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Abstract. We discuss worst-case bounds on the ratio of maximum matching and minimum
median values for finite point sets. In particular, we consider “minimum stars,” which are
defined by a center chosen from the given point set, such that the total geometric distance
Ls to all the points in the set is minimized. If the center point is not required to be an
element of the set (i.e., the center may be a Steiner point), we get a “minimum Steiner
star” of total lengthL ss As a consequence of triangle inequality, the total lerigghof a
maximum matching is a lower bound for the lendgiths of a minimum Steiner star, which
makes the worst-case valy€S S M) of the valueLss/Ly interesting in the context of
optimal communication networks. The ratio also appears as the duality gap in an integer
programming formulation of a location problem by Tamir and Mitchell.

In this paper we show that for a finite set that consists of an even number of points in
the plane and Euclidean distances, the worst-caseg&fioM) cannot exceed,2/3. This
proves a conjecture of Suri, who gave an example where this bound is achieved. For the
case of Euclidean distances in two and three dimensions, we also prove upper and lower
bounds for the worst-case valyéS, S S of the ratioL s/L ss, and for the worst-case value
(S, M) of the ratioLs/L . We give tight upper bounds for the case where distances are
measured according to the Manhattan metric: we show that in three-dimensional space,
0(SS M) is bounded by, while in two-dimensional spadess = Ly, extending some
independent observations by Tamir and Mitchell. Finally, we showdh@&tS S is g inthe
two-dimensional case, ar‘gjin the three-dimensional case.

* Parts of this work were done while the first author was visiting Queen’s University, partially supported by
the Deutsche Forschungsgemeinschaft, FE 407/3-1. Parts of this work were done while the second author was
visiting Universigt zu Kaln, partially supported by NSERC. A preliminary extended abstract of this article,
titled “On minimum stars, minimum Steiner stars, and maximum matchings,” appearshnateedings of
the 15th ACM Symposium on Computational Geomgiy
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1. Introduction

The problem of finding a maximum weiglatchingfor a given set of vertices in

a weighted graph is to find a set of disjoint edges, such that the total weight of all
the edges is maximized. Determining an optimal matching is a classical algorithmic
problem, and Edmonds’s famous polynomial-time algorithm [7] is one of the milestones
of combinatorial optimization.

On the other hand, it has been known for quite a while [11] that the task of finding
a minimum weightSteiner tredés an NP-hard problem: find a network of smallest total
length L st that connects all given points, while allowing additional “Steiner” points
for connecting edges. This algorithmic intractability differs drastically from the case
where no Steiner points are allowed, so that the connected network has to be a mini-
mum weight spanning tree (MST) of weigbt-, which can be solved very efficiently.
Many aspects of optimal Steiner trees have been considered; see the book [13] for an
overview. One of the most famous problems related to geometric Steiner trees deals
with the worst-case valug(T, ST) of the ratioL+/Lst. As Du and Hwang [6] man-
aged to prove for the case of planar point sets with Euclidean distgn€BsST) =
2//3.

A special type of Steiner tree problems arises in the context of location theory: The
so-calledWeber problenasks for the location of a single center point, such that the sum
of distances from the given points to the center is minimized. (See [12]. [5] gives an
overview and an extensive list of references.) It was shown by Bajaj [1] that even for
the simple case of five points in the Euclidean plane, a solution can in general not be
expressed by radicals. (In particular, it is impossible to construct an optimal solution by
means of ruler and compass.) In the context of communication networks, the resulting
tree has been calledstar[10]. As in the case of general tree networks, we can distinguish
the Steiner case (where the center point can be chosen anywhere) from the more restricted
case, where the center point is required to be chosen from the given set. In the following
we speak of “minimum Steiner stars” (with a total edge length denotedday and
“minimum stars” (with a total edge length denotedlby).

When dealing with algorithmically hard problems like the task of designing optimal
communication networks, it is of great importance to provide good upper and lower
bounds for an optimal solution. It has been pointed out by Fingerhut et al. [10] that
is a lower bound folLss, which is an upper bound fdrst. This makes it interesting
to consider the worst-case valp€S S M) of the ratioLss/L . It was conjectured by
Suri [16] that for the case of points in the plane with Euclidean distanoesS M)
is 2/+/3—the Steiner tree ratio. Proving this conjecture is one of the main results of
this paper. In addition, we consider the behavior of the worst-case bquiBIS S
for Ls/Lss andp(S, M) for Ls/Ly. The ratioLs/L ssappears in location problems,
where the sum of distances from a depot to a set of positions is to be minimized. (See
the book by Drezner [5] for an overview in location theory.) If the depot may be chosen
arbitrarily, we get total cost ss If the depot has to be chosen from the given set of
positions, we get a cost afs. Thus, the worst-case ratio can be interpreted as a bound
on the possible payoff from opening a new depot.

For the case of Euclidean distances in two and three dimensions, we prove upper and
lower bounds for all these worst-case values.
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The above problems are also of interest when distances are not measured according to
the Euclidean metric. Of particular relevance is the case of rectilinear (or “Manhattan”)
distances, which arises in the context of VLSI layout. Tamir and Mitchell [17] have
considereg (SS M) for the case of rectilinear distances, motivated by questions from
cost allocation for cooperative matching games. They prove that in the case of points
in the planeLsg/Ly = 1, which implies that the core of a related matching game
is nonempty. By establishing a tight upper boundi$S M), we can establish the
largest possible value of the duality gap for their integer programming formulation for
the case of Euclidean distances. In Section 5 we prove that, for the case of Manhattan
distancesp(SS M) = g ando(S, SS9 = g Section 6 deals with Manhattan distances
in three-dimensional space. We show thé8S M) = g o(S M) = g while p(S, M)
lies betweerg and 2. (See Table 1 in Section 7 for an overview.)

Finally, we would like to note some further algorithmic implications: The result
by Tamir and Mitchell [17] yields arO(n) time algorithm for finding a maximum
weight matching for a planar point set with Manhattan distances. With some extra
work, some of the underlying properties of minimum Steiner stars have been used by
Fekete [8] to construct a® (n) time algorithm for finding a traveling salesman tour of
maximum total length. (See the paper by Barvinok et al. [2] for more results on this
problem.)

The rest of this paper is organized as follows. In Section 2 we introduce some basic
notation and some general results. Section 3 deals with Euclidean distances in two-
dimensional space, while Section 4 contains results for the case of Euclidean distances
in three-dimensional space. In Sections 5 and 6 we consider Manhattan distances in
two- and three-dimensional space. The concluding Section 7 contains a discussion of
remaining open problems.

2. Preliminaries

LetG = (V, E) be a graph with honnegative edge weight®). Throughout this paper
the vertex se¥ of G isrepresented by apoint$et= {po, p1, ..., pn_1} fromEuclidean
space, and edge weights correspond to geometric distances, according to some metric.
A starof P is a set oh — 1 edges (represented by line segments) connecting an element
of P with all other elements oP. A Steiner starof P with center poinftc is a set of
n edges (represented by line segments), connecting each pdmhtmt. A (perfect)
matching ofP is a set oh/2 edges that pair each point Bfwith another unique point
of P. In the remainder of this paper, any star, Steiner star, or matching is assumed to be
a star, Steiner star, or matching Bf denoted by the symboEs, Ess andEy. Their
lengths are denoted ByEs||, | Esgl, and||Ew ||, for a specified metrid - - - ||. Let EE,
E%g andEy, denote a star, Steiner star, and matching of minimal, minimal, and maximal
length, respectively. For easier notation, we wiitg Lss andLy for |[EEl, IESdI,
and| Ej, II; furthermore, we denote y(X, Y) (with X, Y = S, SS M) the worst-case
ratio supcge Lx/Ly.

Before we consider various geometric instances, we note a general bound on ratios
that holds for all weight functions on the edges, even if we do not have triangle inequality.
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Observation 1. For arbitray weighted graphs Gwe haveo (S, M) = 2.

Proof. Let matrix A be the distance matrix of the pointsify SOA(i, j) is the distance
betweerp; andp;. Let Sbe the sum of all entries iA. Sincel sis the minimal row sum of
A, we have by the pigeonhole principle thag < S/n. The maximal matching consists
of n/2 elements ofA, so again by the pigeonhole principle we hdvg > S/(2n).
Hence,

Ls<S/n<2Ly.

To see that the ratib s/L y can be arbitrarily close to 2, even if we assume triangle
inequality, consider the complete graph wwertices, with all edge weights being 1.
ThenLs = (n—1),andLy =n/2. |

For the valuen (S, SS9, we note the following:

Observation 2. Assuming triangle inequalifye haveo (S, SS = 2. Without triangle
inequality p(S, S is unbounded

Proof. Letc be the center of an optimal Steiner star. Lgt V be a vertex closest to
¢, and letw(c, vo) = d. Then by triangle inequalityy (vo, vi) < w(vo, €) + w(c, vj), SO
the starS{vp) with centervg satisfies s < ||St(vg)|| < (n — 1)d + Lss< 2Lss

To see that the bound of 2 is tight, Btbe the complete graph anvertices, with all
edge weights being 2. L& = (V U {c}, E) be a complete graph om ¢ 1) vertices,
with all edges adjacent bhaving weight 1. Theths = 2(n — 1) andLss=n.

For a class of examples without triangle inequality and unbound@&lSS, let
G = (V, E) be the complete graph arvertices, with each edge having weigiN 2_et
G = (V U{c}, E) be the complete graph a@n + 1) vertices, with all edges adjacent to
c having weight 1. Thel.s = 2N(n— 1) > Nn= NLsg O

In a geometric setting, distances in an arrangement of points are far more restricted,
so the above bounds may no longer be best possible. It is the main purpose of this paper
to provide tight estimates for geometric scenarios.

3. Euclidean Distances in Two-Dimensional Space

Throughout this and the following section we consider arrangements of points in two-
and three-dimensional space, with distances measured according to the Euclidean metric.
At several occasions, we make use of the following lemma:

Lemma 1. Given atriangle with edge lengths b, and ¢ where the angler opposite
¢ is bounded from below hy > 0. Then we have & b < /2/1 — cosy - c. For the
special case = 2r/3,we getat+ b < 2//3-c¢; forp = n/2,we getat+b < v/2-c.

Proof. By triangle inequality, we hava+b > ¢, so(a+b)?/c? is bounded from below
by 1. By the cosine theorem, we hage+ b)?/c? = (a + b)?/(a? + b?> — 2abcosy).
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This expression is symmetric mandb and attains the lower bound of 1 far= 0 or
b = 0, and the maximum is attained far= b, from which the claim follows. O

3.1. Minimum Steiner Stars and Maximum Matchings

In this subsection we give a proof of Suri's conjecture [16]. Throughout the section,
distances are measured according to the Euclidean metric. The key idea is to make
use of Lemma 1 and construct a matching that guarantees that the angle between the
connections of the matched points and the origin has a good lower bound.

Letl be a directed line in the plane. We say thistahalving lineof P if at most half
of the points ofP are to the right of and at most half of the points & are to the left
of .

Lemma 2. For point sets P in two-dimensional space we can find three directed lines
lo, 11, and L such that the three lines intersect in a common paifitthree lines are
halving lines of P and the smallest angle between any two lineg3s

Proof. See Fig. 1. The collection of halving lines for a given directidorm a directed
closed strip which we calk,. Consider the stripS, S;/3, andSy, 3. If these three strips

have a point in common, we are done. Therefore assume without loss of generality
that S N S, /3 lies to the left of Sy 3. It follows that S, N Sz lies to the right of

Sr/3.

o+ il

‘\u +2m/3

Fig. 1. Finding a small Steiner star and a large matching.
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We now consider the strify,, Sy+x/3, andS,+2./3, Wherex increases frore = 0 to
a = 7. The three strips move in a continuous manner. Suppose that for no valoof
the three strips have a point in common. TH&mM S,4./3 stays to the left 08, ;2,/3,
which contradicts the fact th&, N Sy, /3 lies to the right ofS;; /3. Therefore there is a
value ofa for which the three strip§,, S,4-/3, andS,2,/3 have a point in common,
which proves the lemma. O

Theorem 1. For point sets P of even cardinality in two-dimensional space with
Euclidean distancesve havep(SS M) = 2/4/3.

Proof. The following example with_sg/Ly = 2/+/3 was given by Suri. Suppose
is divisible by 6. Place/3 points on each corner of an equilateral triangle with sides of
length 2/3. ThenLss= 2n andLy = nv/3.

To see thap(SS M) < 2/+/3, find three lineso, 11, andl, as shown in Fig. 1, such
that the three lines intersect in a common point, all three lines are halving linBssfiod
the smallest angle between any two lines,i8. These lines divid® into six setsA, Ay,
Az, By, By, andB,, whereA; lies oppositeB; for all i, as shown in Fig. 1. By assigning
the points ofP on the three lines to only one of the sets it belongs to, we can assume
that|Ao| + |Adl + | Azl = n/2 = [Bo| + [B1| + |Bzl, as well agAg| + |Aq] + |Bz| =
n/2 = |Bo| + [B1] + | Azl, and|Ao| + [Ba| + |Bz| = n/2 = |Bo| + |As| + | Az|. This
implies|Aj| = |B;j| for alli.

Let O be the intersection d§, |1, andl,. Construct a Steiner stdfsswith O as
its center. Now choose an (arbitrary) perfect matcHipg of the points inA; with the
points inB; for all i.

We know that by construction, for each edge q) in Ey, the angleZ(p, O, q) is
bounded from below by = 27/3. By Lemma 1, this impliegp — O| + |O — q|| <
2/v/3-1Ip—ql. SoLss< [[Essl < 2/v/3- |Emll < 2/+/3- L. O

3.2. Minimum Stars and Minimum Steiner Stars

We turn to the possible values pfS, SS. As we noted in the Introduction, this ratio
appears in location problems like the Weber problem, where the sum of distances from
a depot to a set of positions is to be minimized. Here we give bounds on the worst-case
value of the possible payoff from opening a new depot.

SinceLs > Lggs we assume without loss of generality that the star cemtdran
optimal Steiner staE&gis not an element oP.

Let the line segments, or rays, of a Steiner star,pand denote their lengths lay.
Leto; be the angle between the positixaxis and ray;.

Lemma 3. Forthe anglesy; of E{g and anyd, we have the local optimality condition

n—1

Y coslei +6) =0.
i=0
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Proof. For the given Steiner star center, the sum of distances is locally minimal, so the
projection of the gradient onto any line must disappear; by linearity of the derivative,
Z{‘;Ol cod; + 0) is the projection of the derivative onto the line that encloses an angle
of & with the origin. O

Lemma 4. Let Essbe a Steiner star of P= {po, ..., pn_1} and let g, r;, and«; be
defined as abové.et  be the distance betweern and p. In the special case that all
points of P lie on a circle centered at of radius @ = g for all i, the local optimality
condition

n—1 n-1
Zcos(cxi +6)=0  implies that Z b < agnv/2.
i—0 =0

Proof. We haveZi”;o1 cogw; + 6) = 0 for all 6, so without loss of generality we can
assume thaP is rotated around the origin so theg = (ap, 0). We have

b = 2ag sin(a—2i> = apy/2(1 — cosw;)

(see also Fig. 2). The functioh(e) = +/1 — cosa, where 0< o < 27, is a concave
function of cosx. By Jensen’s inequality [15] we have

n—1 l )
E Zcosyi | =1,
n

i=0

Fig. 2. Length of a chord in a circle.
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Now we can prove the following upper bound:

Theorem 2. For point sets P in two-dimensional space with Euclidean distanees
haved/n < p(S, S9 < V2.

Proof. For the lower bound, chood® to be a set of points spaced evenly on the unit
circle. Assume thaP includes the pointx, y) = (0, —1). The center ofE%qis the
center of the circle, sh.ss = n. Consider the staEs centered at0, —1). Denote the
rays ofEs by r; and their lengths bg; . Let«; be the angle between the positivexis
and rayri. We haves; = 2 sing;. Therefore the average ray length in the limit is

1 (72 4
—f 4sing doa = —.
0

T T

Now consider the upper bound. If the centerEdfis an element oP, the bound
holds, so assume that the center of &g, is not an element oP. Without loss of
generality assume that the centel&fsis the origin, that, is a shortest ray, and thiat
runs along the positive-axis, as shown in Fig. 2.

Consider the staEs centered at the endpoint of. Denote the rays dEs by r{ and
their length bya{. Using triangle inequality we have

al < (g —ap) +2aosin(a—2i).

So from Lemma 4 we have

n—1 n—1
Ls < ||Es|l = Za{ < Za— — nay + Nagy/2
i—0 i—0
< Lss+Lssv2-1) =+2 Lss O

3.3. Minimum Stars and Maximum Matchings

Itis not hard to derive upper and lower bounds#@s, M) by using the previous results
of this section:

Theorem 3. For point sets P of even cardinality in two-dimensional space with Eu-
clidean distancesve haved < p(S, M) < 2v/2/V/3.

Proof. The upper bound follows immediately from Theorems 1 and 2.
For the lower bound, supposas divisible by 6, and place/3 points on each corner
of an equilateral triangle with sides of length 6. THegi= 4n andLy = 3n. O

4. Euclidean Distances in Three-Dimensional Space

Now we turn to point sets in three-dimensional space under Euclidean distances. Again,
we start by providing tools for the rati®(S S M).
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Following an idea similar to the one from Section 3.1, we show that there always
exist three orthogonal planes that partit®tinto eight octants such that opposite octants
contain the same number of points.

Let p be a plane. We say thatis a halving plane oP if at most half of the points
of P are on one side gb and at most half of the points & are on the other side qf.

Let po, p1, and pz be three orthogonal planes, each of which is a halving plane of
P. Each plandT; dividesP into points abovél;, onI1;, and belowl];. Let Qi0 be the
points in P belowIT; and IetQi1 be the points inP abovell;. We assign the points on
IT; to eitherQ}, andQ}; in such a way thatQh| = |Q}|. We call| Q| and| Q| the set of
points below and abovB;, respectively, even though some of these points may in fact
lie onIT;. We define, foi, j, k € {0, 1},

Qijk = QP NQf N QL.

For example Q110 is the set of points iP abovell,, abovell;, and belowlo. Since
|Qpl = |Q}|, we can derive the following equalities:

|Qoool + [Qoo0al = [Qu10l + |Q1a1l,
[Q100l + [Q101l = [Qozol + [Qo1als
[Qoool + |Qoz0l = |Q10a| + [Qu11l,
[Qoo1| + [Qo1al = [Quool + [Q110ls
|Qoool + [Q100l = [Qo11l + |Q1u1l,
[Qoo1l + [Q101l = [Qozol + [Q110l-

We show that we can always find three orthogonal planes such that opposite octants,
i.e., Qijk and Qu—iy1-j)1—k have the same cardinality.

Lemma5. For point sets P in three-dimensional spaee can find three orthogonal
planes such thaQijk| = |Qu-iya—j)a-k | for alli, j, k.

Proof. Notice that it suffices to find three orthogonal planes such @k = |Q111l,
since this implies thafQijk| = 1Qu-i)a—ja—k ! for all i, j, k. We first assume that
the points are in general position, in the sense that if we project all poirfsdnto
the (z = 0) plane, then no three points are collinear and no line through two points
is perpendicular to another line through two points. Ogtbe a halving plane parallel
to the (z = 0) plane. We map all points fror® onto the(z = 0) plane, and call the
projected points fronQ? and Q3 the black and white points, respectively.

The problem is now a two-dimensional one. Orthogonal halving plaheand I,
will become halving line$, andl; in the projection. Let a directed lirlebe a halving
line if at most half of the black and white points are to the left ahd at most half lie to
the right ofl . Because of the nondegeneracy assumption there are at most two points on
a halving linel. The collection of halving lines for a given directionform a directed
closed strip which we cal,. Letl, be the halving line in the middle &,. Consider
the stripsS, and §,1,,2. The corresponding lindg andl.,,/> divide the points into
four subset€);j fori, j € {0, 1}, whereQ;; is the projection 0Qq; U Qy;j. Therefore
| Qool = |Q11] and|Q01| = |Q10l, as illustrated in Flg 3.
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Fig. 3. Orthogonal halving strips.

As « increases, at most one point is added to and at most one point is removed
from Q;; at any one time. Changes only occur wh&nor S,;./2 is a line. Because
of the nondegeneracy assumption it is not possible that p#nd S,/> are lines.
Either

o the number of points in two opposite quadrants suc®@sand Qq; both increase
or both decrease, or
e two neighboring quadrants exchange a point.

In the first case|Qgool and |Qz11| either both increase, both decrease, or only one
changes. It is not possible f0Qqg0| to decrease and f¢€111| to increase or vice versa.
In the latter case, at most one|@ipool and|Q111| changes. Therefore, if for some value
of ag we have|Qoool < |Q111], While for o1 we have|Qoool > |Q111/, then there is an
a With g < o < a4 for which | Qoool = |Q111]-

Consider first the stripS andS; ». If |Qoool = |Q111/, then we are done. Therefore
suppose thatQoool < |Q111l. It follows that for stripsS, and Ss,,» we have| Qogo| >
|Q111]. Therefore there is a value afwith 0 < o < 7 for which | Qgool = | Q111]-

If the nondegeneracy assumption does not hold, we can move all points by an infinite-
simal small distance, in such a way that the assumption does hold. The construction
shown above gives three orthogonal halving planes of the perturbed set. The same planes
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partition P in the correct way, whereby the perturbation of a point that lies on a halving
plane determines to which sides of the plane this point should be assigned. [

Theorem 4. For sets of points P in three-dimensional space with Euclidean distances
we have the inequality’3/+/2 < p(SS M) < /2.

Proof.  Forthe lower bound, supposés divisible by 4. Placa/4 points on each corner
of a tetrahedron with sides of length 2. Thiegs = nv/3/+/2 andLy = n.

To prove the upper bound, find three orthogonal halving planes that satisfy the condi-
tion | Qijk Il = 1Qa-ia-ja—kll foralli, j, k. Let O be the point of intersection of these
three planes. Construct a Steiner sEg6with O as its center. Construct a matchiBg
by connecting points in each octant to points in the opposite octant.

For each edgép, q) in Ey, the angle between the ray fro@ to p and the ray
from O to g is bounded from below by /2, from which we derive by Lemma 1 that
Ip—Oll+10—all <+v2-p—all.SoLss< |Esdl <v2- |[Em[ <2 Ly.O

Next we discuss the worst-case vajues, S 9.

Theorem 5. For sets of points P in three-dimensional space with Euclidean distances
we have the inequalit§ < p(S, S < v2.

Proof. The proof for the upper bound is the same as the proof for the two-dimensional
case shown in Theorem 2.

To see the lower bound, I be a set of points evenly distributed over the unit sphere.
AssumeP includes the pointx, y, z) = (0, —1, 0). The center oE{4is the center of
the sphere, shss= n. Consider the stdEs centered at the poiri0, —1, 0). Denote the
rays of Es by r; and their lengths bg;. Leto; be the angle between tlig = 0) plane
and rayr;. We haveg; = 2 sing;.

The average ray length can be computed as follows) lbetthe angle between a ray
and the(y = 0) plane and lepp be the angle between the projection of the ray onto the
(y = 0) plane and the positive-axis. If A0 = 61 — 6y andAg = ¢; — ¢ are small,
then the surface area covered by all rays with angles in this range is approximately equal
to 4 sinfd cosd Ap Af, so the area of the surface of the sphere is

n/2 p2n
f / 4 sinf cosfde db = 4n
0 0

and the average ray length is

1 /2 21 ) .
— / (4sind cosv) (2 sind)de do = ‘é‘, 0
4]'[ 0 0

We conclude our discussion on Euclidean distances:

Observation 3. For point sets in three-dimensional space with Euclidean distances

S<p(SM =2
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Proof. We know from Observation 1 that(S, M) cannot exceed 2. For the lower
bound, supposeis divisible by 8. Plac@/4 points on each corner of a tetrahedron with
sides of length 4. Thehs = 3nandLy = 2n. O

5. Manhattan Distances in Two-Dimensional Space
5.1. Minimum Steiner Stars and Maximum Matchings

Independent from our work, the following proposition was also noted by Tamir and
Mitchell [17]. Since some of the steps are of importance for our further results, we give
a sketch of the proof.

Proposition 1. For point sets P of even cardinality in two-dimensional space with
Manhattan distancesve have ly = Lss

Proof (Sketch. It is not hard to see that the center for an optimal Steiner star must
both be a median of the-coordinates and thg-coordinates of the points iR. Assume
without loss of generality that an optimal center is located0a0) and consider the
numbersn;, Ny, N3, andny of points in each of the four quadrants, with points on the
boundary of two quadrants assigned in a suitable way. Using n, = nz + ng and

N, + N3 = N4 + N3, we getn; = nz andn, = Ny, i.e., diagonally opposite quadrants
must contain the same number of points. This allows us to match points from opposite
guadrants. It is straightforward to see that to each edge of the matching, we have a
corresponding pair of edges of the Steiner star with the same total length, implying that
the total length of the matching is equal to the total length of the Steiner star. O

5.2. Minimum Stars and Minimum Steiner Stars

In the following, we considep(S, SS. For any pointp; = (X, Yi) € P, Ls(p) is
the total length of the star centeredpt We denote by, the supremum of the values
Ls/Lssfor point sets of cardinality. Without loss of generality, we may assume that
Lss> 0, and thud_ss= 1. Furthermore, we may assume that the origin is an optimal
Steiner center.

We make use of the following lemma:

Lemma 6. For any n there are point sets for whichd/L ssattains the value,,.

Proof. For any fixech, the set of point arrangements with s = 1 and optimal Steiner
centerO is a compact subset &". Sincel s is a continuous function oR?", the claim
holds. O

Lemma7. Let P be a set of n points withd/Lss = pn. Then for all p; € P,
Ls(pi) = pn-
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Proof. Suppose thereisapoiptwith Ls(p;) > Ls. For sufficiently smalt, replacing
pi by the pointp] = (1 — ¢)p; does not turng; into an optimal star center. Thus, the
replacement reducesss by some smalk’, but Ls by not more thare’. Therefore,
the new arrangement has a ratio of at lgdst — ¢')/(Lss— ¢’) > Ls/Lss= pn, @
contradiction. O

It is straightforward to see that this implies the following:

Corollary 1.  For an arrangement with /L ss = pn, We cannot move a vertex such
that Lssdecreases by and Ls by not more thar.

Corollary 2. For an arrangement with /L ss = pn, We cannot move a vertex such
that Lss remains the sameone or more of the k(p;) increase and none of them
decreases

The following implication allows a further reduction of arrangements that can achieve
the worst-case ratio; it will be used for the proof of Lemma 10.

Corollary 3. Forany arrangementintwo-dimensional space with Manhattan distances
and with Ls/L ss= pn, there cannot be two points; p= (X1, Y1) # p2 = (X2, ¥2), Such

that p, lies between pand the origini.e, 0 < (X1, V1) < (X2, ¥2),0r 0 < (—Xg, Y1) <
(=X2,¥2),0r0 < (X, =y1) < (X2, —=¥2), 0r 0 < (=X1, =Yy1) < (=X2, —¥2).

Proof. In any of the four cases, it is straightforward to see thatp;) < Ls(p2). O

The next lemma shows that we may restrict our attention to arrangements with extreme
points on the coordinate axes:

Lemma 8. For any arrangement in two-dimensional space with Manhattan distances
and with Ls/Lss= pn, any point p = (X, y;) with minimal or maximal xamong the
points in P must have y= 0. Converselyminimal or maximal yimplies x = 0.

Proof. Without loss of generality consider a poipt with maximaly; and assume
Xi > 0. Letxc = max{xjlj #i}. If x —xc =8 > 0, replacep; by (X, ¥i + §); this
does not changkes or L ss, and allows us to consider without loss of generality the case
Xi — X < 0.

For sufficiently smalle, replacep; by pi = pi + (—¢, ¢). This does not change
Lss increased s(px), and does not decreass;(p;) for any j # k, contradicting
Corollary 2. O

Lemma9. Forany n we haveon < pkn.

Proof. Suppose we have an arrangement pbints withLs/L ss= pn. Replace each
point byk copies; this yields an arrangementkaf points withL s/Lss= pp. |
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Lemma 10. Forany arrangementin two-dimensional space with Manhattan distances
and with Ls/L ss= pn, there can be at most four points with X, y; £ 0.

Proof. Assume that there are at least five points not on coordinate axes. Then we may
assume without loss of generality that two of them (§ay= (X1, Y1), P2 = (X2, Y2))

are in the positive quadrant. Because of Corollary 3, we may assume thab0< X1

and O< y; < Y. Define

Nno = the number of verticeswith x; < X;,

n; = the number of verticeis# 1, 2 with X3 < X < X»,
n, = the number of verticeiswith x; < Xo,
mp = the number of verticelswith y, < v;,
m; = the number of verticeis£ 1, 2 withy; < yi < yo,

m, = the number of verticeiswith y; < vy;.

Sony > ng andmy, > mg. Letey, andey be such that, /ey = (M — mg) /(N2 — No).
Also letey andey be positive but smaller than the smallest nonzero difference between
thex-coordinates ang-coordinates of any two points, respectively. Now replpcéy
Py = P1+ (ex, —ey) andpp by p, = p2 + (—&x, +¢y). Itis not hard to see that these
replacements do notdecredsg p;) foranyi # 1, 2. Furthermorel. ssdoes notchange.
The valuel s(p1) changes by\; = (Np 4Ny —Ng)ex + (—My + My +Mo)ey + 2ex + 2¢y.
S0A1 > (N2 —Ng)ex + (—Ma+Mg)ey = (Mp —Mp)ey + (—My 4+ Mo)ey = 0. Similarly,
the valuel s(py) changes by(—ny + Ny 4+ Ng)ex + (Mp + My — Mo)ey + 2e + 2¢y,
which is also positive. This contradicts Corollary 2. O

In order to analyze the limit of the sequengg we define a sequengi. This is the
supremum of the valuelss/L ssfor all arrangements afi points, such that any point
lies on a coordinate axis.

With the help of Corollary 3 and Lemmas 9 and10, it is not hard to prove that, for
arrangements with many points, the bounded number of points not on coordinate axes
becomes negligible for the worst-case ratio:

Lemmall. limsup,_, . on = limsup,_ s Bn.

Proof. For anyn, consider a point arrangemeRf with Lss = 1 andLs = p,. By
Lemma 10, for anyP,, there can be at most four points not on coordinate axes; by
Corollary 3, we conclude that the points on the axes are positiongd at (dy, 0),
p2 = (0,dp), ps = (—ds, 0), p» = (0, —d4), with multiplicities ny, nz, n3, ng, and
St on>n—4

Because of Lemma 9, we are done if there are only finitely nignyith a point not
on an axis. So assume there are infinitely m&pwith a pointpg = (X, Yo) > (0, 0).
By Corollary 3, we conclude that, for any suéh, d; > xo andd, > yo. If d; andd,
tend to zero as becomes large, the contributionjpf to L ssandL s becomes arbitrarily
small, and we are done.
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So suppose without loss of generality tlilat= max{d;|j = 1, ..., 4} and thatd;
remains bounded from below. Sintgs= 1, this means that; remains bounded. As
becomes large, it follows that somgbecome arbitrarily large. Thelnss= 1 implies
thatd; tends to zero. Consider the stagj, centered ap;. Using 0 as a lower andi3
as an upper bound for the distance of points not on axgs tnd p;, respectively, we
get

4 4
IEswll = Nod; + N3ds + Nads + (N2 + N3 + Ng)dy = Z n; dj + <Z n — 2n1) dq,
=1 =1

whereas
4

4
IEsill < 12d1+znjdj + (an —2ni> d.
i=1

j=1
This means that, for sufficiently large we have
4
IEswll — Esqyll = (d —di) Y nj — 2nach + 2nidy — 120y > O,
j=1
since(d; — di) Zle n; gets arbitrarily large for increasing while all other terms are

bounded from below. This contradicts Lemma 7, and we are done. O

In order to establish an upper bound of the sequgnoee need the following lemma:

Lemma12. LetO<Aj,...,Ax < &,suchthay? 4 = 1.Then

id: Ai d
>
1-22 " d-1

i=1

Proof. Sincef (x) = x/(1 — 2x) is a convex function on the interval,[@), we have
from Jensen’s inequality [15]

2d 1 1 2d

i=1

So

from which the lemma follows. O

Now we can proceed to prove the following:

Theorem 6. For point sets P in two-dimensional space with Manhattan distarvees
havep(S, S9 = 3.
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Proof. To see the lower bound, suppasés divisible by 4. Placen/4 points on each
corner of the pointgl, 0), (0, 1), (-1, 0), (0, —1). ThenLs = 3n/2 andLss=n.

By Lemma 11, we only have to show thgt < % for the upper bound. Similar to
Lemma 6, we can assume that there are setspafints for whichLs/Lss = 8n. By
Lemma 3, these sets consistgfpoints p; at position(d;, 0), of n, points p, at position
(0, dy), of n3 points p3 at position(—ds, 0), and ofn, points p, at position(0, —dy),
with d; > 0. We assume that

4
LSS:Znidi =1 @
i—1

FurthermoreLs(pi) = > nj(di +dj) = (thl n;dj) + (thl njd) — 2nid; =
1+ (n—2nj)d. By Lemma 7, we havé s(pi) = Bn, Which implies

o Bl
d = n_2n)’ 2
Equations (1) and (2) yield
1 4 n;
= . )
Bn—1 ;(ﬂ—Zni)

With nj /n = A;, Lemma 12 implies A(8, — 1) > 2, s08, < % and we are done. O

Together with Theorem 1, this implies the following:

Corollary 4. For point sets P of even cardinality in two-dimensional space with Man-
hattan distancesve haveo(S, M) = 3.

6. Manhattan Distances in Three-Dimensional Space

It was noted by Tamir and Mitchell in [17] that the equalityy = Lssthat holds

in two-dimensional rectilinear space is no longer valid in three-dimensional space. In
fact, their exampleP = {(1,1, 1), (1, -1, —-1), (-1, 1, —1), (-1, —1, 1)} shows that
p(SSM) > g The following result shows that this is a worst-case example:

Theorem 7. For point sets P of even cardinality in three-dimensional space with Man-
hattan distancesve haveo(SS M) = 3.

Proof. Assume thaD = (0, 0, 0) is the center of an optimal Steiner star,|§p |X <
O} < n/2, l{pilxi > O} < n/2,[{pilyi < O} < n/2, etc. ThenLss = > IXi| +
lyi| + |z ]. Without loss of generality, assume tha} |z | < > x| < > Ivil. Now
consider the point seP’ = {p{li = 1,...,n}, wherep/ = (x, y;, 0). Because of
the above conditions) is the center of an optimal Steiner stat¢for P’. We have
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||E Jl = 3 Ixi| + |yil > 2/3Lss By Proposition 1,P" has a matching;, of size
E%4l, and the claim follows. 0O

Using the same tools as in the two-dimensional case, we can show the following for
p(S, S9:

Theorem 8. For point sets P in three-dimensional space with Manhattan distances
we haveo(SS S) = 2

Proof. For a lower bound, supposds divisible by 6. Place&/6 points on each of the
points(1, 0, 0), (0, 1, 0), (0,0, 1), (—1,0,0), (0, —1,0), (0,0, —1). ThenLs = 5n/3
andLss=n.

For the upper bound we proceed similarly to the proof of Theorem 6. Note that
Lemmas 6 and 7 and Corollaries 1 and 2 stay valid without any change, as well
as Lemmas 9 and 12. It is straightforward to modify Corollary 3 and Lemma 8 to
higher dimensions. Lemma 10 is replaced by the following three-dimensional
version:

For any arrangement with §/L ss= on, there can be at most eight points ot on
coordinate axes

This is shown as follows: Suppose there are nine points not on coordinate axes,
then there must be at least two poims = (X1, Y1, z1) and p; = (X2, V2, Z2) in the
same octant, say the positive one. By the analogue of Corollary 3, we cannot have
0 < (X1, Y1, 21) < (X2, ¥2,22) Or 0 < (X2, Y2, Z2) < (X1, Y1, 21) With p; # po. This
allows us to consider without loss of generality<0 x; < X, 0 < y» < y; and
apply the same modification to tlxe andy-coordinates ofp; and p, as in the proof of
Lemma 10.

With the help of these lemmas, the claim of Lemma 11 still holds. Using Lemma 12
ford = 3, we get

6
d 3
ﬁn—l IZl:(n—Zn.)_d—l 2

implying B, < g This concludes the proof. O

For p(S, M), we only have the following easy observation:

Observation 4. For point sets P of even cardinality in three-dimensional space under
Manhattan distancesve haveg <p(SM)=<2.

Proof. The upper bound follows from Observation 1. For the lower bound, suppose
n is divisible by 6. Place/6 points on each of the point4, 0, 0), (0, 1, 0), (0,0, 1),
(-1,0,0), (0,-1,0), (0,0, —1). ThenLs = 5n/3 andLy = n. O
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Table 1. Lower and upper bounds for worst-case ratios.

Distances Dimension Ratio Lower bound Upper bound
. 2 _ i _
Euclidean Two p(SS M) 5= 1.15... Nl 1.15...
0(S, S9 4-127... V2=141...
4 _ 2v2 _
p(S, M) 3 =133... 7= 163...
Three p(SS M) % =122... J2=141...
0(S, S9 4=133.. V2=141...
(S, M) 3=15 2
Manhattan Two p(SS M) 1 1
3 3
p(S, S9 5=15 5=15
3 3
p(S, M) 5=15 5=15
3 3
Three p(SS M) 5=15 3=15
5 5
p(S S9 2 = 1.66. 2 =166..
(S, M) 2 =166.. 2

7. Conclusion

We have derived a number of upper and lower bounds for the largest possible value of

the ratios between the size of minimum stars, minimum Steiner stars, and maximum

matchings. A summary of our bounds is given in Table 1. Some of these bounds are not
tight; in all cases, we suspect that the upper bounds can be improved to match the lower
bounds. This belief is strengthened by the fact that some of the tools we used for the

case of Manhattan distances (in particular, Lemma 7) are true for Euclidean distances as
well. We note the following conjectures:

Conjecture 1. For point sets P in two-dimensional space with Euclidean distances
we haveo(S, S = 4/x.

Conjecture 2. For point sets P in three-dimensional space with Euclidean distances
we havep(S, S9 = 3.
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