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Abstract. We discuss worst-case bounds on the ratio of maximum matching and minimum
median values for finite point sets. In particular, we consider “minimum stars,” which are
defined by a center chosen from the given point set, such that the total geometric distance
LS to all the points in the set is minimized. If the center point is not required to be an
element of the set (i.e., the center may be a Steiner point), we get a “minimum Steiner
star” of total lengthLSS. As a consequence of triangle inequality, the total lengthL M of a
maximum matching is a lower bound for the lengthLSS of a minimum Steiner star, which
makes the worst-case valueρ(SS,M) of the valueLSS/L M interesting in the context of
optimal communication networks. The ratio also appears as the duality gap in an integer
programming formulation of a location problem by Tamir and Mitchell.

In this paper we show that for a finite set that consists of an even number of points in
the plane and Euclidean distances, the worst-case ratioρ(S,M) cannot exceed 2/

√
3. This

proves a conjecture of Suri, who gave an example where this bound is achieved. For the
case of Euclidean distances in two and three dimensions, we also prove upper and lower
bounds for the worst-case valueρ(S, SS) of the ratioLS/LSS, and for the worst-case value
ρ(S,M) of the ratioLS/L M . We give tight upper bounds for the case where distances are
measured according to the Manhattan metric: we show that in three-dimensional space,
ρ(SS,M) is bounded by3

2, while in two-dimensional spaceLSS= L M , extending some
independent observations by Tamir and Mitchell. Finally, we show thatρ(S, SS) is 3

2 in the
two-dimensional case, and53 in the three-dimensional case.

∗ Parts of this work were done while the first author was visiting Queen’s University, partially supported by
the Deutsche Forschungsgemeinschaft, FE 407/3-1. Parts of this work were done while the second author was
visiting Universität zu Köln, partially supported by NSERC. A preliminary extended abstract of this article,
titled “On minimum stars, minimum Steiner stars, and maximum matchings,” appears in theProceedings of
the15th ACM Symposium on Computational Geometry[9].
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1. Introduction

The problem of finding a maximum weightmatchingfor a given set of vertices in
a weighted graph is to find a set of disjoint edges, such that the total weight of all
the edges is maximized. Determining an optimal matching is a classical algorithmic
problem, and Edmonds’s famous polynomial-time algorithm [7] is one of the milestones
of combinatorial optimization.

On the other hand, it has been known for quite a while [11] that the task of finding
a minimum weightSteiner treeis an NP-hard problem: find a network of smallest total
length LST that connects all given points, while allowing additional “Steiner” points
for connecting edges. This algorithmic intractability differs drastically from the case
where no Steiner points are allowed, so that the connected network has to be a mini-
mum weight spanning tree (MST) of weightLT , which can be solved very efficiently.
Many aspects of optimal Steiner trees have been considered; see the book [13] for an
overview. One of the most famous problems related to geometric Steiner trees deals
with the worst-case valueρ(T, ST) of the ratioLT/LST. As Du and Hwang [6] man-
aged to prove for the case of planar point sets with Euclidean distances,ρ(T, ST) =
2/
√

3.
A special type of Steiner tree problems arises in the context of location theory: The

so-calledWeber problemasks for the location of a single center point, such that the sum
of distances from the given points to the center is minimized. (See [12]. [5] gives an
overview and an extensive list of references.) It was shown by Bajaj [1] that even for
the simple case of five points in the Euclidean plane, a solution can in general not be
expressed by radicals. (In particular, it is impossible to construct an optimal solution by
means of ruler and compass.) In the context of communication networks, the resulting
tree has been called astar[10]. As in the case of general tree networks, we can distinguish
the Steiner case (where the center point can be chosen anywhere) from the more restricted
case, where the center point is required to be chosen from the given set. In the following
we speak of “minimum Steiner stars” (with a total edge length denoted byLSS) and
“minimum stars” (with a total edge length denoted byLS).

When dealing with algorithmically hard problems like the task of designing optimal
communication networks, it is of great importance to provide good upper and lower
bounds for an optimal solution. It has been pointed out by Fingerhut et al. [10] thatL M

is a lower bound forLSS, which is an upper bound forLST. This makes it interesting
to consider the worst-case valueρ(SS,M) of the ratioLSS/L M . It was conjectured by
Suri [16] that for the case of points in the plane with Euclidean distances,ρ(SS,M)
is 2/
√

3—the Steiner tree ratio. Proving this conjecture is one of the main results of
this paper. In addition, we consider the behavior of the worst-case boundsρ(S, SS)
for LS/LSS, andρ(S,M) for LS/L M . The ratioLS/LSSappears in location problems,
where the sum of distances from a depot to a set of positions is to be minimized. (See
the book by Drezner [5] for an overview in location theory.) If the depot may be chosen
arbitrarily, we get total costLSS. If the depot has to be chosen from the given set of
positions, we get a cost ofLS. Thus, the worst-case ratio can be interpreted as a bound
on the possible payoff from opening a new depot.

For the case of Euclidean distances in two and three dimensions, we prove upper and
lower bounds for all these worst-case values.
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The above problems are also of interest when distances are not measured according to
the Euclidean metric. Of particular relevance is the case of rectilinear (or “Manhattan”)
distances, which arises in the context of VLSI layout. Tamir and Mitchell [17] have
consideredρ(SS,M) for the case of rectilinear distances, motivated by questions from
cost allocation for cooperative matching games. They prove that in the case of points
in the plane,LSS/L M = 1, which implies that the core of a related matching game
is nonempty. By establishing a tight upper bound onρ(SS,M), we can establish the
largest possible value of the duality gap for their integer programming formulation for
the case of Euclidean distances. In Section 5 we prove that, for the case of Manhattan
distances,ρ(SS,M) = 3

2 andρ(S, SS) = 3
2. Section 6 deals with Manhattan distances

in three-dimensional space. We show thatρ(SS,M) = 3
2, ρ(S,M) = 5

3, whileρ(S,M)
lies between5

3 and 2. (See Table 1 in Section 7 for an overview.)
Finally, we would like to note some further algorithmic implications: The result

by Tamir and Mitchell [17] yields anO(n) time algorithm for finding a maximum
weight matching for a planar point set with Manhattan distances. With some extra
work, some of the underlying properties of minimum Steiner stars have been used by
Fekete [8] to construct anO(n) time algorithm for finding a traveling salesman tour of
maximum total length. (See the paper by Barvinok et al. [2] for more results on this
problem.)

The rest of this paper is organized as follows. In Section 2 we introduce some basic
notation and some general results. Section 3 deals with Euclidean distances in two-
dimensional space, while Section 4 contains results for the case of Euclidean distances
in three-dimensional space. In Sections 5 and 6 we consider Manhattan distances in
two- and three-dimensional space. The concluding Section 7 contains a discussion of
remaining open problems.

2. Preliminaries

Let G = (V, E) be a graph with nonnegative edge weightsw(e). Throughout this paper
the vertex setV of G is represented by a point setP = {p0, p1, . . . , pn−1} from Euclidean
space, and edge weights correspond to geometric distances, according to some metric.
A starof P is a set ofn−1 edges (represented by line segments) connecting an element
of P with all other elements ofP. A Steiner starof P with center pointc is a set of
n edges (represented by line segments), connecting each point ofP to c. A (perfect)
matching ofP is a set ofn/2 edges that pair each point ofP with another unique point
of P. In the remainder of this paper, any star, Steiner star, or matching is assumed to be
a star, Steiner star, or matching ofP, denoted by the symbolsES, ESS, andEM . Their
lengths are denoted by‖ES‖, ‖ESS‖, and‖EM‖, for a specified metric‖ · · · ‖. Let E∗S,
E∗SS, andE∗M denote a star, Steiner star, and matching of minimal, minimal, and maximal
length, respectively. For easier notation, we writeLS, LSS, andL M for ‖E∗S‖, ‖E∗SS‖,
and‖E∗M‖; furthermore, we denote byρ(X,Y) (with X,Y = S, SS,M) the worst-case
ratio supP∈Rd L X/LY.

Before we consider various geometric instances, we note a general bound on ratios
that holds for all weight functions on the edges, even if we do not have triangle inequality.
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Observation 1. For arbitray weighted graphs G, we haveρ(S,M) = 2.

Proof. Let matrixA be the distance matrix of the points inP, soA(i, j ) is the distance
betweenpi andpj . LetSbe the sum of all entries inA. SinceLS is the minimal row sum of
A, we have by the pigeonhole principle thatLS ≤ S/n. The maximal matching consists
of n/2 elements ofA, so again by the pigeonhole principle we haveL M ≥ S/(2n).
Hence,

LS ≤ S/n ≤ 2L M .

To see that the ratioLS/L M can be arbitrarily close to 2, even if we assume triangle
inequality, consider the complete graph onn vertices, with all edge weights being 1.
ThenLS = (n− 1), andL M = n/2.

For the valueρ(S, SS), we note the following:

Observation 2. Assuming triangle inequality, we haveρ(S, SS) = 2.Without triangle
inequality, ρ(S, SS) is unbounded.

Proof. Let c be the center of an optimal Steiner star. Letv0 ∈ V be a vertex closest to
c, and letw(c, v0) = d. Then by triangle inequality,w(v0, vi ) ≤ w(v0, c)+w(c, vi ), so
the starSt(v0) with centerv0 satisfiesLS ≤ ‖St(v0)‖ ≤ (n− 1)d + LSS≤ 2LSS.

To see that the bound of 2 is tight, letG be the complete graph onn vertices, with all
edge weights being 2. LetG = (V ∪ {c}, E) be a complete graph on (n + 1) vertices,
with all edges adjacent toc having weight 1. ThenLS = 2(n− 1) andLSS= n.

For a class of examples without triangle inequality and unboundedρ(S, SS), let
G = (V, E) be the complete graph onn vertices, with each edge having weight 2N. Let
G = (V ∪ {c}, E) be the complete graph on(n+ 1) vertices, with all edges adjacent to
c having weight 1. ThenLS = 2N(n− 1) > Nn= N LSS.

In a geometric setting, distances in an arrangement of points are far more restricted,
so the above bounds may no longer be best possible. It is the main purpose of this paper
to provide tight estimates for geometric scenarios.

3. Euclidean Distances in Two-Dimensional Space

Throughout this and the following section we consider arrangements of points in two-
and three-dimensional space, with distances measured according to the Euclidean metric.
At several occasions, we make use of the following lemma:

Lemma 1. Given a triangle with edge lengths a, b, and c, where the angleγ opposite
c is bounded from below byϕ > 0. Then we have a+ b ≤ √2/1− cosϕ · c. For the
special caseϕ = 2π/3, we get a+ b ≤ 2/

√
3 · c; for ϕ = π/2, we get a+ b ≤ √2 · c.

Proof. By triangle inequality, we havea+b ≥ c, so(a+b)2/c2 is bounded from below
by 1. By the cosine theorem, we have(a+ b)2/c2 = (a+ b)2/(a2 + b2 − 2abcosγ ).
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This expression is symmetric ina andb and attains the lower bound of 1 fora = 0 or
b = 0, and the maximum is attained fora = b, from which the claim follows.

3.1. Minimum Steiner Stars and Maximum Matchings

In this subsection we give a proof of Suri’s conjecture [16]. Throughout the section,
distances are measured according to the Euclidean metric. The key idea is to make
use of Lemma 1 and construct a matching that guarantees that the angle between the
connections of the matched points and the origin has a good lower bound.

Let l be a directed line in the plane. We say thatl is ahalving lineof P if at most half
of the points ofP are to the right ofl and at most half of the points ofP are to the left
of l .

Lemma 2. For point sets P in two-dimensional space we can find three directed lines
l0, l1, and l2 such that the three lines intersect in a common point, all three lines are
halving lines of P and the smallest angle between any two lines isπ/3.

Proof. See Fig. 1. The collection of halving lines for a given directionα form a directed
closed strip which we callSα. Consider the stripsS0, Sπ/3, andS2π/3. If these three strips
have a point in common, we are done. Therefore assume without loss of generality
that S0 ∩ Sπ/3 lies to the left ofS2π/3. It follows that Sπ ∩ S4π/3 lies to the right of
S5π/3.

Fig. 1. Finding a small Steiner star and a large matching.
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We now consider the stripsSα, Sα+π/3, andSα+2π/3, whereα increases fromα = 0 to
α = π . The three strips move in a continuous manner. Suppose that for no value ofα do
the three strips have a point in common. ThenSα ∩ Sα+π/3 stays to the left ofSα+2π/3,
which contradicts the fact thatSπ ∩ S4π/3 lies to the right ofS5π/3. Therefore there is a
value ofα for which the three stripsSα, Sα+π/3, andSα+2π/3 have a point in common,
which proves the lemma.

Theorem 1. For point sets P of even cardinality in two-dimensional space with
Euclidean distances, we haveρ(SS,M) = 2/

√
3.

Proof. The following example withLSS/L M = 2/
√

3 was given by Suri. Supposen
is divisible by 6. Placen/3 points on each corner of an equilateral triangle with sides of
length 2

√
3. ThenLSS= 2n andL M = n

√
3.

To see thatρ(SS,M) ≤ 2/
√

3, find three linesl0, l1, andl2 as shown in Fig. 1, such
that the three lines intersect in a common point, all three lines are halving lines forP and
the smallest angle between any two lines isπ/3. These lines divideP into six setsA0, A1,
A2, B0, B1, andB2, whereAi lies oppositeBi for all i , as shown in Fig. 1. By assigning
the points ofP on the three lines to only one of the sets it belongs to, we can assume
that |A0| + |A1| + |A2| = n/2 = |B0| + |B1| + |B2|, as well as|A0| + |A1| + |B2| =
n/2 = |B0| + |B1| + |A2|, and|A0| + |B1| + |B2| = n/2 = |B0| + |A1| + |A2|. This
implies|Ai | = |Bi | for all i .

Let O be the intersection ofl0, l1, and l2. Construct a Steiner starESS with O as
its center. Now choose an (arbitrary) perfect matchingEM of the points inAi with the
points inBi for all i .

We know that by construction, for each edge(p,q) in EM , the angle∠(p,O,q) is
bounded from below byϕ = 2π/3. By Lemma 1, this implies‖p− O‖ + ‖O − q‖ ≤
2/
√

3 · ‖p− q‖. SoLSS≤ ‖ESS‖ ≤ 2/
√

3 · ‖EM‖ ≤ 2/
√

3 · L M .

3.2. Minimum Stars and Minimum Steiner Stars

We turn to the possible values ofρ(S, SS). As we noted in the Introduction, this ratio
appears in location problems like the Weber problem, where the sum of distances from
a depot to a set of positions is to be minimized. Here we give bounds on the worst-case
value of the possible payoff from opening a new depot.

SinceLS ≥ LSS, we assume without loss of generality that the star centerc of an
optimal Steiner starE∗SS is not an element ofP.

Let the line segments, or rays, of a Steiner star beri , and denote their lengths byai .
Let αi be the angle between the positivex-axis and rayri .

Lemma 3. For the anglesαi of E∗SS, and anyθ , we have the local optimality condition

n−1∑
i=0

cos(αi + θ) = 0.
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Proof. For the given Steiner star center, the sum of distances is locally minimal, so the
projection of the gradient onto any line must disappear; by linearity of the derivative,∑n−1

i=0 cos(αi + θ) is the projection of the derivative onto the line that encloses an angle
of θ with the origin.

Lemma 4. Let ESS be a Steiner star of P= {p0, . . . , pn−1} and let ai , ri , andαi be
defined as above. Let bi be the distance between p0 and pi . In the special case that all
points of P lie on a circle centered at c, of radius a0 = ai for all i , the local optimality
condition

n−1∑
i=0

cos(αi + θ) = 0 implies that
n−1∑
i=0

bi ≤ a0n
√

2.

Proof. We have
∑n−1

i=0 cos(αi + θ) = 0 for all θ , so without loss of generality we can
assume thatP is rotated around the origin so thatp0 = (a0,0). We have

bi = 2a0 sin
(αi

2

)
= a0

√
2(1− cosαi )

(see also Fig. 2). The functionf (α) = √1− cosα, where 0≤ α < 2π , is a concave
function of cosα. By Jensen’s inequality [15] we have

n−1∑
i=0

1

n

√
1− cosαi ≤

√√√√1−
(

n−1∑
i=0

1

n
cosαi

)
= 1,

from which the result follows.

Fig. 2. Length of a chord in a circle.
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Now we can prove the following upper bound:

Theorem 2. For point sets P in two-dimensional space with Euclidean distances, we
have4/π ≤ ρ(S, SS) ≤ √2.

Proof. For the lower bound, chooseP to be a set of points spaced evenly on the unit
circle. Assume thatP includes the point(x, y) = (0,−1). The center ofE∗SS is the
center of the circle, soLSS= n. Consider the starES centered at(0,−1). Denote the
rays ofES by ri and their lengths byai . Letαi be the angle between the positivex-axis
and rayri . We haveai = 2 sinαi . Therefore the average ray length in the limit is

1

π

∫ π/2

0
4 sinα dα = 4

π
.

Now consider the upper bound. If the center ofE∗SS is an element ofP, the bound
holds, so assume that the center of theE∗SS is not an element ofP. Without loss of
generality assume that the center ofE∗SS is the origin, thatr0 is a shortest ray, and thatr0

runs along the positivex-axis, as shown in Fig. 2.
Consider the starES centered at the endpoint ofr0. Denote the rays ofES by r ′i and

their length bya′i . Using triangle inequality we have

a′i ≤ (ai − a0)+ 2a0 sin
(αi

2

)
.

So from Lemma 4 we have

LS ≤ ‖ES‖ =
n−1∑
i=0

a′i ≤
n−1∑
i=0

ai − na0+ na0

√
2

≤ LSS+ LSS(
√

2− 1) =
√

2 · LSS.

3.3. Minimum Stars and Maximum Matchings

It is not hard to derive upper and lower bounds forρ(S,M) by using the previous results
of this section:

Theorem 3. For point sets P of even cardinality in two-dimensional space with Eu-
clidean distances, we have4

3 ≤ ρ(S,M) ≤ 2
√

2/
√

3.

Proof. The upper bound follows immediately from Theorems 1 and 2.
For the lower bound, supposen is divisible by 6, and placen/3 points on each corner

of an equilateral triangle with sides of length 6. ThenLS = 4n andL M = 3n.

4. Euclidean Distances in Three-Dimensional Space

Now we turn to point sets in three-dimensional space under Euclidean distances. Again,
we start by providing tools for the ratioρ(SS,M).
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Following an idea similar to the one from Section 3.1, we show that there always
exist three orthogonal planes that partitionP into eight octants such that opposite octants
contain the same number of points.

Let p be a plane. We say thatp is a halving plane ofP if at most half of the points
of P are on one side ofp and at most half of the points ofP are on the other side ofp.

Let p0, p1, and p2 be three orthogonal planes, each of which is a halving plane of
P. Each plane5i dividesP into points above5i , on5i , and below5i . Let Qi

0 be the
points inP below5i and letQi

1 be the points inP above5i . We assign the points on
5i to eitherQi

0 andQi
1 in such a way that|Qi

0| = |Qi
1|. We call|Qi

0| and|Qi
1| the set of

points below and above5i , respectively, even though some of these points may in fact
lie on5i . We define, fori, j, k ∈ {0,1},

Qi jk = Q2
i ∩ Q1

j ∩ Q0
k.

For example,Q110 is the set of points inP above52, above51, and below50. Since
|Qi

0| = |Qi
1|, we can derive the following equalities:

|Q000| + |Q001| = |Q110| + |Q111|,
|Q100| + |Q101| = |Q010| + |Q011|,
|Q000| + |Q010| = |Q101| + |Q111|,
|Q001| + |Q011| = |Q100| + |Q110|,
|Q000| + |Q100| = |Q011| + |Q111|,
|Q001| + |Q101| = |Q010| + |Q110|.

We show that we can always find three orthogonal planes such that opposite octants,
i.e., Qi jk andQ(1−i )(1− j )(1−k) have the same cardinality.

Lemma 5. For point sets P in three-dimensional space, we can find three orthogonal
planes such that|Qi jk | = |Q(1−i )(1− j )(1−k)| for all i , j, k.

Proof. Notice that it suffices to find three orthogonal planes such that|Q000| = |Q111|,
since this implies that|Qi jk | = |Q(1−i )(1− j )(1−k)| for all i, j, k. We first assume that
the points are in general position, in the sense that if we project all points inP onto
the (z = 0) plane, then no three points are collinear and no line through two points
is perpendicular to another line through two points. Let52 be a halving plane parallel
to the(z = 0) plane. We map all points fromP onto the(z = 0) plane, and call the
projected points fromQ2

1 andQ2
0 the black and white points, respectively.

The problem is now a two-dimensional one. Orthogonal halving planes50 and51

will become halving linesl0 andl1 in the projection. Let a directed linel be a halving
line if at most half of the black and white points are to the left ofl and at most half lie to
the right ofl . Because of the nondegeneracy assumption there are at most two points on
a halving linel . The collection of halving lines for a given directionα form a directed
closed strip which we callSα. Let lα be the halving line in the middle ofSα. Consider
the stripsSα and Sα+π/2. The corresponding lineslα and lα+π/2 divide the points into
four subsetsQi j for i, j ∈ {0,1}, whereQi j is the projection ofQ0i j ∪ Q1i j . Therefore
|Q00| = |Q11| and|Q01| = |Q10|, as illustrated in Fig. 3.
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Fig. 3. Orthogonal halving strips.

As α increases, at most one point is added to and at most one point is removed
from Qi j at any one time. Changes only occur whenSα or Sα+π/2 is a line. Because
of the nondegeneracy assumption it is not possible that bothSα and Sα+π/2 are lines.
Either

• the number of points in two opposite quadrants such asQ00 andQ11 both increase
or both decrease, or
• two neighboring quadrants exchange a point.

In the first case,|Q000| and |Q111| either both increase, both decrease, or only one
changes. It is not possible for|Q000| to decrease and for|Q111| to increase or vice versa.
In the latter case, at most one of|Q000| and|Q111| changes. Therefore, if for some value
of α0 we have|Q000| < |Q111|, while for α1 we have|Q000| > |Q111|, then there is an
α with α0 < α < α1 for which |Q000| = |Q111|.

Consider first the stripsS0 andSπ/2. If |Q000| = |Q111|, then we are done. Therefore
suppose that|Q000| < |Q111|. It follows that for stripsSπ andS3π/2 we have|Q000| >
|Q111|. Therefore there is a value ofα with 0< α < π for which |Q000| = |Q111|.

If the nondegeneracy assumption does not hold, we can move all points by an infinite-
simal small distance, in such a way that the assumption does hold. The construction
shown above gives three orthogonal halving planes of the perturbed set. The same planes
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partition P in the correct way, whereby the perturbation of a point that lies on a halving
plane determines to which sides of the plane this point should be assigned.

Theorem 4. For sets of points P in three-dimensional space with Euclidean distances,
we have the inequality

√
3/
√

2≤ ρ(SS,M) ≤ √2.

Proof. For the lower bound, supposen is divisible by 4. Placen/4 points on each corner
of a tetrahedron with sides of length 2. ThenLSS= n

√
3/
√

2 andL M = n.
To prove the upper bound, find three orthogonal halving planes that satisfy the condi-

tion‖Qi jk‖ = ‖Q(1−i )(1− j )(1−k)‖ for all i, j, k. Let O be the point of intersection of these
three planes. Construct a Steiner starESSwith O as its center. Construct a matchingEM

by connecting points in each octant to points in the opposite octant.
For each edge(p,q) in EM , the angle between the ray fromO to p and the ray

from O to q is bounded from below byπ/2, from which we derive by Lemma 1 that
‖p− O‖ + ‖O − q‖ ≤ √2 · ‖p− q‖ . SoLSS≤ ‖ESS‖ ≤

√
2 · ‖EM‖ ≤

√
2 · L M .

Next we discuss the worst-case valueρ(S, SS).

Theorem 5. For sets of points P in three-dimensional space with Euclidean distances,
we have the inequality43 ≤ ρ(S, SS) ≤ √2.

Proof. The proof for the upper bound is the same as the proof for the two-dimensional
case shown in Theorem 2.

To see the lower bound, letP be a set of points evenly distributed over the unit sphere.
AssumeP includes the point(x, y, z) = (0,−1,0). The center ofE∗SS is the center of
the sphere, soLSS= n. Consider the starES centered at the point(0,−1,0). Denote the
rays ofES by ri and their lengths byai . Let αi be the angle between the(y = 0) plane
and rayri . We haveai = 2 sinαi .

The average ray length can be computed as follows. Letθ be the angle between a ray
and the(y = 0) plane and letϕ be the angle between the projection of the ray onto the
(y = 0) plane and the positivex-axis. If1θ = θ1 − θ0 and1ϕ = ϕ1 − ϕ0 are small,
then the surface area covered by all rays with angles in this range is approximately equal
to 4 sinθ cosθ1ϕ1θ , so the area of the surface of the sphere is∫ π/2

0

∫ 2π

0
4 sinθ cosθdϕ dθ = 4π

and the average ray length is

1

4π

∫ π/2

0

∫ 2π

0
(4 sinθ cosθ)(2 sinθ)dϕ dθ = 4

3.

We conclude our discussion on Euclidean distances:

Observation 3. For point sets in three-dimensional space with Euclidean distances,
3
2 ≤ ρ(S,M) ≤ 2.
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Proof. We know from Observation 1 thatρ(S,M) cannot exceed 2. For the lower
bound, supposen is divisible by 8. Placen/4 points on each corner of a tetrahedron with
sides of length 4. ThenLS = 3n andL M = 2n.

5. Manhattan Distances in Two-Dimensional Space

5.1. Minimum Steiner Stars and Maximum Matchings

Independent from our work, the following proposition was also noted by Tamir and
Mitchell [17]. Since some of the steps are of importance for our further results, we give
a sketch of the proof.

Proposition 1. For point sets P of even cardinality in two-dimensional space with
Manhattan distances, we have LM = LSS.

Proof (Sketch). It is not hard to see that the center for an optimal Steiner star must
both be a median of thex-coordinates and they-coordinates of the points inP. Assume
without loss of generality that an optimal center is located at(0,0) and consider the
numbersn1, n2, n3, andn4 of points in each of the four quadrants, with points on the
boundary of two quadrants assigned in a suitable way. Usingn1 + n2 = n3 + n4 and
n2 + n3 = n4 + n1, we getn1 = n3 andn2 = n4, i.e., diagonally opposite quadrants
must contain the same number of points. This allows us to match points from opposite
quadrants. It is straightforward to see that to each edge of the matching, we have a
corresponding pair of edges of the Steiner star with the same total length, implying that
the total length of the matching is equal to the total length of the Steiner star.

5.2. Minimum Stars and Minimum Steiner Stars

In the following, we considerρ(S, SS). For any pointpi = (xi , yi ) ∈ P, LS(pi ) is
the total length of the star centered atpi . We denote byρn the supremum of the values
LS/LSS for point sets of cardinalityn. Without loss of generality, we may assume that
LSS> 0, and thusLSS= 1. Furthermore, we may assume that the origin is an optimal
Steiner center.

We make use of the following lemma:

Lemma 6. For any n, there are point sets for which LS/LSSattains the valueρn.

Proof. For any fixedn, the set of point arrangements withLSS= 1 and optimal Steiner
centerO is a compact subset ofR2n. SinceLS is a continuous function onR2n, the claim
holds.

Lemma 7. Let P be a set of n points with LS/LSS = ρn. Then, for all pi ∈ P,
LS(pi ) = ρn.
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Proof. Suppose there is a pointpi with LS(pi ) > LS. For sufficiently smallε, replacing
pi by the pointp′i = (1− ε)pi does not turnp′i into an optimal star center. Thus, the
replacement reducesLSS by some smallε′, but LS by not more thanε′. Therefore,
the new arrangement has a ratio of at least(LS− ε′)/(LSS− ε′) > LS/LSS = ρn, a
contradiction.

It is straightforward to see that this implies the following:

Corollary 1. For an arrangement with LS/LSS= ρn, we cannot move a vertex such
that LSSdecreases byε and LS by not more thanε.

Corollary 2. For an arrangement with LS/LSS= ρn, we cannot move a vertex such
that LSS remains the same, one or more of the LS(pi ) increase, and none of them
decreases.

The following implication allows a further reduction of arrangements that can achieve
the worst-case ratio; it will be used for the proof of Lemma 10.

Corollary 3. For any arrangement in two-dimensional space with Manhattan distances
and with LS/LSS= ρn, there cannot be two points p1 = (x1, y1) 6= p2 = (x2, y2), such
that p1 lies between p2 and the origin, i.e., 0≤ (x1, y1) ≤ (x2, y2), or 0≤ (−x1, y1) ≤
(−x2, y2), or 0≤ (x1,−y1) ≤ (x2,−y2), or 0≤ (−x1,−y1) ≤ (−x2,−y2).

Proof. In any of the four cases, it is straightforward to see thatLS(p1) < LS(p2).

The next lemma shows that we may restrict our attention to arrangements with extreme
points on the coordinate axes:

Lemma 8. For any arrangement in two-dimensional space with Manhattan distances
and with LS/LSS= ρn, any point pi = (xi , yi ) with minimal or maximal xi among the
points in P must have yi = 0. Conversely, minimal or maximal yi implies xi = 0.

Proof. Without loss of generality consider a pointpi with maximal yi and assume
xi > 0. Let xk = max{xj | j 6= i }. If xi − xk = δ > 0, replacepi by (xk, yi + δ); this
does not changeLS or LSS, and allows us to consider without loss of generality the case
xi − xk ≤ 0.

For sufficiently smallε, replacepi by p′i = pi + (−ε, ε). This does not change
LSS, increasesLS(pk), and does not decreaseLS(pj ) for any j 6= k, contradicting
Corollary 2.

Lemma 9. For any n, we haveρn ≤ ρkn.

Proof. Suppose we have an arrangement ofn points withLS/LSS= ρn. Replace each
point byk copies; this yields an arrangement ofkn points withLS/LSS= ρn.
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Lemma 10. For any arrangement in two-dimensional space with Manhattan distances
and with LS/LSS= ρn, there can be at most four points pi with xi , yi 6= 0.

Proof. Assume that there are at least five points not on coordinate axes. Then we may
assume without loss of generality that two of them (say,p1 = (x1, y1), p2 = (x2, y2))
are in the positive quadrant. Because of Corollary 3, we may assume that 0< x2 < x1

and 0< y1 < y2. Define

n0 = the number of verticesi with x1 < xi ,

n1 = the number of verticesi 6= 1,2 with x1 ≤ xi ≤ x2,

n2 = the number of verticesi with xi < x2,

m0 = the number of verticesi with y2 < yi ,

m1 = the number of verticesi 6= 1,2 with y1 ≤ yi ≤ y2,

m2 = the number of verticesi with yi < y1.

Son2 > n0 andm2 > m0. Let εx andεy be such thatεx/εy = (m2−m0)/(n2− n0).
Also let εx andεy be positive but smaller than the smallest nonzero difference between
thex-coordinates andy-coordinates of any two points, respectively. Now replacep1 by
p′1 = p1 + (εx,−εy) and p2 by p′2 = p2 + (−εx,+εy). It is not hard to see that these
replacements do not decreaseLS(pi ) for anyi 6= 1,2. Furthermore,LSSdoes not change.
The valueLS(p1) changes by11 = (n2+n1−n0)εx+(−m2+m1+m0)εy+2εx+2εy.
So11 > (n2−n0)εx+ (−m2+m0)εy = (m2−m0)εy+ (−m2+m0)εy = 0. Similarly,
the valueLS(p2) changes by(−n2 + n1 + n0)εx + (m2 + m1 − m0)εy + 2εx + 2εy,
which is also positive. This contradicts Corollary 2.

In order to analyze the limit of the sequenceρn, we define a sequenceβn. This is the
supremum of the valuesLS/LSS for all arrangements ofn points, such that any point
lies on a coordinate axis.

With the help of Corollary 3 and Lemmas 9 and10, it is not hard to prove that, for
arrangements with many points, the bounded number of points not on coordinate axes
becomes negligible for the worst-case ratio:

Lemma 11. lim supn→∞ ρn = lim supn→∞ βn.

Proof. For anyn, consider a point arrangementPn with LSS = 1 andLS = ρn. By
Lemma 10, for anyPn, there can be at most four points not on coordinate axes; by
Corollary 3, we conclude that the points on the axes are positioned atp1 = (d1,0),
p2 = (0,d2), p3 = (−d3,0), p4 = (0,−d4), with multiplicities n1, n2, n3, n4, and∑4

i=1 ni ≥ n− 4.
Because of Lemma 9, we are done if there are only finitely manyPn with a point not

on an axis. So assume there are infinitely manyPn with a point p0 = (x0, y0) > (0,0).
By Corollary 3, we conclude that, for any suchPn, d1 > x0 andd2 > y0. If d1 andd2

tend to zero asn becomes large, the contribution ofp0 to LSSandLS becomes arbitrarily
small, and we are done.
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So suppose without loss of generality thatd1 = max{dj | j = 1, . . . ,4} and thatd1

remains bounded from below. SinceLSS= 1, this means thatn1 remains bounded. Asn
becomes large, it follows that someni become arbitrarily large. ThenLSS= 1 implies
thatdi tends to zero. Consider the starES( j ) centered atpj . Using 0 as a lower and 3d1

as an upper bound for the distance of points not on axes top1 and pi , respectively, we
get

‖ES(1)‖ ≥ n2d2+ n3d3+ n4d4+ (n2+ n3+ n4)d1 =
4∑

j=1

nj dj +
(

4∑
j=1

nj − 2n1

)
d1,

whereas

‖ES(i )‖ ≤ 12d1+
4∑

j=1

nj dj +
(

4∑
j=1

nj − 2ni

)
di .

This means that, for sufficiently largen, we have

‖ES(1)‖ − ‖ES(i )‖ ≥ (d1− di )

4∑
j=1

nj − 2n1d1+ 2ni di − 12d1 > 0,

since(d1 − di )
∑4

j=1 nj gets arbitrarily large for increasingn, while all other terms are
bounded from below. This contradicts Lemma 7, and we are done.

In order to establish an upper bound of the sequenceβn, we need the following lemma:

Lemma 12. Let0≤ λ1, . . . , λ2d <
1
2, such that

∑2d
i=1 λi = 1. Then

2d∑
i=1

λi

1− 2λi
≥ d

d − 1
.

Proof. Since f (x) = x/(1− 2x) is a convex function on the interval [0, 1
2), we have

from Jensen’s inequality [15]

f

(
2d∑

i=1

1

2d
λi

)
≤ 1

2d

2d∑
i=1

f (λi ).

So

1

2d − 2
≤ 1

2d

2d∑
i=1

λi

1− 2λi

from which the lemma follows.

Now we can proceed to prove the following:

Theorem 6. For point sets P in two-dimensional space with Manhattan distances, we
haveρ(S, SS) = 3

2.
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Proof. To see the lower bound, supposen is divisible by 4. Placen/4 points on each
corner of the points(1,0), (0,1), (−1,0), (0,−1). ThenLS = 3n/2 andLSS= n.

By Lemma 11, we only have to show thatβn ≤ 3
2 for the upper bound. Similar to

Lemma 6, we can assume that there are sets ofn points for whichLS/LSS= βn. By
Lemma 3, these sets consist ofn1 pointsp1 at position(d1,0), of n2 pointsp2 at position
(0,d2), of n3 points p3 at position(−d3,0), and ofn4 points p4 at position(0,−d4),
with di ≥ 0. We assume that

LSS=
4∑

i=1

ni di = 1. (1)

Furthermore,LS(pi ) =
∑

j 6=i nj (di + dj ) = (
∑4

j=1 nj dj ) + (
∑4

j=1 nj di ) − 2ni di =
1+ (n− 2ni )di . By Lemma 7, we haveLS(pi ) = βn, which implies

di = βn − 1

(n− 2ni )
. (2)

Equations (1) and (2) yield

1

βn − 1
=

4∑
i=1

ni

(n− 2ni )
. (3)

With ni /n = λi , Lemma 12 implies 1/(βn − 1) ≥ 2, soβn ≤ 3
2, and we are done.

Together with Theorem 1, this implies the following:

Corollary 4. For point sets P of even cardinality in two-dimensional space with Man-
hattan distances, we haveρ(S,M) = 3

2.

6. Manhattan Distances in Three-Dimensional Space

It was noted by Tamir and Mitchell in [17] that the equalityL M = LSS that holds
in two-dimensional rectilinear space is no longer valid in three-dimensional space. In
fact, their exampleP = {(1,1,1), (1,−1,−1), (−1,1,−1), (−1,−1,1)} shows that
ρ(SS,M) ≥ 3

2. The following result shows that this is a worst-case example:

Theorem 7. For point sets P of even cardinality in three-dimensional space with Man-
hattan distances, we haveρ(SS,M) = 3

2.

Proof. Assume thatO = (0,0,0) is the center of an optimal Steiner star, so|{pi |xi <

0}| ≤ n/2, |{pi |xi > 0}| ≤ n/2, |{pi |yi < 0}| ≤ n/2, etc. ThenLSS =
∑

i |xi | +
|yi | + |zi |. Without loss of generality, assume that

∑
i |zi | ≤

∑
i |xi | ≤

∑
i |yi |. Now

consider the point setP′ = {p′i |i = 1, . . . ,n}, where p′i = (xi , yi ,0). Because of
the above conditions,O is the center of an optimal Steiner starE∗

′
SS for P′. We have
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‖E∗′SS‖ =
∑

i |xi | + |yi | ≥ 2/3LSS. By Proposition 1,P′ has a matchingE′M of size
‖E∗′SS‖, and the claim follows.

Using the same tools as in the two-dimensional case, we can show the following for
ρ(S, SS):

Theorem 8. For point sets P in three-dimensional space with Manhattan distances,
we haveρ(SS, S) = 5

3.

Proof. For a lower bound, supposen is divisible by 6. Placen/6 points on each of the
points(1,0,0), (0,1,0), (0,0,1), (−1,0,0), (0,−1,0), (0,0,−1). ThenLS = 5n/3
andLSS= n.

For the upper bound we proceed similarly to the proof of Theorem 6. Note that
Lemmas 6 and 7 and Corollaries 1 and 2 stay valid without any change, as well
as Lemmas 9 and 12. It is straightforward to modify Corollary 3 and Lemma 8 to
higher dimensions. Lemma 10 is replaced by the following three-dimensional
version:

For any arrangement with LS/LSS= ρn, there can be at most eight points pi not on
coordinate axes.

This is shown as follows: Suppose there are nine points not on coordinate axes,
then there must be at least two pointsp1 = (x1, y1, z1) and p2 = (x2, y2, z2) in the
same octant, say the positive one. By the analogue of Corollary 3, we cannot have
0 ≤ (x1, y1, z1) ≤ (x2, y2, z2) or 0 ≤ (x2, y2, z2) ≤ (x1, y1, z1) with p1 6= p2. This
allows us to consider without loss of generality 0< x1 < x2, 0 < y2 < y1 and
apply the same modification to thex- andy-coordinates ofp1 and p2 as in the proof of
Lemma 10.

With the help of these lemmas, the claim of Lemma 11 still holds. Using Lemma 12
for d = 3, we get

1

βn − 1
=

6∑
i=1

ni

(n− 2ni )
≥ d

d − 1
= 3

2
,

implying βn ≤ 5
3. This concludes the proof.

Forρ(S,M), we only have the following easy observation:

Observation 4. For point sets P of even cardinality in three-dimensional space under
Manhattan distances, we have5

3 ≤ ρ(S,M) ≤ 2.

Proof. The upper bound follows from Observation 1. For the lower bound, suppose
n is divisible by 6. Placen/6 points on each of the points(1,0,0), (0,1,0), (0,0,1),
(−1,0,0), (0,−1,0), (0,0,−1). ThenLS = 5n/3 andL M = n.
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Table 1. Lower and upper bounds for worst-case ratios.

Distances Dimension Ratio Lower bound Upper bound

Euclidean Two ρ(SS,M) 2√
3
= 1.15. . . 2√

3
= 1.15. . .

ρ(S, SS) 4
π
= 1.27. . .

√
2= 1.41. . .

ρ(S,M) 4
3 = 1.33. . . 2

√
2√
3
= 1.63. . .

Three ρ(SS,M)
√

3√
2
= 1.22. . .

√
2= 1.41. . .

ρ(S, SS) 4
3 = 1.33. . .

√
2= 1.41. . .

ρ(S,M) 3
2 = 1.5 2

Manhattan Two ρ(SS,M) 1 1

ρ(S, SS) 3
2 = 1.5 3

2 = 1.5

ρ(S,M) 3
2 = 1.5 3

2 = 1.5

Three ρ(SS,M) 3
2 = 1.5 3

2 = 1.5

ρ(S, SS) 5
3 = 1.66. . . 5

3 = 1.66. . .

ρ(S,M) 5
3 = 1.66. . . 2

7. Conclusion

We have derived a number of upper and lower bounds for the largest possible value of
the ratios between the size of minimum stars, minimum Steiner stars, and maximum
matchings. A summary of our bounds is given in Table 1. Some of these bounds are not
tight; in all cases, we suspect that the upper bounds can be improved to match the lower
bounds. This belief is strengthened by the fact that some of the tools we used for the
case of Manhattan distances (in particular, Lemma 7) are true for Euclidean distances as
well. We note the following conjectures:

Conjecture 1. For point sets P in two-dimensional space with Euclidean distances,
we haveρ(S, SS) = 4/π .

Conjecture 2. For point sets P in three-dimensional space with Euclidean distances,
we haveρ(S, SS) = 4

3.
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