metrics withf = 4 (which includes the Rectilinear and
Sup norms), we present a simple algorithm withO(n) running time. The algorithm does not use any
indirect addressing, so its running time remains valid even in comparison based models in which
sorting requiresÄ(n logn) time. The basic mechanism of the algorithm provides some intuition on
why polyhedral norms allow fast algorithms.

Complementing the results on simplicity for polyhedral norms, we prove that, for the case of
Euclidean distances inRd for d ≥ 3, the Maximum TSP is NP-hard. This sheds new light on the
well-studied difficulties of Euclidean distances.

Categories and Subject Descriptors: F.2.2 [Nonnumerical Algorithms and Problems]: Geometric
Problems and Computations—sequencing and scheduling; G.2.1 [Combinatorics]: Combinatorial
Algorithms

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Traveling salesman problem, optimization, polyhedral metric,
Euclidean metric, NP-hardness, polynomial time, maximum scatter TSP

1. Introduction

In the Traveling Salesman Problem(TSP), the input consists of a setC of cities
together with the distancesd(c, c′) between every pair of distinct citiesc, c′ ∈ C.
The goal is to find an ordering ortour of the cities that minimizes (Minimum
TSP) or maximizes (Maximum TSP) the total tour length. Here the length of a tour
cπ (1), cπ (2), . . . , cπ (n) is

n−1∑
i=1

d
(
cπ (i ), cπ (i+1)

)+ d
(
cπ (n), cπ (1)

)
.

Like the Minimum TSP, the Maximum TSP is NP-complete on graphs, even if the
triangle inequality holds. After 25 years, the best-known performance guarantee for
the metric Minimum TSP is still Christofides’s 3/2 approximation algorithm. The
results of Arora et al. [1998] show that the problem cannot be approximated arbi-
trarily well. When combined with results by Papadimitriou and Yannakakis [1993],
it follows that this holds even for the special class of instances where all distances
are 1 or 2. There has been more development on approximation algorithms for the
metric Maximum TSP: Recently, Hassin and Rubinstein [2002] have given a 7/8
approximation algorithm.

Of particular interest aregeometricinstances of the TSP, in which cities corre-
spond to points inRd for somed ≥ 1, and distances are computed according to some
geometric norm. Perhaps the most popular norms are the Rectilinear, Euclidean,
and Sup norms. These are examples of what is known as an “Lp norm” for p = 1,
2, and∞. In general, the distance between two pointsx = (x1, x2, . . . , xd) and
y= (y1, y2, . . . , yd) under theLp norm, p ≥ 1, is

d(x, y) =
(

d∑
i=1

|xi − yi |p
)1/p
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with the natural asymptotic interpretation that distance under theL∞ norm is

d(x, y) = maxd
i=1 |xi − yi | .

This article considers a second class of norms that also includes the Rectilinear
and Sup norms, but can only approximate the Euclidean and otherLp norms. This
is the class ofpolyhedral norms. Each polyhedral norm is determined by aunit
ball, which is a centrally symmetric polyhedronP with the origin at its center. To
determined(x, y) under such a norm, first translate the space so that one of the
points, sayx, is at the origin. Then, determine the unique factorα by which one
must rescaleP (expanding ifα > 1, shrinking ifα < 1) so that the other point (y)
is on the boundary of the polyhedron. We then haved(x, y) = α.

Alternatively, and more usefully for our purposes, we can view a polyhedral
norm as follows: IfP is a polyhedron as described above and hasf facets, thenf
is divisible by 2 and there is a setHP = {h1, . . . ,h f/2} of points inRd such thatP
is the intersection of a collection of half-spaces determined byHP:

P=
(

f/2⋂
i=1

{x : x · hi ≤ 1}
)
∩
(

f/2⋂
i=1

{x : x · hi ≥ −1}
)
.

Then we have

d(x, y) = max

{∣∣∣∣(x− y) · hi

∣∣∣∣ : 1≤ i ≤ f

2

}
.

Note that, for the Rectilinear norm in the plane, we can takeHP = {(1, 1), (−1, 1)}
and for the Sup norm in the plane we can takeHP = {(1, 0), (0, 1)}.

For the Minimum TSP on geometric instances, two key complexity questions
have been answered. As follows from results of Itai et al. [1982], the Minimum
TSP is NP-hard for any fixed dimensiond and anyLp or polyhedral norm;
see also the earlier results by Garey et al. [1976a] and Papadimitriou [1977].
On the other hand, results of Arora [1998] and Mitchell et al. [1999] imply
that in all these cases a polynomial-time approximation scheme (PTAS) exists,
that is, a sequence of polynomial-time algorithmsAk, 1 ≤ k < ∞, where
Ak is guaranteed to find a tour whose length is within a ratio of 1+ (1/k)
of optimal.

The situation for geometric versions of the Maximum TSP has been less clear
than for its minimum counterpart. Serdyukov [1991], and, independently, Barvinok
[1996], have shown that once again polynomial-time approximation schemes ex-
ist for all fixed dimensionsd and all Lp or polyhedral norms (and in a sense
for anyfixed norm; see [Barvinok 1996]). Until now, however, the complexity of
the optimization problems themselves whend is fixed has remained open: For
no fixed dimensiond andLp or polyhedral norm was the problem of determin-
ing the maximum tour length known either to be NP-hard or to be polynomial-
time solvable. In this article, we resolve the question for all polyhedral norms,
showing that, in contrast to the case for the Minimum TSP, the Maximum TSP
is solvable in polynomial time for any fixed dimensiond and any polyhed-
ral norm:
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THEOREM 1. Let dimension d be fixed, and let‖·‖ be a fixed polyhedral norm
in Rd whose unit ball is a centrally symmetric polyhedronP determined by a set
of f facets. Then, for any set of n points inRd, one can construct a traveling
salesman tour of maximum length with respect to‖·‖ in time O(n f−2 logn) in
the real number RAM model, where arithmetic operations take unit time and only
addition, subtraction, multiplication, and division are allowed.

A similar result also holds for polyhedralquasi-norms, that is, asymmetric dis-
tance functions that can be defined in terms of “unit balls” that are nonsymmet-
ric polyhedra containing the origin. These can again be characterized by a set
of vectorsHP, but now we need a vector for each facet of the polyhedron and
d(x, y) = max{(x − y) · h : h ∈ HP}. Serdyukov [1987, 1991, 1995] previously
showed that for the case of a quasi-norm inR2 with a triangle as the unit ball, the
Maximum TSP can be solved in polynomial time. With our techniques, we can
show the following analog of Theorem 1.

THEOREM 2. Let dimension d be fixed, and let‖·‖ be a fixed polyhedral quasi-
norm inRd whose unit ball is a polyhedronP determined by a set of f facets.
Then, for any set of n points inRd, one can construct a traveling salesman tour
of maximum length with respect to‖·‖ in time O(n2 f−2 logn) in the real number
RAM model.

As an immediate consequence of Theorem 1, we get relatively efficient algo-
rithms for the Maximum TSP in the plane under Rectilinear and Sup norms, with
a complexity ofO(n2 logn).

The restriction to the real number RAM model in Theorem 1 is made primar-
ily to simplify the statements of the conclusions. Suppose, on the other hand, that
one assumes, as one typically must for complexity theory results, that the com-
ponents of the vectors inHP and the coordinates of the cities are all rationals.
Let U denote the maximum absolute value of any of the corresponding numera-
tors and denominators. Then the conclusions of the Theorem hold for the standard
logarithmic cost RAM model with running times multiplied byn log(U ). If the
components/coordinates are all integers with maximum absolute valueU , the run-
ning times need only be multiplied by log(nU). For simplicity in the remainder of
this article, we shall stick to the model in which numbers can be arbitrary reals and
arithmetic operations take unit time. The reader should have no trouble deriving the
above variants.

The above results make use of a polynomial solution method for the follow-
ing TSP variant, which may be of independent interest: When visiting a given
set ofn cities, all connections have to be made via a set ofk hubs, wherek is
a constant.

The complexity ofO(n2 logn) for the scenario of planar rectilinear distances can
be improved by using special geometric properties of this case. We can show the
following optimal running time:

THEOREM 3. The Maximum TSP for points inR2 under the L1 norm can be
solved in O(n) time.

By appropriate coordinate transformation, this result can be generalized to all
planar polyhedral norms withf = 4 facets, which includes the Sup norm. It
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holds even in a restricted model of computation, where no indirect addressing may
be used, and hence sorting requiresÄ(n logn) time. The main idea behind the
algorithm is to exploit the fact that rectilinear distances in the plane have a high
degree of degeneracy. As a consequence, we can show that the number of optimal
tours is very large,Ä((n

4!)4), and the set of optimal tours can be described very
easily. This contrasts sharply to the case of Euclidean distances, where there may
be a single optimal tour.

Indeed, the complexity of the Maximum TSP inR2 under the Euclidean met-
ric remains an open question, although we have resolved the question for higher
dimensions with the following result.

THEOREM 4. Maximum TSP under Euclidean distances inRd is an NP-hard
problem if d≥ 3.

One of the consequences is NP-hardness of the Maximum TSP for polyhedral
norms with an unbounded number of facets on the corresponding unit ball. Another
consequence concerns the so-calledMaximum Scatter TSP, where the objective is
to find a tour that maximizes the shortest edge. The Maximum Scatter TSP was first
considered by Arkin et al. [1997], and the complexity for geometric instances was
stated as an open problem. Our result implies NP-hardness for Euclidean instances
in 3-dimensional space.

An issue that is still unresolved for the Maximum TSP as well as the Minimum
TSP is the question of whether the TSP under Euclidean distances is a member of
the class NP, allowing polynomial-time verification of a good solution. Even if all
city coordinates are rationals, we do not know how to compare a tour length to a
given rational target in less than exponential time. Such a comparison would appear
to require us to evaluate a sum ofn square roots to some precision, and currently
the best upper bound known on the number of bits of precision needed to insure a
correct answer remains exponential inn.

The rest of this article is organized as follows: Section 2 introduces a new special
case of the TSP, theTunneling TSP. We show how the Maximum TSP under a
polyhedral norm can be reduced to the Tunneling TSP with the same number of
cities andk = f/2 tunnels (and withk = f tunnels for polyhedral quasi-norms).
Section 3.1 shows how the solutions for the Tunneling TSP with a fixed number
k ≥ 2 of tunnels can be characterized, setting up an algorithm with a running time of
O(n2k−2 logn) described in detail in Section 3.1. Section 4 describes the linear-time
algorithm for rectilinear distances in the plane. Section 5 gives the NP-hardness
proof of the Maximum Traveling Salesman Problem for Euclidean distances inR3,
and a number of higher-dimensional extensions. Section 6 concludes with a brief
discussion and open problems.

2. The Tunneling TSP

The Tunneling TSPis a special case of the Maximum TSP in which distances
are determined by what we shall call atunnel systemdistance function. In such
a distance function, we are given a setT = {t1, t2, . . . , tk} of k ≥ 2 auxiliary
objects that we shall calltunnels. Each tunnel is viewed as a bidirectional passage
having a front and a back end. For each pairc, t of a city and a tunnel we are given
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real-valuedaccess distances F(c, t) andB(c, t) from the city to the front and back
ends of the tunnel respectively. Each potential tour edge{c, c′} must pass through
some tunnelt , either by entering the front end and leaving the back (for a distance of
F(c, t)+ B(c′, t)), or by entering the back end and leaving the front (for a distance
of B(c, t)+ F(c′, t)). Since we are looking for a tour of maximum length, we can
thus define the distance between citiesc andc′ to be

d(c, c′) = max{F(c, ti )+ B(c′, ti ), B(c, ti )+ F(c′, ti ) : 1≤ i ≤ k}.
Note that this distance function, like our geometric norms, is symmetric. (As we
will see below, we can make adjustments for asymmetric distance functions.)

It is easy to see that Maximum TSP remains NP-hard when distances are deter-
mined by arbitrary tunnel system distance functions. However, for the case where
k = |T | is fixed and not part of the input, we show in the next section that Maximum
TSP can be solved inO(n2k−2 logn) time. We are interested in this special case
because of the following lemma.

LEMMA 5. If ‖·‖ is a polyhedral norm determined by a set HP of k = f/2
vectors inRd, then, for any set C of points inRd, one can in time O(dk|C|) construct
a tunnel system distance function with k tunnels that yields d(c, c′)= ‖c− c′ ‖ for
all c, c′ ∈ C.

PROOF. The polyhedral distance between two cities‖c, c′ ‖∈ Rd is

‖c− c′ ‖ = max{|(c− c′) · hi

∣∣ : 1≤ i ≤ k}
= max{(c− c′) · hi , (c′ − c) · hi : 1≤ i ≤ k}.

Thus, we can view the distance function determined by‖·‖ as a tunnel system
distance function with set of tunnelsT = HP andF(c, h) = c · h, B(c, h) = −c · h
for all citiesc and tunnelsh.

It is straightforward to extend this characterization to the case of any polyhedral
quasi-norm that is characterized by a unit ball with a total off facets. The only
real change is in the complexity of the characterization of the tunnel system in
Lemma 5. If we use the definition

d̃(c, c′) = max{F(c, ti )+ B(c′, ti ) : 1≤ i ≤ k}
for possibly asymmetric tunnel distances, then by similar reasoning we get the
following:

LEMMA 6. If ‖·‖ is a polyhedral quasi-norm determined by a set HP of f
vectors inRd, then for any set C of points inRd one can in time O(df |C|) construct
a tunnel system distance function with f tunnels that yieldsd̃(c, c′) =‖c− c′‖ for
all c, c′ ∈ C.

3. An Algorithm for Bounded Tunnel Systems

In this section, we describe anO(n2k−2 logn) algorithm to solve the Tunneling
TSP when the number of tunnels is fixed atk, assuming the real number RAM
model. By Lemmas 5 and 6, this implies our results for polyhedral norms and
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quasi-norms (Theorems 1 and 2). The approach described below also yields a
polynomial algorithm for a Minimum TSP variant, where a given set ofn cities has
to be traveled, and all connections have to be made via a set of a fixed numberk
of hubs.

We start by characterizing solutions for bounded tunnel systems in Section 3.1.
This characterization is the basis for our algorithm, which is described in Section 3.1.
In Section 3.3, we present an additional idea that may possibly improve the above
complexity toO(n2k−2).

3.1. CHARACTERIZING SOLUTIONS FORBOUNDED TUNNEL SYSTEMS. We start
by discussing the solutions for bounded tunnel systems.

Suppose we are given an instance of the Tunneling TSP with setsC = {c1, . . . ,
cn} andT = {t1, . . . , tk} of cities and tunnels, and access distancesF(c, t), B(c, t)
for all c ∈ C and t ∈ T . We begin by transforming the problem to one about
subset construction.

Let G = (C ∪ T, E) be an edge-weighted, bipartite multigraph with four edges
between each cityc and tunnelt , denoted byei [c, t, X], i ∈ {1, 2} andX ∈ {B, F}.
The weights of these edges arew(ei [c, t, F ]) = F(c, t) and w(ei [c, t, B]) =
B(c, t), i ∈ {1, 2}. For notational convenience, let us partition the edges inE
into setsE[t, F ] = {ei [c, t, F ] : c ∈ C, i ∈ {1, 2}} and E[t, B] = {ei [c, t, B] :
c ∈ C, i ∈ {1, 2}}, t ∈ T . Each tour for the TSP instance then corresponds to a
subsetE′ of E that has

∑
e∈E′ w(e) equal to the tour length and satisfies

(T1) Every city is incident to exactly two edges inE′.
(T2) For each tunnelt ∈ T , |E′ ∩ E[t, F ]| = |E′ ∩ E[t, B]|.
(T3) The setE′ is connected.

To construct the multisetE′, we simply represent each tour edge{c, c′} by a pair
of edges fromE that connect in the appropriate way to the tunnel that determines
d(c, c′). For example, ifd(c, c′) = F(c, t) + B(c′, t), andc appears immediately
beforec′ when the tour is traversed starting fromcπ (1), then the edge (c, c′) can be
represented by the two edgese2[c, t, F ] ande1[c′, t, B]. Note that there are enough
(city,tunnel) edges of each type so that all tour edges can be represented, even if a
given city uses the same tunnel endpoint for both its tour edges. Also note that if
d(c, c′) can be realized in more than one way, the multisetE′ will not be unique.
However, any multisetE′ constructed in this fashion will still have

∑
e∈E′ w(e)

equal to the tour length.
On the other hand, any setE′ satisfying (T1)–(T3) corresponds to one (or more)

tours having length at least
∑

e∈E′ w(e): Let T ′ ⊆ T be the set of tunnelst with
|E′∩E[t, F ]| > 0. ThenG′ = (C∪T ′, E′) is a connected graph all of whose vertex
degrees are even by (T1)–(T3). By an easy result from graph theory, this means
thatG′ contains an Euler tour that, by (T1), passes through each city exactly once,
thus inducing a TSP tour forC. Moreover, by (T2), one can construct such an Euler
tour with the additional property that, ifei [c, t, x] andej [c′, t, y] are consecutive
edges in this tour, thenx 6= y, that is, eitherx = F, y = B or x = B, y = F .
Thus, we will havew(ei [c, t, x]) +w(ej [c′, t, y]) ≤ d(c, c′), and hence the length
of the TSP tour will be at least

∑
e∈E′ w(e), as claimed.
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In summary, our problem is reduced to finding a maximum weight set of edges
E′ ⊆ E satisfying (T1)–(T3).

3.2 AN EFFICIENT ALGORITHM

3.2.1. Identifiers for Subproblems.From the previous section, we know that our
problem is reduced to finding a maximum weight set of edgesE′ ⊆ E satisfying
(T1)–(T3). Given thatk is fixed, we first show how to decompose the problem
into O(n2k−3) instances, and then demonstrate how to solve each one of them in
O(n logn) time.

Let E′ be a subset of edges satisfying (T1)–(T3). We associate five identifiers
with E′.

The first isT ′ ⊆ T , the subset ofp, p ≤ k, tunnels that are spanned byE′.
(Without loss of generality suppose thatT ′ = {t1, . . . , tp}.) Globally, the total
number of identifiers of the first type isO(2k).

Due to conditions (T1), (T3) we know that there is a subset of 2(p− 1) edges
E′′ ⊂ E′ such that the subgraphG(E′′), induced byE′′, is connected and it spans
T ′ and exactlyp − 1 cities. Moreover, each of these cities is incident to exactly
two edges inE′′, which connects two adjacent tunnels inT ′. We use the second,
the third and the fourth identifiers to characterizeG(E′′).

The second identifier is the spanning tree topology connecting the tunnels of
T ′ that is induced by the set of edgesE′′. There arepp−2 identifiers of this
type: the number of labeled spanning trees ofKp, the complete graph onp nodes
[Cayley 1889].

The third identifier is an assignment of distinct cities to the spanning tree edges
of the previous identifier. The city assigned to the tree edge joining tunnelst and
t ′ is one that is connected by one edge ofE′′ to t and by another edge ofE′′ to t ′.
The total number of identifiers of the third type isO(np−1).

The fourth identifier is the subset of 2(p − 1) edges linking these cities with
corresponding tunnel entrances. In the underlying graphG there are four edges
(two pairs of identical edges) connecting a city with a tunnel. Therefore, the total
number of identifiers of the fourth type isO(16p−1).

The fifth and last identifier is the degree sequence of the nodes inT ′ induced
by E′. Let d = (2d1, . . . ,2dp) denote this sequence of even positive degrees. Note
that d1 + · · · + dp = n. Therefore, there are clearlyO(np−1) identifiers of this
third type. However, we will modify the identifier and use one of the degree entries,
saydp, as an unspecified parameter. Thus, there are onlyO(np−2) choices for, say,
d1, d2, . . . ,dp−2. (dp−1 will then depend linearly on the parameterdp.) Altogether,
we now haveO(n2k−3) choices for values of identifiers.

In summary, to prove our claim that the Tunneling TSP can be solved in
O(n2k−2 logn) time whenk is fixed, it will suffice to show that the following
problem can be solved inO(n logn) time.

Given a set of tunnelsT ′ = {t1, . . . , tp}, a set ofp−1 cities, a setE′′ of 2(p−1)
edges connecting the cities to the tunnels as above, and a set of positive integers
d1, . . . ,dp−2, find a maximum weight set of edgesE′, containingE′′, satisfying
(T1)–(T2), and such that the degree ofti is 2di , 1≤ i ≤ p− 2.

3.2.2. Solving the Subproblems.Without loss of generality assume that thep−1
cities connecting the tunnels inT ′ are{c1, . . . , cp−1}. LetC′ = {c1, . . . , cp−1}, and
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C′′ = C−C′. For eachi = 1, . . . , p, we split the tunnelti into two nodes,t B
i andt F

i .
They are called, respectively,B andF tunnel entrances. DefineT ′B = {t B

1 , . . . , t
B
p }

andT ′F = {t F
1 , . . . , t

F
p }.

Let G′ = (C′′ ∪ (T ′B ∪ T ′F ), E∗) be an edge-weighted, bipartite multigraph with
two edges, each of weightB(cj , ti ), connectingcj andt B

i , j = p, p+ 1, . . . ,n,
i = 1, . . . , p, and two edges, each of weightF(cj , ti ), connectingcj and t F

i ,
j = p, p+ 1, . . . ,n, i = 1, . . . , p.

Next, using the notation from the previous subsection, for eachi = 1, . . . , p, let
f B
i = |E′′ ∩ E[ti , B]| and f F

i = |E′′ ∩ E[ti , F ]|. (Note thatf B
i ( f F

i ) is the number
of “back” (“front”) type edges inE′′ that are incident to tunnelti .)

Following is a formal description of the maximization problem:

g(dp) = max

(
p∑

i=1

n∑
j=p

B(cj , ti )x
B
i, j +

p∑
i=1

n∑
j=p

F(cj , ti )x
F
i, j

)
subject to

n∑
j=p

xB
i, j = di − f B

i , i = 1, . . . , p− 2, p

n∑
j=p

xF
i, j = di − f F

i , i = 1, . . . , p− 2, p

n∑
j=p

xB
p−1, j = n− dp − f B

p−1−
p−2∑
i=1

di ,

n∑
j=p

xF
p−1, j = n− dp − f F

p−1−
p−2∑
i=1

di ,

p∑
i=1

(xB
i, j + xF

i, j ) = 2, j = p, . . . ,n,

xB
i, j ≥ 0, i = 1, . . . , p, j = p, . . . ,n,

xF
i, j ≥ 0, i = 1, . . . , p, j = p, . . . ,n.

It is easy to see that for each integer valuedp ∈ {1, 2, . . . ,n}, the above problem
is an instance of the classical transportation problem withn − p + 1 sources
(cities) and 2p destinations (p B tunnels andp F tunnels). Therefore, there is an
optimal solution to the linear program for each integer value ofdp in which all
variables are integer. Moreover, since the number of destinations is fixed (p ≤ k),
whendp is specified the dual of this transportation problem can be solved inO(n)
time by the algorithm in Zemel [1984]. (See also Megiddo and Tamir [1993].) In
particular,g(dp) can be computed by solving the dual inO(n) time. Viewingdp
as a (real) parameter, we note thatg(dp), the optimal objective value of the above
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transportation problem, is a concave function ofdp. To see this, observe that if
d < d′ are legal values fordp, andx̄d and x̄d′ are the optimal solutions for these
two values viewed as vectors of variable values, then (x̄d + x̄d′)/2 is a feasible
solution for (d + d′)/2 and sog((d + d′)/2) ≥ (g(d) + g(d′))/2. Thus, we can
apply a Fibonacci search over the integers{1, 2, . . . ,n}, or alternatively perform a
binary search, at each step checking the values atd−1,d, andd+1. (Actually,dp

is restricted by 1≤ dp < n −∑p−2
i=1 di .) Specifically, by computing the function

g(dp) at O(logn) values ofdp, we obtain the (integer) value ofdp maximizing
g(dp). Thus, inO(n logn) time, we find the best value ofdp.

Therefore, in timeO(n2k−3 · n logn) = O(n2k−2 logn), we can determine the
set of identifiers for the transportation problem that yields the maximum solution
value (including the full degree sequence for the tunnels). This solution value will
be the length of the maximum length tour, but because we were solving the dual
rather than primal LP’s, we won’t yet have the optimal tour itself. For this, we need
only solve the optimal transportation problem directly in its primal form. Since the
number of tunnels is bounded, we can do this in deterministic timeO(n) using an
algorithm described in an unpublished paper by Matsui [1992]. The basic idea is to
apply complementary slackness properties to the already computed dual solution
variables to reduce the problem to a network flow problem for a bounded number
of sinks. This can then be solved in linear time using an algorithm of Gusfield
et al. [1987] (see also Ahuja et al. [1994]). Alternatively, one can use the published
algorithm of Tokuyama and Nakano [1995] that requires timeO(n log2 n) time.
In either case, the time to find this one primal solution is dominated by the time
already spent to solve all the duals, so the overall running time bound is that for the
latter: O(n2k−2 logn).

3.3. FURTHER IMPROVEMENT. One way to improve upon the above bound is
to reduce the running time to solve an instance of the parametric transportation
problem fromO(n logn) to O(n). At this point, we do not know how to achieve
the linear bound, but we feel that the following approach might be fruitful.

Consider the above parametric transportation problem, and view the parameter
dp as an additional (real) variable. The resulting linear program, which we call
the primal, is not a transportation problem. Nevertheless, the algorithms in Zemel
[1984] and Megiddo and Tamir [1993] can still solve the dual of this linear program
in O(n) time. The missing ingredient at this point is how to use the dual solution
to obtain (in linear time), an optimal solution to the primal program. Specifically,
we only need to know the optimal (real) value of the primal variabledp, sayd∗p. If
d∗p is known, we can use the concavity property of the functiong(dp) to conclude
that the optimal integer value ofdp is attained by roundingd∗p up or down. We can
then proceed as above.

4. An O(n) Algorithm

In this section, we describe a linear-time algorithm for determining the length of an
optimal tour for the Maximum TSP under rectilinear distances in the plane. This
amounts to a proof of Theorem 3, structured into a series of Lemmas and stretching
over Sections 4.1 to 4.3. At the end of the section, we sketch how this result can
be extended to any 4-facet polyhedral metric. Throughout this section, we assume
without loss of generality thatn ≥ 4, as otherwise the problem is trivial.
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4.1. STARS AND MATCHINGS. Our construction uses properties of so-called
stars; a star for a given set of verticesV is a minimum Steiner tree with precisely
one Steiner point (thecenter) that contains all vertices inV as leafs. The total
length of the edges in a star is an upper bound on any matching inV , since any edge
(vi , v j ) in the matching can be mapped to a pair of edges (vi , c) and (c, v j ) in the
star, and by triangle inequality,d(vi , v j ) ≤ d((vi , c)+d(c, v j ). The worst case ratio
between the total length of a minimum star minS(P) and a maximum matching
maxM(P) plays a crucial role in several different types of optimization problems.
See the paper by Fingerhut et al. [1997] for applications in the context of broadband
communication networks. Also, Tamir and Mitchell [1998] have used the duality
between minimum stars and maximum matchings for showing that certain matching
games have a nonempty core. The value of the worst case ratio under the Euclidean
metric has been determined by Fekete and Meijer; see Fekete and Meijer [2000]
for this result and several extensions.

In the rest of this section, all distances are planar rectilinear distances, unless
noted otherwise at the end of the section. For rectilinear distances, determining the
length minS(P) of a minimum length star (also known as the rectilinear planar un-
weighted 1-median or rectilinearFermat–Weber problem) can be done in linear time.

LEMMA 7. Suppose we are given a given set of n points P= {p1, . . . , pn}
with pi = (xi , yi ), 1 ≤ i ≤ n. Then under L1 distances there is an optimal star
center c= (xc, yc), where xc is a median of{xi | i = 1, . . . ,n}, and yc is a median
of {yi | i = 1, . . . ,n}.

This is problem 9-2e in Cormen et al. [2001]. Recall that ifn = 2m is even, then
both themth and (m+ 1)st largest items are medians.) The proof is immediate;
for an O(n) running time, use the result by Blum et al. [1972] for computing a
median ofn numbers.

It should be noted that for Euclidean distances, the problem of determining
min S(P) is considerably harder: It was shown by Bajaj [1998] that the problem of
finding an optimal star center for five points in the plane is in general not solvable
by radicals over the field of rationals. This implies that an algorithm for computing
min S(P) must use stronger tools than constructions by straight edge and compass.

The following Theorem 8 appears in the paper by Tamir and Mitchell [1998] as
Theorem 8; independently, it was noted by Fekete and Meijer [2000].

THEOREM 8. For |P| even, we havemaxM(P) = min S(P) for rectilinear
distances in the plane.

The basic idea is that the coordinates of an optimal star center subdivide the
plane into four quadrants. If ties are broken in the right way, the number of points
in opposite quadrants is the same. See Figure 1. Then

L1(vi , v j ) = L1(vi , c)+ L1(c, v j ) (1)

holds for any edge (vi , v j ) in the matching, and the theorem follows easily.

Since the results of this article include the case in which|P| is odd, we formalize
and generalize this observation.

Let xc andyc be as in Lemma 7 and defineP−x := {pi ∈ P | xi < xc}, P0
x :=

{xi | xi = xc}, P+x := {pi ∈ P | xi > xc}, P−y := {pi ∈ P | yi < yc}, P0
y :=

{yi | yi = yc}, and P+y := {pi ∈ P | yi > yc}, From the above conditions, it
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FIG. 1. The four quadrants and their point sets.

follows that

n−x : = |P−x | ≤
n

2
(2)

n+x : = |P+x | ≤
n

2
(3)

n−y : = |P−y | ≤
n

2
(4)

n+y : = |P+y | ≤
n

2
. (5)

Let n0
x := |P0

x |, andn0
y := |P0

y |. By picking any subset ofP0
x of sizedn

2e − n−x and
joining it with P−x , we get a setP−/0x of sizedn

2e; the remainingbn
2c points form the

setP0/+
x . Similarly, we get the partition intoP−/0y of sizedn

2e, andP0/+
y of sizebn

2c.
Define the followingquadrant sets: P−− := P−/0x ∩ P−/0y , P−+ := P−/0x ∩ P0/+

y ,
P+− := P0/+

x ∩ P−/0y , andP++ := P0/+
x ∩ P0/+

y . The setsP−− andP++ areoppo-
site quadrant sets, as areP−+ andP+−. Two quadrant sets that are not opposite are
calledadjacent. Finally, letn−− := |P−−|, etc. We get the following conditions:

LEMMA 9. If n is even, then opposite quadrant sets contain the same number
of points, that is,

n−− = n++ (6)
n−+ = n+−. (7)

If n is odd, the numbers of points must satisfy

n−− = n++ + 1 (8)
n−+ = n+−. (9)

PROOF. From the definition of the quadrant sets, it follows for evenn that

n−− + n−+ = n+− + n++ (10)
n−− + n+− = n−+ + n++. (11)
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From this the claims (6) and (7) follow easily, as was noted in Tamir and Mitchell
[1998] and Fekete and Meijer [2000].

For the odd case, the definition of the quadrant sets yields the conditions

n−− + n−+ = n+− + n++ + 1 (12)
n−− + n+− = n−+ + n++ + 1. (13)

This implies (8) and (9).

In the following, we will use Lemma 9 to derive first an optimal 2-factor,
consisting of at most two subtours, and then argue how these subtours can be
merged optimally.

4.2. 2-FACTORS AND TRIVIAL TOURS. A 2-factor for a set of vertices is a
multi-set of edges that covers each vertex exactly twice. Since any tour is a 2-factor,
a maximal length 2-factor is an upper bound for the length of a tour. Using the
triangle inequality, it is straightforward to see that twice the length of a star is an
upper bound for the length of any 2-factor, even when the star is centered at one of
the given vertices. Achieving tightness for this bound is the main stepping stone
for our algorithm. Based on the results of the preceding section, we prove the
following three lemmas. We start with the easiest case:

LEMMA 10. If two of the quadrant sets are empty, then there is a feasible tour
of length2 minS(P), which is optimal.

PROOF. Note that the conclusion will follow if we can construct a tour in
which all edges satisfy property (1) above. If two of the quadrant sets are empty, it
follows from Lemma 9 that these must be opposite. Without loss of generality, let
us assume that they areP−,− and P+,+. For the other two sets, any edge (vi , v j )
between opposite quadrant sets satisfies property (1). If the number of points in
the two opposite quadrant sets is the same, we can get a tour by jumping back
and forth while there are unvisited points in these quadrant sets. Ifn is odd and
p∗ = (xc, yc) ∈ P−−, then p∗ can be inserted into any of these edges, while
(1) will still apply to all edges. Ifn is odd andp∗ = (xc, yc) 6∈ P−−, then P−−
must contain two points, one withxc as itsx-coordinate and one withyc as its
y-coordinate. The tour connects these two together and then jumps back and forth
between quadrants. All edge lengths again satisfy (1).

LEMMA 11. Suppose no quadrant set is empty, n is odd and|P0
x ∪ P0

y | > 1.
Then there is a feasible tour of length2 minS(P), which is optimal.

By conditions 2 and 4 and becausexc andyc are both coordinates of points, we
know thatP0

x ∩ P−/0x andP0
y ∩ P−/0y each must contain a point. As|P0

x ∪ P0
y | > 1,

we can consider two pointspa ∈ P0
x , pb ∈ P0

y with a 6= b. Let us assume without
loss of generality that when we constructedP−/0x andP−/0y we assignedpa to the
former andpb to the latter.
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FIG. 2. Getting optimal 2-factors.

We distinguish the following cases—see Figure 2:

(a) pa, pb ∈ P−−: By connectingpa with a point inP−+, andpb with a point
in P+−, and otherwise jumping back and forth between opposite quadrant sets,
we get a tour that satisfies (1) for any edge.

(b1) pa 6∈ P−−, pb ∈ P−−: In this case,pa ∈ P−+. By changing the mem-
bership ofpb from P−− to P−+, we get|P−−| = |P++| and|P−+| = |P+−| + 1.
Then a tour for the modifiedP−+ andP+− can be obtained as in case (a).

(b2) pa ∈ P−−, pb 6∈ P−−: This is treated in the same way as case (b1).
(c) pa, pb 6∈ P−−: In this case,pa ∈ P−+ andpb ∈ P+−. By changing the mem-

bership ofpa from P−+ to P++ and the membership ofpb from P+− to P++, we
get|P++| = |P−−|+1 and|P−+| = |P+−|, so we can get tours as in case (a).

In the remaining cases, we may no longer be able to get a tour that meets the
2 minS(P) upper bound, but the next Lemma says that we can construct two
disjoint tours whose total length meets this bound. We subsequently show how
these tours can be combined with only a small decrease in total length to obtain a
single optimal tour.

LEMMA 12. Suppose no quadrant is empty and either n is even or n
is odd and |P0

x ∪ P0
y | = 1. Then there is a tour T−−/++ of the points in

P−− ∪ P++, and a tour T−+/+− of the points in P−+ ∪ P+−, such that
`(T−−/++)+ `(T−+/+−) = 2 minS(P).

PROOF. If n is even, we can argue like in the proof of Lemma 10: We get two
subtours, one covering each pair of opposite quadrant sets.

If n is odd and there is only one pointp∗ in P0
x ∪ P0

y , the case reduces ton even,
since p∗ = (cx, cy) ∈ P−−, and p∗ can be inserted into any tour ofP−− \ {p∗}
andP++ while still guaranteeing (1) for any tour edge.

4.3. HOW TO MERGE2-FACTORS. Suppose that no quadrant set is empty and
that we have a pair of subtours, whose total length matches the 2 minS(P) upper
bound on optimal tour length, as in Lemma 12. Now we shall show how the upper
bound has to be adjusted if we are to restrict ourselves to connected tours, and
how the adjusted bound can be met.

We start with the easier case ofn odd and the median being part of the point
set, before dealing with the more complicated case of evenn.
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FIG. 3. Getting an optimal tour for oddn, when the median is inP.

4.3.1. Odd n. Let n be odd and|P0
x ∪ P0

y | = 1, which means thatp∗ = (xc, yc)
is in P.

LEMMA 13. Let n be odd,|P0
x ∪ P0

y | = 1, and all quadrant sets be nonempty.
Then, any tour of P contains an edge that connects two adjacent quadrant sets
and is not incident on p∗.

PROOF. Any tourT of P induces a tourT ′ on the setP \ {p∗}; T ′ must contain
at least two different edgese1 ande2 that connect adjacent quadrant sets, i. e., that
connectS1 = (P−− \ {p∗} ∪ P++) to S2 = (P−+ ∪ P+−) = P \ S1. One of these
two edges must also be part ofT , and the claim follows.

LEMMA 14. Let e1 = (p1, p2) be an edge connecting two horizon-
tally (or vertically) adjacent quadrant sets. Let pi = (xi , yi ), and define
z := min{|yc − y1|, |yc − y2|} (or z := min{|xc − x1|, |xc − x2|}). Then any tour
containing e1 has length at most2 minS(P)− 2z.

PROOF. In either case, we haveL1(p1, p2) = L1(p1, c)+ L1(c, p2)− 2z, and
the claim follows.

By considering all possible edges (p1, p2) connecting adjacent quadrant sets, we
get an adjusted upper bound on the tour length. Note that only the smaller distance
from a median line matters for this bound. More formally, letZ1 = min{|yc− yi | |
pi ∈ P\{p∗}}, andZ2 = min{|xc−xi | | pi ∈ P\{p∗}}, and letZ∗ = min{Z1, Z2}.

LEMMA 15. Let n be odd,|P0
x ∪ P0

y | = 1, and all quadrant sets be nonempty.
Then, an optimal tour of P has lengthmin S(P) − 2Z∗, and such a tour can be
found in linear time.

PROOF. By Lemma 13 and Lemma 14, minS(P)−2Z∗ is a valid upper bound
on the tour length. It follows from the discussion ofS(P) and the definition ofZ∗
that the bound can be computed in linear time. Finally, suppose, for example, that
Z∗ = Z1 and thatp1 ∈ P−− is a point for which the value ofZ1 is met. Connect
p1 to a vertex inP+−, and p∗ to vertics inP++ and P−+. As shown in Figure 3,
it is straightforward to add only edges between opposite quadrants in order to get
a tour of the required length. Other cases are handled analogously.

4.3.2. Even n. The proof proceeds similarly to the case for oddn but requires a
more involved combinatorial analysis. Let us say that a pair of edgese1 = (v1, v2)
ande2 = (v3, v4) is aquadrant matching of the first typeif v1 ∈ P−−, v2 ∈ P−+,
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FIG. 4. (a1+ 2) Quadrant matchings of the first and second type. (b+ c) Edges connecting adjacent
quadrant sets.

v3 ∈ P+−, v4 ∈ P++ or if v1 ∈ P−−, v2 ∈ P+−, v3 ∈ P−+, v4 ∈ P++. See
Figure 4. We calle1 ande2 a quadrant matching of the second typeif one edge
joins adjacent quadrants and the other lies within a third quadrant.

LEMMA 16. Let n be even and all quadrant sets be nonempty. Then, any tour
of P contains a quadrant matching of either the first or the second type.

PROOF. As in the proof of Lemma 13, any tour ofP must contain at least two
different edgese1 = (v1, v2) ande2 = (v3, v4) that connect adjacent quadrant sets,
that is, that connectS1 = (P−− ∪ P++) to S2 = (P−+ ∪ P+−) = P \ S1.

We consider the following cases; in all cases, we name particular choices of
quadrants for clearer notation and better reference to Figure 4. All other choices
are completely analogous. Moreover, all arguments remain valid if two of the
named vertices coincide.

(a) (v1, v2), (v3, v4) form a quadrant matching of either type.In this case,
there is nothing to prove.

(b) (v1, v2), (v3, v4) connect one quadrant with both adjacent quadrants.
Suppose, without loss of generality,v1, v3 ∈ P−−, v2 ∈ P+−, v4 ∈ P−+, as shown
in the figure. Since two edges adjacent to vertices inP−− are already given, there
can be at most 2n−− − 2 = 2n++ − 2 edges betweenP−− and P++, so there
must be an edge connecting two vertices inP++, or two edges connectingP++ to
adjacent quadrant sets. In the first case, we have a quadrant matching of the second
type and, in the second case, we have a quadrant matching of the first type, so the
claim follows.
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FIG. 5. Getting an optimal tour for evenn.

(c) (v1, v2), (v3, v4) connect the same pair of adjacent quadrants.Suppose,
without loss of generality,v1, v3 ∈ P−−, v2, v4 ∈ P+−. Since two edges adjacent
to vertices inP+− are already given, there can be at most 2n+− − 2 = 2n−+ − 2
edges betweenP−+ and P+−, so there must be an edge connecting two vertices
in P−+ (and we are done), or there must be two edges betweenP−+ and adjacent
quadrant sets, either yielding a quadrant matching of the first type (and we are
done), or reducing this case to case (b).

Now we can give an upper bound on the length of an optimal tour with a given
pair of edges.

LEMMA 17. Let e1 = (p1, p2) be an edge connecting two adjacent quadrant
sets, say, P−− and P+−. Let e2 = (p3, p4) be an edge forming a quadrant
matching with e1. Let pi = (xi , yi ), and define z1 := min{(yc − y1), (yc − y2)},
z2 := min{(y3− yc), (y4− yc)}.

Then, any tour containing e1 and e2 has length at most2 minS(P)− 2z1− 2z2.

PROOF. Since L1(p1, p2) = L1(p1, c) + L1(c, p2) − 2z1, and
L1(p3, p4) ≤ L1(p3, c)+ L1(c, p4)− 2z2, the claim follows.

By considering all pairs of edges, we get an adjusted upper bound on the tour
length. For this purpose, letZ1 = min{|yc − yi | | pi ∈ P−− ∪ P+−}, and let
Z2 = min{|yi − yc| | pi ∈ P−+ ∪ P++}. Similarly, let Z3 = min{|xc − xi | |
pi ∈ P−− ∪ P−+}, and letZ4 = min{|xi − xc| | pi ∈ P+− ∪ P++}. Finally, let
Z∗ = min{Z1+ Z2, Z3+ Z4}.

LEMMA 18. Let n be even, and all quadrant sets be nonempty. Then an optimal
tour of P has lengthmin S(P)− 2Z∗, and such a tour can be found in linear time.

PROOF. It follows immediately from Lemmas 16 and 17 and the definition of
Z∗ that minS(P)−2Z∗ is a valid upper bound that can be computed in linear time.
To see that there is a tour of this length, consider a pair of vertices where the value
Z∗ is met. Without loss of generality, let this be forp1 ∈ P−− and p2 ∈ P++.
Connectp1 to any vertex inP+−, and p2 to any vertex inP−+. Now it is easy to
see that using only edges connecting opposite quadrant sets, we can get a tour. See
Figure 5.

This concludes the proof of Theorem 3.
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FIG. 6. Transforming an arbitrary 4-facet norm into theL1 norm.

4.4. AN EXTENSION. Using a rotation byπ/4, it is easy to transformL∞
distances toL1 distances, so the theorem remains valid for this case. Moreover, any
4-facet polyhedral metric can be transformed into theL1 metric with an appropriate
coordinate transformation, turning the unit ball into a square. See Figure 6 for an
illustration. All arguments described in the preceding section can still be applied
for these transformed coordinates, so the following generalization holds:

THEOREM 19. For any four-facet polyhedral metric in the plane, a tour of
maximum possible length can be constructed in linear time.

We conclude this section by noting that Theorem 8 does not appear to extend
to two-dimensional metrics with more than four facets, the two-dimensional
Euclidean metric, or the rectilinear metric in higher dimensions.

To see that there is no easy generalization even forL1 distances in higher
dimensions, note that the partition into orthants by an optimal star center may not
induce a “balanced” partition of the point set, such that we have subsets of equal
size in opposite orthants.

Example20. ConsiderP with (n− 1)/4 points in each of the orthants
{q = (x, y, z) | x > 0, y > 0, z > 0}, {q = (x, y, z) | x < 0, y < 0, z > 0},
{q = (x, y, z) | x < 0, y > 0, z < 0}, {q = (x, y, z) | x > 0, y < 0, z < 0}, plus
the point (0, 0, 0). Then (0, 0, 0) is the unique optimal star center. No connection
of points in different orthants keeps the triangle inequality tight.

That there is a fundamental difference between the Euclidean and rectilinear
metrics for the plane is clear from the following:

COROLLARY 21. For any set of n points in the plane, there areÄ((n
4!)4) many

tours that are optimal for the Maximum TSP under rectilinear distances. If the
distances are Euclidean, there may only be one optimal tour.

PROOF. Any tour that can be constructed as in Lemma 10, Lemma 15, or
Lemma 18 is optimal, so we can choose an arbitrary permutation for each quadrant
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set. This yields the above lower bound on the number of optimal tours. Conversely,
we see that any optimal tour must have the structure described in the Lemmas.

To see that there may only be one optimal tour for Euclidean distances, consider
a set ofn = 2k+ 1 points that are evenly distributed around a unit circle.

5. NP-Hardness Results

Now we proceed to show that changing from polyhedral to Euclidean distances, or to
distances in spaces of unbounded dimension, changes the problem complexity from
polynomial (or even linear) to NP-hard. This dramatic effect illustrates that failing
to model geometric instances of optimization problems beyond their combinatorial
graph structure can miss out on important differences in problem complexity.

5.1. EUCLIDEAN DISTANCES IN 3D. In this section, we establish the NP-
hardness of the Maximum TSP under Euclidean distances inRd. The proof gives a
reduction of the well-known problemHamilton Cycle in Grid Graphs, which was
shown to be NP-complete by Itai et al. [1982]. A grid graphG is given by a finite
set of verticesV = {v1 v2, . . . , vn}, with each vertexvi represented by a grid point
(xi , yi ) ∈ Z2; for easier notation, we writevi = (xi , yi ). Two verticesvi andv j in G
are adjacent if and only if they are at distance 1, that is, if (xi −xj )2+(yi −yj )2 = 1.
Without loss of generality, we may assume thatG is connected, and thatn is
sufficiently large. Note that any grid graph is bipartite: verticesvi with xi + yi
even can only be adjacent to verticesv j with xj + yj odd, and vice-versa. In the
following, we denote this partition byV = Ve ∪̇Vo, whereVe is the set of vertices
with even coordinate sum, whileVo is the set of vertices with odd coordinate sum.

The basic idea of the proof is to embed any grid graphG into the surface of
a sphere inR3, such that edges in the grid graph correspond to longest distances
within the point set. This can be achieved by representing the vertices inVe by
points that are relatively close to each other around a position (a, b, c) on the sphere,
and the vertices inVo by points close to each other at a position on the sphere that
is roughly opposite (i. e., antipodal) to (a, b, c); for simplicity of description by
spherical coordinates, we use positions that are close to the equator. Locally, the
mapping of the two point sets onto the sphere is an approximation of the relative
position of vertices in the grid graph. Since adjacent vertices in a grid graph have
different parity, unit edges in the grid graph representation correspond to edges
connecting points that are almost at opposite positions on the sphere, and vice-versa.

In the following, the technical details are described. For simplicity, we use
spherical coordinates and multiples ofπ . However, it will become clear from our
discussion that we only require computations of bounded accuracy. It is straight-
forward to use only Cartesian coordinates that can be obtained by polynomial time
approximation within the desired overall error bound ofO(n−8) for the length of
an edge.

Represent each vertexvi by a point S(vi ) on the unit sphere, described by
spherical coordinates (r, φ, θ), which translate into Cartesian coordinates by
x = r cosφ cosθ , y = r sinφ cosθ , z = r sinθ . Note that, as in standard
geographic coordinates, the “equator” of the sphere is given byθ = 0; the angle
θ describes the “latitude” of a point, whileφ describes the “longitude”. Since we
only consider points withr = 1, we simply write (φ, θ ) in spherical coordinates,
but (x, y, z) in Cartesian coordinates. Letψ = 2π

n3 . Now any vertexvi ∈ Ve is
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represented by a pointS(vi ) = (xiψ, yiψ). Any vertexvi ∈ Vo is represented by
a pointS(vi ) = (π + xiψ,−yiψ).

LEMMA 22. There is a small constantεn = O(n−8), which can be computed in
polynomial time, such that for the three-dimensional Euclidean distance L2 between
two points S(vi ) and S(v j ), the relation L2(S(vi ), S(v j )) ≥ 2− ψ2

4 −εn holds if and
only if vi and vj are adjacent in G. In that case, L2(S(vi ), S(v j )) ≤ 2− ψ2

4 + εn.
If vi and vj are not adjacent in G, then L2(S(vi ), S(v j )) ≤ 2−√5ψ

2

4 + εn.

PROOF. Since the diameter of the grid graph cannot exceedn, it is easy to see
that we haveL2(S(vi ), S(v j )) ≤ nψ = O(n−2) whenevervi andv j have the same
parity. Therefore considervi ∈ Ve andv j ∈ Vo. Then

[L2(S(vi ), S(v j ))]
2

= [L2 ((cos(xiψ) cos(yiψ), sin(xiψ) cos(yiψ), sin(yiψ)) ,
(cos(π + xjψ) cos(−yjψ), sin(π + xjψ) cos(−yjψ), sin(−yjψ)))]2

= [cos(xiψ) cos(yiψ)+ cos(xjψ) cos(yjψ)]2

+ [sin(xiψ) cos(yiψ)+ sin(xjψ) cos(yjψ)]2+ [sin(yiψ)+ sin(yjψ)]2

=
[(

1− (xiψ)2

2
+ O((xiψ)4)

)(
1− (yiψ)2

2
+ O((yiψ)4)

)
+
(

1− (xjψ)2

2
+ O((xjψ)4)

)(
1− (yjψ)2

2
+ O((yjψ)4)

)]2

+
[
(xiψ − O((xiψ)3))

(
1− (yiψ)2

2
+ O((yiψ)4)

)
+ (xjψ − O((xjψ)3)

(
1− (yjψ)2

2
+ O((yjψ)4)

)]2

+ [yiψ − O((yiψ)3)+ yjψ − O((yjψ)3)]2

=
[
2− (xiψ)2

2
− (yiψ)2

2
− (xjψ)2

2
− (yjψ)2

2
+ O(n−8)

]2

+ [xiψ + xjψ + O(n−6)]2+ [yiψ + yjψ + O(n−6)]2

= [4− 2(xiψ)2− 2(yiψ)2− 2(xjψ)2− 2(yjψ)2+ O(n−8)]

+ [(xiψ)2+ (xjψ)2+ 2xi x jψ
2+ O(n−8)]

+ [(yiψ)2+ (yjψ)2+ 2yi yjψ
2+ O(n−8)]

= 4− (xi − xj )
2ψ2− (yi − yj )

2ψ2+ O(n−8).

Sincevi andv j have different parity, we have (xi − xj )2ψ2+ (yi − yj )2ψ2 = ψ2

if vi andv j are adjacent inG, and (xi − xj )2ψ2 + (yi − yj )2ψ2 ≥ 5ψ2 if vi and
v j are not adjacent inG, so the claim follows.

From Lemma 22, it is straightforward to conclude that there is a tour of length
at least 2n− nψ

2

4 − nεn, if and only if the grid graphG is Hamiltonian.
By setting additional coordinates equal to zero, we conclude the proof of

Theorem 4 for arbitrary dimensionsd ≥ 3.
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5.2. HIGHER-DIMENSIONAL IMPLICATIONS. There are various implications of
Theorem 4 to higher dimensions. It is not hard to generalize the construction and
the proof of Lemma 22 to the case ofLp norms, as long asp 6∈ {1,∞}: Instead of
using a unit sphere for the embedding, use anLp ball of dimension 3, which has
a smooth surface wheneverp 6= 1,∞. The error bounds can be worked out in an
analogous way.

Combined with Theorem 1, we note:

COROLLARY 23. Provided that P6= NP, the Maximum TSP under an Lp norm
in Rd with d ≥ 3 fixed is solvable in polynomial time, if and only if p∈ {1,∞}.

There is a close connection between the Euclidean norm and polyhedral
norms when the number of facetsk is not fixed, as was pointed out by Joe
Mitchell (personal communication): Since we only need to considerO(n2)
directions for connections between points, we can replace the Euclidean distances
L2 by a polyhedral norm withO(n2) facets.

COROLLARY 24. The Maximum TSP under a polyhedral norm having a unit
ball with k facets inRd is an NP-hard problem, if d≥ 3 and k is part of the input.

Another easy consequence concerns theMaximum Scatter TSP, which was
first considered by Arkin et al. [1997]. In this problem, the objective is to find
a tour that maximizes the length of the shortest edge. Arkin et al. [1997] gave
an NP-hardness proof for the general case and a 2-approximation that uses only
triangle inequality. The complexity for geometric instances was left as an open
problem. Using the above construction and Lemma 22, we get:

COROLLARY 25. The Maximum Scatter TSP under Euclidean distances inRd

is an NP-hard problem if d≥ 3.

Finally, it is straightforward with the above construction to show the following:

COROLLARY 26. The Maximum TSP and the Maximum Scatter TSP under
shortest distances on the(d − 1)-dimensional surface of the d-dimensional unit
sphere Sd−1 are NP-hard for d≥ 3.

It was also noted by Joe Mitchell (personal communication) that another
corollary can be derived by using an approximation withO(n2) facets:

COROLLARY 27. The Maximum TSP and the Maximum Scatter TSP on
the (d − 1)-dimensional surface of a d-dimensional convex polytope with an
unbounded number of facets under geodesic distances are NP-hard for d≥ 3.

Another set of questions concerns the complexity of the Maximum TSP whend
is not fixed. It is relatively easy to show that the problem is NP-hard forLp norms:

THEOREM 28. The Maximum TSP and the Maximum Scatter TSP are NP-hard
for points in d-dimensional space under Lp norms,1 < p ≤ ∞, when d is part
of the input.

PROOF. We use a transformation from the Hamiltonian Circuit problem for
simple cubic graphsG = (V, E), which was shown to be NP-complete by Garey
et al. [1976b]. We use a separate dimension for each edgee∈ E, and a pointpi for
each vertexvi ∈ V : For edgee= (vi , v j ), choose thexe-coordinate of one of the
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points (say, pi ) to be 1, and thexe-coordinate of the other point (say,pj )
to be −1. All other xe-coordinates are chosen to be 0. This means that the
Lp-distance between points representing adjacent vertices inG is the “long” value
Lmax := p

√
2p + 4 (2 for L∞), while nonadjacent vertices get the “short” distance

Lmin := p
√

6 (1 for L∞). For fixedp > 1, it is straightforward to compute a critical
valueL < Lmax in polynomial time such that there is a tour of lengthnL or greater
if and only if there is a Hamiltonian cycle inG.

This leaves open the case of theL1 metric whend is not fixed, although we
conjecture that theL1 case is NP-complete as well. Also open is the question of
whether there might be a PTAS for any such norm whend is not fixed. Trevisan
[1997] has shown that the Minimum TSP is Max-SNP-hard for any such norm,
and so cannot have such PTAS’s unless P= NP. We can obtain a similar result
for the Maximum TSP underL∞ by modifying our NP-hardness transformation
to prove Max-SNP-hardness and hence by Arora et al. [1998] the existence of an
ε such that no polynomial time approximation algorithm can guarantee a solution
within a factor of 1+ ε of optimal unless P= NP.

THEOREM 29. The Maximum TSP and the Maximum Scatter TSP are Max-
SNP-hard for points in d-dimensional space under L∞-norms when d is part of
the input.

PROOF. The source problem is the Minimum TSP with all edge lengths
in {1, 2}, a special case that was proved Max-SNP-hard by Papadimitriou and
Yannakakis [1993]. We use the construction of our previous proof, with edges of
length 1 as “edges,” edges of length 2 as “nonedges,” and each “edge” having its
own coordinate in|E|-dimensional space. For this coordinate, one endpoint gets
value+1, the other gets−1, and all other points get value 0. Thus, adjacent vertices
in G get mapped to points at the “long”L∞-distance 2, while each pair of vertices at
distance 2 inG gets mapped to a pair of points at “short”L∞-distance 1. Therefore,
long tours in the constructed point set correspond to short tours in the original graph.
Now the Max-SNP-hardness is immediate, as a Maximum TSP tour of length at
least (2− ε)n, that is, with at mostεn short edges, corresponds to a Minimum TSP
tour of length at most (1+ ε)n, that is, with at mostεn edges of length 2.

The question remains open forLp, 1 ≤ p < ∞, although we conjecture that
these cases are Max-SNP-hard as well.

6. Conclusion

We have derived polynomial-time algorithms for the Maximum TSP when the cities
are points inRd for some fixedd and when the distances are measured in accor-
dance with some polyhedral norm or quasi-norm, with running timeO(nk−2 logn)
for norms based onk-facet polyhedra andO(n2k−2 logn) for quasi-norms based on
k-facet polyhedra. Our approach is based on a solution method for the Tunneling
TSP; we believe that the related Minimum TSP variant with city connections via a
fixed set of hubs is of independent interest. We also gave an optimalO(n) algorithm
for the special case of 4-facet polyhedra in the plane, such as the rectilinear norm.
We suspect it may be possible to improve on our complexity forL1 distances in
R3 by using some of our geometric ideas. (Since the unit ball forL1 distances in
R3 is an octahedron, the running time for our general algorithm isO(n6 logn).)
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We have also shown that the Maximum TSP under Euclidean norm inRd is
NP-hard for any fixedd ≥ 3. This shows that the complexity of an optimization
problem is not just a consequence of its combinatorial structure or its geometry,
but may be ruled by the structure of the particular distance function that is used.
The result has similar implications for closely related problems.

The Euclidean cased = 2 remains open; in the light of our results, it seems more
likely that this problem is NP-hard, even though its counterpart with rectilinear
distances turned out to be extremely simple. However, it is much harder to use
strictly local arguments for geometric maximization problems, so a proof of
NP-hardness may have to use a more involved construction.

Conjecture30. The Maximum TSP for Euclidean distances in the plane is an
NP-hard problem.
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