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Abstract

We study the problem of finding shortest tours/paths for “lawn mowing” and “milling” problems: Given a region
in the plane, and given the shape of a “cutter” (typically, a circle or a square), find a shortest tour/path for the cutter
such that every point within the region is covered by the cutter at some position along the tour/path. In the milling
version of the problem, the cutter is constrained to stay within the region. The milling problem arises naturally in
the area of automatic tool path generation for NC pocket machining. The lawn mowing problem arises in optical
inspection, spray painting, and optimal search planning.

Both problems are NP-hard in general. We give efficient constant-factor approximation algorithms for both
problems. In particular, we give a(3+ ε)-approximation algorithm for the lawn mowing problem and a 2.5-
approximation algorithm for the milling problem. Furthermore, we give a simple6

5-approximation algorithm for
the TSP problem in simple grid graphs, which leads to an11

5 -approximation algorithm for milling simple rectilinear
polygons. 2000 Elsevier Science B.V. All rights reserved.
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Fig. 1. The lawn mowing problem.

1. Introduction

Consider the following problem: For a given region covered by grass, find a short path along which to
move a lawn mower, such that all the grass is cut. Thislawn mowing problemarises in several practical
applications. Motivations from manufacturing include:
• (Process planning) Plan the motion of the nozzle of a spray painting device in order to coat the entire

surface of an object.
• (Quality control) Plan the movement of a sensor (camera, detector) in order to check an entire part for

imperfections.
Motivations also arise in the planning of geographic surveys, search-and-rescue operations, etc.

A closely related problem is that of automatically generating tool paths for NC (Numerically
Controlled) pocket machining: Given a workpiece, a cutter head, and the shape of a “pocket” to be
milled in the workpiece, determine a route for the cutter such that the cutter removes exactly the material
that lies within the pocket. The difference between thismilling problemand the lawn mowing problem is
that in the milling problem we do not allow the cutter to exit the region (pocket) that it must cover, while
in the lawn mowing problem it is permitted for the cutter to “mow” over non-grass regions (e.g., one may
push the lawn mower over the sidewalk while cutting the grass).

1.1. Related work

The lawn mowing problem is closely related to the geometric Traveling Salesman Problem (TSP) with
“mobile clients”: Find a shortest tour for a salesman who must visit a given set of clients, each of which
is willing to travel up to distanced in order to meet the salesman. It is easy to see that this problem can
be modeled as that of “mowing” a given (discrete) set of points (at the locations of the clients), using a
“mower” of radiusd. This special case of the lawn mowing problem, with a finite (discrete) set of points
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Fig. 2. The milling problem.

to be mowed, has been studied by Arkin and Hassin [3], who obtained constant-factor approximation
methods for this and other variants of the “TSP with Neighborhoods” problem (see also [17]). (These
problems are clearly NP-hard, from the fact that the Euclidean TSP is NP-hard.)

The lawn mowing problem is also closely related to the “watchman route problem” with limited
visibility (or “ d-sweeper problem”), which has been studied by Ntafos [21]: How does one “sweep”
the floor of a given (polygonal) room, using a circular broom of radiusd, so that the total travel of the
broom is minimized? By studying the problem of approximating TSP tours onsimplegrid graphs, Ntafos
gives an approximation algorithm (with approximation factor4

3) for thed-sweeper problem in a simple
polygon,providedthatd is sufficiently “small” in comparison with the dimensions of the polygon.

In the CAD community, there is a tremendous amount of literature on the subject of automatic tool
path generation. We refer the reader to the book of Held [13] for a survey. Held was the first author to
start a mathematical examination of the algorithmic questions that arise in pocket machining. He was
primarily concerned with generating feasible tool paths for milling, and gave efficient algorithms, based
on the methods of computational geometry, for implementing some standard heuristics that are used in
practice. Aspects of complexity in the optimization problem are only mentioned very briefly in the book;
the question of polynomiality or NP-hardness of the milling problem is stated as an open problem, and
the question of obtaining approximation algorithms is not discussed.

Arkin et al. [4] have examined the problem of minimizing the number of retractions for the “zig-zag”
pocket machining problem, subject to the constraint that one isnot allowed to “re-mill”; they show the
problem to be NP-complete and obtain constant factor approximation algorithms. (The milling problem
addressed here can be thought of as a dual: minimize the amount of re-milling, subject to no retractions
of the cutter.)

In [2], we showed that the milling and lawn mower problems are NP-hard, in general. We also provided
existence proofs of constant-factor approximation algorithms for these problems. Iwano et al. [15] later
obtained an approximation algorithm for a version of the lawn mower problem; they provide, for any
fixed ε > 0, a(9+ ε)-approximation for the case of rectilinear grass regions.
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1.2. Main results

This paper represents a journal version of our earlier work that appeared in preliminary form in [2]
and includes, in addition, several substantial new results. In summary, our results include the following:
• We show that the lawn mowing problem is NP-hard, even if the given region is a simple polygon.
• We show that the milling problem is NP-hard if the given region is a polygon with holes. (The case of

a simply connected region remains an outstanding open problem.)
• For the lawn mowing problem, we give improved approximation algorithms that not only cut the

previous best factor by up to a factor of 2, but also substantially improve the running time. Furthermore,
our method greatly simplifies the proof of [15].
• For the milling problem, we give a 2.5-approximation algorithm, with worst-case time O(n logn), for

a (possibly multiply-connected) pocket whose boundary complexity isn.
• We give new results for the TSP on grid graphs, and applications of these results to related instances

of the milling problem:
– For the case ofsimplegrid graphs having no cut vertices (i.e., the removal of a node does not

disconnect the graph), we show how to construct efficiently a tour whose length is at most(6/5)N ,
whereN is the number of grid points (nodes). This improves upon the best previous bound of
(4/3)N [21].

– We apply this result to obtain a 6/5-approximation algorithm for the milling problem in the case
of a unit square cutter, with rectilinear motion, in an integer-coordinate rectilinear simple polygon.
The result also extends to arbitrary rectilinear simplen-gons, yielding an 11/5-approximation that
runs in linear (O(n)) time.

– For the case of arbitrary connected grid graphs, having no local cut vertices (i.e., the removal of a
node does not reduce the genus), we obtain the first nontrivial upper bounds, showing that the length
of an optimal tour is at most 1.325N . (The trivial bound is 2N − 2, from doubling a spanning tree.)
This result also applies to yield improved approximation factors for milling rectilinear polygons
with holes.

Note that results of Grigni et al. [12] provide a polynomial-time approximation scheme for TSP in grid
graphs, allowing one to approximate the optimal tour within a factor(1+ε) for anyε > 0, inNO(1/ε) time.
For comparison, our results establish bounds not just on the ratio of the lengthA of the approximation
to the length of optimal,L∗, but on the ratio ofA to N . We are able to show that our bound of 6/5 is
best possible for this ratio. Furthermore, our approximation algorithm is relatively simple and much more
efficient (O(N), or O(n) to compute an implicit encoding).

2. Preliminaries

We are given a planar region,R, that describes the grass to be mowed or the pocket to be machined. In
general,R may consist of several connected components, each having “holes”. We assume here that each
component ofR is a (multiply connected) polygon; our results extend to more general regions whose
boundaries are described by a discrete set of simple curved arcs (straight segments, circular arcs, etc.).
We letn denote the total number of vertices ofR, andδR denote the boundary ofR.

We are also given acutter, χ . Throughout this paper, we assume thatχ is either a circle or an axis-
aligned square. Without loss of generality, we scale our problem instance so that theχ is a unit circle
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Fig. 3. A lawn mower tour may require a large number of bends, even for a very simple input region shape,R.

(radius 1) or a unit square (side length 1). Thereference pointfor the cutterχ is its centerpoint. We let
χ(p) denote theplacementof χ at the pointp ∈R2 (i.e., the unit circle/square with centerpoint atp).

A lawn mower path/tourπ is a path/tour such that every point of the regionR is covered by some
placement ofχ alongπ ; i.e.,R ⊆⋃p∈π χ(p). A milling path/tourπ is a path/tour such that every point
of R is covered by some placement ofχ alongπ , andno placement ofχ alongπ ever hits a pointoutside
of R; i.e.,R =⋃p∈π χ(p).

We consider two cases of allowed motions (translations) of the cutter:rectilinear (axis-parallel) and
unrestricted(arbitrary translation). We measure the length of a path/tour of the cutter as its Euclidean
(L2) length. In the case of rectilinear motion, measuring the Euclidean length amounts to the same thing
as measuring theL1 length of the path/tour. (By the isometry that exists between theL1 andL∞ metrics,
we are able to handle theL∞ case as well.)

The points(x, y) ∈N2 having integer coordinates define thegrid pointsin the plane. Theinteger grid
graph refers to the (infinite) graph whose nodes are the grid points and whose edges join two points at
distance 1; thus, in the integer grid graph, each grid point has degree exactly 4. Apixel is a unit square
whose center is determined by integer coordinates.

It is easy to see that, for any regionR, there always exists a lawn mower path/tour; however, it may be
that there exists no milling path/tour for a (connected) regionR, as the cutter may not be able to fit into
the “corners” ofR or pass through the “bottlenecks” ofR.

We note that even if the input size is combinatorially very small (e.g., a rectangular region,R, with
n = 4), a lawn mower tour may require a combinatorially very large description if it is described as a
polygonal walk. See Fig. 3.

In fact, the number of bends in the output tour may be exponential as a function of the magnitudes of
the input coordinates ofR. We can address this issue in at least a couple of different ways:
(1) We can consider the input complexity to depend on themagnitude(e.g., bit complexity) of the

numbers describing the coordinates ofR, rather than on thecombinatorial size,n, of the input.
This leads to algorithms whose complexity ispseudopolynomialin the input size.

(2) We can consider tours that consist of a polynomial number of pieces each having a regular structure,
allowing a succinct representation even if the number of bends in the tour is quite high. For example,
in his book, Held [13] concentrates on two natural strategies that are used for milling in practice –
“contour-parallel” milling and “axis-parallel” (“zig-zag”) milling. (See Fig. 4.) It seems reasonable
to assume that partial tours following one of these two strategies can be encoded efficiently. Of course
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Fig. 4. Left: Contour-parallel milling. Right: Axis-parallel milling.

this does not resolve the problem of getting closed tours of short length that cover the complete area
to be milled. We will show in Section 5 how the above strategies can be used to find a closed tour of
bounded length.

3. NP-hardness proofs

Theorem 1. The lawn mowing problem for a connected polygonal region is NP-hard for the case of an
aligned unit square cutterχ .

Proof. Our proof makes use of the reduction from the (NP-hard) problem HAMILTONIAN CIRCUIT IN

PLANAR BIPARTITE GRAPHS WITH MAXIMUM DEGREE3 to the problem HAMILTONIAN CIRCUIT IN

GRID GRAPHS, as used by Johnson and Papadimitriou [16] in their proof of hardness of HAMILTONIAN

CIRCUIT IN GRID GRAPHS. (See also Itai et al. [14].)
First, a planar bipartite graphG with n vertices (each of maximum degree 3) is represented by a

grid graphG havingm = O(n) vertices, such thatG has a Hamiltonian circuit if and only ifG has a
Hamiltonian circuit. Next, we define the (polygonal) regionR to be the union of all placements ofχ (a
unit square) at the (grid) vertices ofG. Fig. 6 shows an example of this construction that corresponds to
the bipartite graph shown in Fig. 5.

It is easy to see that the existence of a tour of lengthm on the grid vertices ofG implies the existence
of a lawn mower tour of lengthm. On the other hand, a lawn mower tour of lengthm can mow all of
R (which has aream) only if no point in the region is mowed more than once. This means that the tour
partitions the regionR into nonoverlapping strips (rectangles) of width 1; clearly, these strips must have
integer length. Since traveling a strip corresponds to traveling the associated grid vertices, this implies
that a lawn mower tour of lengthm induces a tour of length at mostm in the grid graph. (See Fig. 6.)2
Corollary 1. The lawn mowing problem is NP-hard even for simple polygonal regionsR.

Proof. We can modify the regionR used in the proof of Theorem 1 to make it asimplepolygonal region
R′, by making very narrow “slits” that interconnect the holes ofR. See Fig. 7.

As in the proof of Theorem 1, a Hamiltonian tour (of lengthm) on the grid graphG yields a lawn
mower tour of lengthm for R, and hence forR′. Conversely, if the slits inR′ have been made sufficiently
narrow (e.g., less than widthδ/n, for a small constantδ), then an optimal lawn mower tour, of lengthL∗,
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Fig. 5. A planar bipartite graphG, with maximum vertex degree 3.

Fig. 6. The construction used in proving the NP-hardness of the lawn mowing problem.

for R′ can be slightly perturbed into a lawn mower tour of lengthL∗ + ε for R, whereε < 1. Then, if
L∗ + ε < m+ 1, we can conclude thatG has a Hamiltonian cycle.2

Observing that the optimal lawn mower tours for the construction given in the proof of Theorem 1 are
also feasible milling tours, we obtain the following corollary.

Corollary 2. The milling problem is NP-hard for the case of an aligned unit square cutterχ and a
multiply-connected polygonal regionR (with holes).
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Fig. 7. NP-hardness of the lawn mowing problem for simple polygonal regions.

We do not know how to extend the NP-hardness result for the milling problem to show hardness of
the case withsimplepolygonal regionsR (i.e., with no holes). In fact, it is an outstanding open question
if the Hamiltonian circuit problem can be solved in polynomial time in a “simple grid graph” (without
holes); a polynomial-time solution to this problem would imply a polynomial-time solution to the milling
problem in integer rectilinear simple polygons (for the case of an aligned unit square cutterχ ).

It seems likely that the lawn mowing problem remains NP-hard when the cutter is circular, even for
the case of a simple region. We leave these questions for future study.

4. Approximation methods for the lawn mowing problem

In [2], two different approximation methods for the lawn mowing problem were given, depending
on the connectedness of the region of grass. In the following, we show that one method is sufficient to
achieve a better approximation factor for both cases.

We begin by assuming that the cutterχ is a unit square, aligned with the axes; at the end of this
section, we will consider the case of a circular cutter. We consider both the case of rectilinear motion and
of unrestricted motion. LetT ∗ denote an optimal lawn mower tour, of length`∗.

LetS be the set of (integer grid) centerpoints for the pixels,P , that intersect the given polygonal region
R. LetN = |S|. We can identifyS in time O(N + n logn) from a given description ofR as a polygonal
region withn vertices.

Our approximation algorithm is remarkably simple:Construct an approximate TSP tour on the set of
pointsS.

The length of a tour is measured in terms ofL1 length (for rectilinear motion case) orL2 length (for
unrestricted motion case). LetαTSP denote the approximation factor for the TSP for points in the plane.
One can achieveαTSP= 2 by simply doubling a minimum spanning tree, or one can achieveαTSP= 1.5
by applying the Christofides heuristic (or achieveαTSP= 1.5 + ε, using an efficient approximation
thereof [26]). Furthermore, we can use the approximation schemes of Arora [6,7], Mitchell [18,19] or
Rao and Smith [23] to getαTSP= 1+ ε in polynomial time (with an exponent of O(1

ε
)).



E.M. Arkin et al. / Computational Geometry 17 (2000) 25–50 33

The following lemma establishes the feasibility of our approximation tour; its proof is immediate.

Lemma 1. Any tour of the point setS is a feasible lawn mower tour for a(unit square) cutterχ .

The goal of the next lemma is to establish the sufficiency of searching for tours on the integer grid
graph (whose vertices contain the centerpointsS). We refer to the unit square faces in the embedding of
this (planar) grid graph as the “dual pixels” (with the word “dual” being suggestive of the planar dual of
the integer grid graph). The corners of the dual pixels lie at half-integer coordinates.

Lemma 2. For a unit square cutter, restricted to axis-parallel motions, there exists a tour,TG, of length
`G, that lies on the integer grid graph, such thatTG intersects the same set of(closed) dual pixels as does
T ∗, and such that̀G 6 `∗.

Proof. If T ∗ lies fully within a block of four dual pixels that share a common corner, then we can simply
defineTG to be the (degenerate) tour consisting of the single point at the shared corner.

Now assume thatT ∗ does not lie fully within a block of four dual pixels sharing a common corner.
We claim that, without loss of generality, we can assume that all bend points of the (rectilinear) tourT ∗
lie on the edges of the integer grid graph (i.e., on the boundaries of dual pixels). To see this, assume
to the contrary that there is a bend pointp in the tourT ∗, with p interior to some dual pixel,P . Let
a ∈ δP (respectivelyb ∈ δP ) be the last point ofP encountered by traversingT ∗ forward (respectively
backward). (Such points exist, sinceT ∗ does not lie fully withinP .) Now we simply replace the subpath
of T ∗ that goes froma to b with an “L-shaped” path whose single bend point lies on the boundary of
P . (In casea andb have a commonx-coordinate ory-coordinate, the path linkinga andb may in fact
be a single vertical or horizontal segment, havingno bend points.) The new subpath is no longer than
the original subpath; further, the modified tour,T ′, intersects the same set of dual pixels as the original
tour,T ∗.

Now all of the bend points of the modified tourT ′ lie on the edges of the integer grid graph. Our goal
now is to transformT ′ into a tour,TG, that lies entirely on the integer grid graph (i.e., that has all of its
bend points at grid points), whileTG intersects the same set of dual pixels as doesT ′.

There are two possible kinds of bend points inT ′: 90-degree bends and 180-degree bends (turn-
abouts). If all of the bend points ofT ′ already lie at integer grid points, we are done (TG = T ′). Thus,
consider an arbitrary bend point,b, onT ′, such thatb does not lie at an integer grid point. Without loss of
generality, assume thatb lies on a vertical grid line. We now describe an adjustment procedure to convert
T ′ into TG. There are two cases:
(1) If b is a 90-degree bend point, thenb lies at the intersection of two segments ofT ′ – a horizontal

segment, call itab, having the other endpointa also lying on a vertical grid line different from that
containingb, and a vertical segment, call itbc, having the other endpointc lying on the same vertical
grid line asb. There are two subcases, depending on whether the vertical segments incident ata and
b are (a) on opposite sides of the horizontal line throughab, or (b) on the same side ofab; refer to
Fig. 8.
(a) In case (a), we can translateab vertically upwards or downwards, without changing the length

of T ′, until one of the endpoints ofab hits (i) a grid point, or (ii) another bend point ofT ′.
This translation does not change the set of dual pixels intersected by the tour. In subcase (i),
both a andb hit grid points, so we have succeeded in movingb (as well asa) to a grid point.
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(a) (b)

Fig. 8. Two cases for adjusting a rectilinear tour to obtain a tour,TG, on the integer grid.

In subcase (ii), we have decreased the total number of bend points, and, in particular, we have
decreased the number of bend points that do not lie at grid points.

(b) In case (b), we can translateab vertically in the direction thatdecreasesthe length ofT ′, again
until one of the endpoints ofab hits (i) a grid point, or (ii) another bend point ofT ′, exactly as
in case (a).

(2) If b is a turn-about, then there are two subcases:
(a) If the two edges ofT ′ incident atb lie on the grid line containingb, then both edges can be

shortened, either untilb coincides with a grid point or untilb coincides with another bend point.
(b) If the two edges ofT ′ incident atb are orthogonal to the grid line containingb, then these two

edges (call themab andcb) can be translated untila or c coincides with a grid point (so thatb
also coincides with a grid point), or untila or c coincide with another bend point.

When this adjustment procedure terminates, we have all bend points lying at grid points, and the resulting
tour is the desiredTG. 2

Consider a tour,TG, of length`G 6 `∗, obtained fromT ∗, as in the above lemma. LetSG denote the set
of integer grid points (pixel centerpoints) visited byTG. While TG intersects the same set of dual pixels
as doesT ∗, it is not necessarily a lawn mowing tour, since the “rounding” onto the integer grid may have
made it infeasible. (If, by chance, we haveSG ⊇ S, thenTG is in fact a lawn mowing tour.) The purpose
of the next lemma is to show that we can convertTG into a lawn mowing tour (in particular, a tour visiting
all points ofS), at a cost of increasing its length by at most a factor of 3.

First, letΠ be the path obtained fromTG by cutting it open, by removing one grid edge, of length 1.
(We assume thatTG has at least two grid edges; otherwise, the problem is trivial.) LetF denote the (open)
region obtained by offsettingΠ , convolving it with an (open)L∞ disk of radius 1 (i.e.,F is obtained by
sweeping an axis-aligned square of side length 2, with its center following pathΠ ).

Lemma 3. Each centerpoint ofS is either visited by the pathΠ or is withinL∞ distance1 from some
centerpoint that is; i.e.,S ⊆Π ∪ δF .
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Proof. Let p ∈ S be a centerpoint of a grass pixel, and letP be any one of the four dual pixels having
cornerp. Let π denote that portion ofT ∗ that lies within dual pixel,P . (Note thatπ need not be
connected.) The total region mowed byπ must lie within the union of the four grass (non-dual) pixels
whose centerpoints are the four corners of the dual pixelP . SinceTG (and, hence,Π ) visits the same set
of dual pixels as doesT ∗, we know that at least one corner ofP lies in SG. Thus, all four corners ofP
lie in the setΠ ∪ δF , which includesSG, together with all centerpoints withinL∞ distance 1 from some
point ofSG. 2

Let S ′G = S ∩ (Π ∪ δF ) be the subset ofS that lie onTG, or within L∞ distance 1 of some point of
TG. The following lemma shows that there exists a relatively short tour that coversS ′G, and, hence, by
Lemma 3, that coversS, thereby making it a lawn mowing tour.

Lemma 4. There exists a tour that coversS ′G (and henceS) with length at most3`G + 6 (and hence at
most3`∗ + 6).

Proof. For a path of length̀ and a disk of circumferencec, it is known (see [10,15]) that there exists a
tour of length at most 2̀+ c that covers the boundary of the Minkowski sum of the path and the disk.
Thus, since theL∞ disk of radius 1 has circumference 8, we know that there exists a tour,T ′, covering
δF of length at most 2̀Π + 8= 2`G− 2+ 8= 2`G+ 6. But the tourT ′ must crossTG, at a point within
distance 1 of the edge ofTG that was removed to obtainΠ . Thus, we can concatenate the tourT ′ with
the tourTG to obtain a tourT ′′ of length at most 3̀G + 6 that covers all ofΠ andδF , and hence all of
S ′G andS. 2

Thus, we can conclude that there exists a rectilinear tour of length at most 3`∗ + 6 that coversS, and
hence is a lawn mowing tour, implying the following theorem.

Theorem 2. Finding a rectilinear TSP approximation(with factor αTSP) on the set of centerpointsS
yields a lawn mowing tour of length at mostαTSP(3`∗ + 6), where`∗ is the length of an optimal lawn
mowing tour.

Running time.The complexity of our approximation algorithm is simply the time,f (N), required
to approximate the TSP on theN nodesS. By using the latest approximation scheme of Rao and
Smith [23], we can achieve 3αTSP= 3(1+ ε) in a running time of O(N logN). Alternatively, by simply
doubling the minimum spanning tree, we obtain a factor of 6, with asimplealgorithm of complexity
f (N)=O(N logN).

We can also obtain time bounds for computing an approximate length of an optimal tour, as well as
an implicit representation of an approximating tour, in time that depends onn (the combinatorial size of
the input) rather than onN (which depends on the numerical size of the input data). For this discussion,
we restrict attention to the case of a rectilinear regionR, having all of its edges parallel to the coordinate
axes. Our strategy will be to compute a minimum spanning tree ofS, and then double it (so thatαTSP= 2).

First, we decompose the regionR into rectangles; this takes time O(n), if R is simply connected [8],
or time O(n logn), if R is multiply connected (e.g., by standard plane sweep). Next, we compute the
L1 Voronoi diagram of the set of rectangles, treating them as the sources, and using theL1 (rectilinear)
metric. This gives a planar subdivision, of size O(n), of the complement ofR, which allows us to compute
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the nearest neighbor information for each rectangle. Thus, for each rectangleτ , we know which other
rectangles are Voronoi neighbors (as well as which ones share edges withτ ).

For rectangleτ , we letS ′τ denote the set of pixel centerpoints for the set of pixels intersected byτ . With
this definition, notice that a centerpoint can belong to more than one setS ′τ . In order to obtain a partition
of the centerpointsS, we define setsSτ ⊆ S ′τ by assigning centerpoints uniquely to rectangles. For pixels
that intersect more than one rectangle, we determine which setSτ should “own” the centerpoint, based
on a convention, such as the following: Sweep a vertical line across the pixel, stopping at the first instant
that one or more rectangles is intersected (this instant may, in fact, be at the left boundary of the pixel);
we assign the pixel to the rectangle that is topmost in the intersection with the sweepline. An implicit
representation of the setsSτ can be determined using the Voronoi neighbor information for rectangles.
Further, each setSτ has an O(1)-size implicit description of its minimum spanning tree; e.g., we can
simply link up the pointsSτ , row by row, and then link the rows together.

We now want to compute a minimum spanning tree (MST) of all ofS, by linking together the spanning
trees of the setsSτ . (Note that, by standard properties of minimum spanning trees, we know that the (unit-
length) edges in the spanning trees of the setsSτ are in an MST ofS.)

To link together the resulting connected components, we apply a Kruskal-like greedy algorithm,
starting with a forest consisting of the spanning trees of the setsSτ , and, at each stage, linking a pair of
components with an edge whoseL1 length is minimum among edges linking centerpoints from different
components. Such edges can be identified using Voronoi neighbor information for the rectangles. (Note
too that if two rectangles are touching, then their trees can be linked easily, with a unit-length edge, which
is clearly of minimum length.) These edges are used in the Kruskal algorithm to link up the components
to obtain the overall minimum spanning tree ofS. (The fact that we can restrict attention to Voronoi
neighbors follows from standard properties of minimum spanning trees.)

Finally, we remark that the method sketched above should be applicable to more general regions
than just rectilinear ones; e.g., if the regionR has edges from some small fixed set of rational slopes,
then a trapezoidal decomposition can be used, with an implicit representation of the pixel centerpoints
associated with each. Then, by approximating arbitrary regions with such polygonal regions, it should be
possible to obtain similar O(n logn) time bounds for approximating any regionR.

Removing the additive term.The above approximation bound includes both a multiplicative and an
additive error term. We now give a second approximation method that can be applied in cases in which
the length of an optimal lawn mower tour is small. Then, by selecting the shorter of the two tours obtained
by our two methods, we can give an error bound based on a purely multiplicative approximation factor.

Our second approach begins by finding the axis-aligned bounding box (rectangle) ofR; assume this
rectangle is of sizea-by-b, with a 6 b.

If a 6 1, mowing this rectangle trivially yields an optimal solution.
If 1 < a 6 2, then we can again obtain an optimal tour easily, by noting that the mower must travel at

least distance 2(a + b− 2) in order to touch all four edges of the bounding rectangle with the boundary
of the lawn mower. Thus, by simply mowing the rectangle with a rectangular tour of length 2(a+ b−2),
we obtain an optimal tour.

If a > 2, then, as can be seen from Fig. 9, we can mow the rectangle by concatenating a series of
concentric rectangular subtours. For all except possibly for the innermost subtour, these concatenations
can be performed without extra cost by swapping edges as shown in Fig. 9. Joining the innermost subtour
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Fig. 9. Mowing a rectangle.

may cost an extra two unit edges ifb−1−2ba/2c < 1. Therefore, we can mow the rectangle by traveling
a total length of no more than
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This guarantees an approximation factor better than 3αTSP, as long as we only consider(b a2c + 1) 6
3αTSP. Therefore, we can assume thata > 6; hence,̀ ∗ > 20. This means that we can drop the additive
term in our approximation estimates by adding no more thanθ = 3

10 to the multiplicative estimates. (This
estimate forθ can be improved; we omit a tighter analysis in the interest of brevity.)

Unrestricted motion of a square cutter.If we consider a unit square cutter that is allowed to translate
arbitrarily (while not rotating), rather than only in a rectilinear fashion, then we can apply our same
approach as before, with a slight modification to the perturbation scheme used in the proof of Lemma 2.
In particular, we argue that we can perturb an optimal tourT ∗ onto agrid with diagonalsdetermined
by centerpoints of pixels. In the grid with diagonals, we join two centerpoints with a horizontal or
vertical edge if they are separated by distance 1, and by a diagonal (45-degree) edge if they are
separated by distance

√
2. A simple calculation shows that any straight segment, of length`, joining

a pair of centerpoints can be replaced by a path of length at mostβ · `, in the grid with diagonals,

whereβ = 2/
√

2+√2≈ 1.08. The results go through as before, but with an additional factorβ in the
approximation ratio.

Circular cutters. We can further extend the method to the case of circular cutters. Assume thatχ is a
unit-radius disk that is allowed to move arbitrarily in the plane. In this case, we use another form of
“pixel” – instead of tiling the plane with unit squares, we tile the plane with regular hexagons, each of
diameter 2. The centerpoints of these hexagons lie on a regular lattice. We join two centerpoints by an
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Fig. 10. Approximation for the case of a circular cutterχ .

edge if they lie at distance
√

3; this results in a planar graph whose faces are equilateral triangles of side
length

√
3. See Fig. 10. Any straight segment of length` between two centerpoints can be approximated

by a path in the graph of length at mostγ · `, whereγ = 2
√

3
3 ≈ 1.15.

As in the case of a mowing square, we can remove the additive term from the approximation bound by
considering the smallest disk of radiusρ > 1 that containsR. Mowing that disk can be done with a tour
of no longer than

bρ−1c/2∑
i=0

2π(ρ − 1− 2i)+ 2dρ − 2e ≈ ρ
2π

2
+ 2(ρ − 2),

while an optimum tour must have a length of at least 4(ρ − 1).
In summary, we have the following theorem.

Theorem 3. The lawn mowing problem has a constant-factor approximation algorithm that runs in
polynomial time(dependent on the TSP heuristic employed). For the case of an aligned unit square
cutter, the approximation factor is3αTSP for rectilinear motion, and is3βαTSP for arbitrary translational
motion. For the case of a unit circular cutter, with arbitrary motion, the approximation factor is3γ αTSP.
Here,β = 2√

2+√2
≈ 1.08 andγ = 2

√
3

3 ≈ 1.15.

5. Approximation methods for the milling problem

We consider now the problem of pocket machining, in which we must compute a milling tour with the
cutting tool required to stay within the region (pocket)R that is to be milled.

Theorem 4. In time O(n logn), one can decide whether a(multiply) connected region withn sides
(straight or circular arc) can be milled by a unit disk or unit square, and, within the same time bound,
one can construct a tour of length at most21

2 times the length of an optimal milling tour.
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Fig. 11. Approximating a milling tour.

Proof. One can check for millability in O(n logn) time using a medial axis to compute offsets based on
the cutterχ . (Offset the boundary inward, then offset this outward, and compare to the original region.)

So assume thatR can be milled. LetB ⊂R denote the inward offset region of all points withinR that
are feasible placements for the center point of the milling cutter.B is connected. The lengthLδB of the
boundaryδB of B is a lower bound for lengthLOPT of an optimal milling tour. We writeRδB for the
region milled by moving alongδB. Note thatδB may consist of several pieces ifR is not simple. In the
following, we will refer to these pieces asδBi . If Rint :=R \RδB is nonempty, we can cover it by a set ofs
horizontal stripsSi of vertical width 1 and disjoint interior, as shown in Fig. 11: The vertical coordinates
of the center lines of any two strips differ by a multiple of 2. (In the following, we will refer to the center
line of a strip as a “strip line”.) Each strip lies completely inside ofR, so there may be several strips that
have the same vertical coordinate. By a simple area argument, we need at least the lengthLstr=∑s

i=1LSi
to mill R, so we conclude thatLstr6 LOPT.

By the choice of the strips, everyδBi contains an even number of endpoints of strip lines. This means
that these endpoints partition everyδBi into two sets of pairwise disjoint subportions. We will refer to
these two sets as the two “matchings”M1(δBi) andM2(δBi) of δBi . For everyδBi , letM∗(δBi) be the
shorter matching. Clearly, the combined length of allM∗(δBi) is at mostLδB/26 LOPT/2.

Now consider the graph formed by the endpoints of strip lines, plus the points where a strip line touches
aδBi. These vertices are canonically connected by the center lines of the strips, theδBi and theM∗(δBi).
Clearly, this graph is connected and every vertex has degree 4. This means that it has an Eulerian tour,
which forms a feasible milling tour of length no longer than5

2LOPT. 2



40 E.M. Arkin et al. / Computational Geometry 17 (2000) 25–50

6. TSP on simple grid graphs

Consider the special case of the milling problem with a unit square cutter, under rectilinear motion,
and a regionR given by a simple rectilinear polygon having vertices with integer coordinates. It is easy
to see that the milling problem in this case is equivalent to the problem of finding an optimal TSP tour
on thesimple grid graph, G, induced by the centerpoints of the pixels that compriseR. Specifically,G
is the graph whose node set is the set of centerpoints of pixels withinR, and two nodes are joined by an
edge if and only if the corresponding centerpoints are at distance 1 from each other. (It is “simple” in the
sense of having no “holes”; i.e., all grid points interior to any simple cycle inGmust also be nodes ofG.)
Here, sinceG may not be Hamiltonian (e.g.,G may consist of a single horizontal row of centerpoints),
by a “tour” we mean a closed walk that visits every node at least once (possibly revisiting some nodes).

A nodev is acut vertexif its removal disconnectsG. If G has a cut vertexv, then we can consider
separately the approximation problem in each of the components obtained by removingv, and then splice
the tours back together at the vertexv to obtain a tour in the entire graphG. Thus, we concentrate on the
case in whichG has no cut vertices.

The problem was considered by Ntafos [21], who showed (constructively) that, provided there are
no cut vertices, there exists a tour of length at most(4/3)N , whereN is the number of grid points in
the graph. This immediately gives a 4/3-approximation algorithm (sinceN is a trivial lower bound on
the length of any tour), thereby improving, in this special case, on the Christofides bound of 3/2. In
this section, we improve the result of Ntafos by giving a method to obtain a tour of length at most 6/5
times the length of an optimal TSP tour, and this result is tight for the case of no cut vertices. Note that
a recent result of Umans and Lenhart [24] shows that the existence of a Hamiltonian cycle in a simple
(“solid”) grid graph can be checked in polynomial time; however, it is still open whether an exact solution
for TSP instances on simple grid graphs can be found in polynomial time, since it is open how to find
a minimal set of detours if there is no Hamiltonian cycle. Grigni et al. [12] have given a polynomial-
time approximation scheme for arbitrary grid graphs, as did Arora [6,7], Mitchell [18,19] and Rao and
Smith [23]; however, the algorithms from those approximation schemes are not very practical for small
approximation factors, whereas our method achieves an asymptotically optimal running time of O(n),
with a reasonable constant in the big-Oh.

Theorem 5. LetG be a simple grid graph, havingN nodes at the centerpoints,V , of pixels within a
simple rectilinear polygon,R, havingn (integer-coordinate) sides. Assume thatG has no cut vertices.
Then, in timeO(n), one can find a representation of a tour,T , that visits allN nodes ofG, of length at
most6N−4

5 .

Proof. Let VB ⊆ V denote the set of centerpoints of pixels on the boundary ofR (i.e., one or more
sides of the pixel are shared with the boundary ofR). Let VI ⊂ V denote the set of centerpoints ofnon-
boundary (“internal”) pixels. Thus, the node set for the grid graphG is partitioned into boundary nodes
(VB ) and internal nodes (VI ).

As defined, the pointsVB andVI lie at half-integer coordinates in the plane (since they are centers of
pixels). However, for simplicity of exposition, we can translate the pointsVB ∪ VI by (1

2,
1
2), and work

from now on with the assumption thatG is a subgraph of the integer grid graph.
The fact thatG has no cut vertices implies that there exists asimplecycle,C, through only boundary

nodesVB , visiting each boundary node exactly once; we callC the contour of G. Fig. 12 shows an
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Fig. 12. A contourC (shown bold) surrounding the internal nodesVI of a simple grid graph that has no cut vertex.

example of a contourC (shown as a bold outline) through the nodesVB ; the internal nodesVI are
indicated by (hollow) circles.

We say that two edges,e andf , of C form abottleneckif
(1) e andf are parallel, separated by distance 1, and
(2) there does not exist an edgeg of C such thate, g andf form a subpath ofC of length 3.

(An alternative definition is to say thate andf form a bottleneck if they are opposite sides of a unit
square, such that neither of the other two sides of the square is an edge ofC.) For example, in Fig. 12,
the pair(e, f ) of edges forms a bottleneck, while the pair(e′, f ′) does not.

The following lemma shows that it will suffice to consider the case in whichC has no bottlenecks.

Lemma 5. Consider a simple grid graphG withN vertices that does not have any cut vertices. Suppose
we can find a tour of length at most6N−4

5 for any simple grid graph without bottlenecks, such that any
vertex of degree2 is connected to both of its neighbors. Then we can find a tour of length at most6N−4

5
for any simple grid graph without cut vertices, such that any vertex of degree2 is connected to both of
its neighbors.

Proof. We proceed by induction over the number of bottlenecks. Lete = (v1, v2) and f = (v3, v4)

form a bottleneck, separating the piecesG1 andG2, consisting ofN1 andN2 vertices, respectively
so N = N1 + N2 + 4. (See Fig. 13.) Then we can decomposeG into two pieces,H1 induced by
G1, v1, v2, v3, v4 andH2 induced byG2, v1, v2, v3, v4. InH1, v2 andv4 are vertices of degree 2, as arev1

andv3 in H2. Therefore we have a tour of length at most6(N1+4)−4
5 = 6N1+20

5 of H1 that consists of a path
p1 from v1 to v3 and the edges(v2, v4), e, f ; similarly, we have a tour ofH2 which is no longer than
6N2+20

5 and consists of a pathp2 from v2 to v4 and the edges(v1, v3), e, f . Therefore, the union ofp1, f ,
p2, e forms a tour ofG in which all vertices of degree 2 are connected to their neighbors. Since this tour
saves four edges in comparison to the two separate tours, the resulting length is at most

(6N1+ 20)+ (6N2+ 20)

5
− 4= 6(N1+N2+ 4)− 4

5
= 6N − 4

5
. 2

So, for the remainder of the proof of Theorem 5, let us assume thatC has no bottlenecks.
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Fig. 13. How to deal with bottlenecks.

To construct the tourT , we begin with the contourC through the boundary nodesVB . We will then
argue that we can modifyC, through a series of detours, into a tour that also visits every internal node,
in such a way that whenever the detour causes us to “waste” an edge (by going to a node that has been
visited already), we can “charge” this wasted edge off to some group of at least 5 nodes. No node will
ever belong to more than one group, and no group will be charged more than once for a wasted edge;
thus, in all, there will be at most65N edges in the final tourT .

We can assume, without loss of generality, that the internal nodesVI have (integer)y-coordinates
1,2, . . . , k. In order to define the “groups” of nodes that will be charged with wasted edges when we
make modifications toC, we begin by partitioningVI into doublerowsobtained by pairing up the rows,
y = 1 with y = 2, y = 3 with y = 4, etc.

Consider the internal nodes that lie in a doublerow defined byy = j andy = j + 1; i.e., consider
those points ofVI whosey-coordinate is eitherj or j + 1, for an odd positive integerj . These internal
nodes induce a grid graph, whose edges are defined by pairs of nodes at distance 1 from each other. For
each (integer)i, this graph has 0, 1 or 2 (internal) nodes that lie in the column determined by the vertical
grid line x = i; we refer to these columns as being anemptycolumn, asingletoncolumn or adoubleton
column. Note that in a singleton column, there must be exactly one internal node and one boundary node.

We describe a set of possible modifications (“detours”) that we will apply to the contourC. Let C ′
denote the modified contour at any particular stage of the modifications; we maintain the invariant that
C ′ is a closed walk within the grid graphG that visits every boundary node (VB ) at least once. Initially,
C ′ = C; onceC ′ visits all nodes (VB ∪ VI ), we will be done, and we will takeT to be the tourC ′. Our
modifications are “monotone” in that each modification will result inC ′ visiting a superset of the nodes
that it previously visited. We letV ′I ⊆ VI denote the set of internal nodes not yet visited byC ′, and we
letGj

I denote the grid graph induced by those nodes ofV ′I that lie in the doublerow determined byy = j
andy = j + 1.

We say that a modification to the contourC ′ is freeif it results in no wasted edges; i.e., the net increase
in the number of edges ofC ′ exactly equals the number of (internal) nodes that are newly visited by the
modified contour.
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Fig. 14. Top: Type I detours allowC′ to visit the internal nodes in a sequence of consecutive doubleton columns.
Bottom: Type II detours applied to a horizontal row of edges ofC′ allowC′ to visit all but one of the corresponding
internal nodes.

We consider two types of free modifications toC ′. These are done within a doublerow (say, defined
by y = j andy = j + 1). Both modifications are based on finding an edge ofC ′ that is parallel to (and at
distance 1 from) an edge ofGj

I , and then modifying the edge ofC ′ to detour through the two (internal)
nodes that define the edge ofGj

I .
(I) If a doubleton column (at, sayx = i) is adjacent to an empty column (at, sayx = i − 1) that has a

(vertical) edge(u, v)= ((i − 1, j), (i − 1, j + 1)) of C ′, then aType I detourreplaces edge(u, v)
with the path that goes fromu to (i, j) to (i, j + 1) to v. Such a detour can be repeated, “pushing”
the vertical edge ofC ′ rightwards, until we run out of doubleton columns. See Fig. 14.

(II) If two singleton columns (at, sayx = i andx = i + 1) have their internal nodes in the same row (at,
sayy = j ) 3 andC ′ includes the (horizontal) edge(u, v) = ((i, j + 1), (i + 1, j + 1)) joining the
other two nodes in these columns, then aType II detourreplaces edge(u, v) with the path that goes
from u to (i, j) to (i+ 1, j) to v. Such a detour can be repeated if there is a path of horizontal edges
of C ′ opposite a row of internal nodes, resulting in a “zig-zag” detour that visits all but one of the
internal nodes in the row. See Fig. 14.

We continue to perform the above free modifications until no longer possible. In the end, if we have
incorporated all internal nodes into the contourC ′, we are done (we use the tourT = C ′, and this tour is
necessarily optimal, since its length isN ). Otherwise, we are left with a set of internal nodes,V ′I ⊆ VI
such that each connected component,H , of Gj

I , corresponding to the doublerow determined byy = j
andy = j + 1, must satisfy the following properties:
(1) No doubleton column ofH is adjacent to a vertical edge ofC ′;
(2) There are no three consecutive singleton columns ofH having the internal nodes all in the same row;

and
(3) The only way to have two consecutive singleton columns ofH is if H consists of just one (horizontal)

edge joining the two nodes of the two singleton columns.
This leaves us with six possible cases for a componentH , as illustrated in Fig. 15. IfH has no doubleton
columns, thenH must either be a single node (case (a)) or a single horizontal edge joining two nodes
(case (b)). IfH has at least one doubleton column, then we define thewidth of H to be the number of
doubleton columns ofH . The resulting four cases are distinguished based on the number of singleton
columns ofH : 0 (case (c)), 1 (case (d)) or 2 (cases (e) and (f)). If there are 2 singleton columns, we

3 Hence, there is an edge,((i, j), (i + 1, j)), ofGjI joining these two nodes.
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Fig. 15. Six cases for incorporating internal nodes into the modified contour tour. Hollow circles denote internal
nodes,V ′I , and solid circles denote nodes ofC′. Solid edges are drawn where theremustbe edges ofC′.

distinguish between the case in which the two corresponding internal nodes lie in the same row (case (e)),
and the case in which they do not (case (f)).
(a) H consists of a single node.In this case, there must be five nodes ofC ′ in the doublerow, in the

(singleton) column containingH , and the two neighboring columns, as shown in Fig. 15(a).
In this case we waste one edge, but have six nodes to charge. We charge any five of them; since our
subdivision into doublerows forms a partition of the interior nodes, none of those five nodes will
ever be charged again. The remaining sixth node remains uncharged and may be referred to later, see
below.

(b) H consists of two nodes, joined by a single horizontal edge.In this case, the two (boundary) nodes
that are in the same two singleton columns asH occupies mustnotbe joined by an edge ofC ′ (since,
otherwise, a Type II detour could be performed). Instead, there must be a vertical edge ofC (not
just C ′) incident on each of these two boundary nodes, and, therefore, by our assumption about no
bottlenecks, there must also be an edge ofC linking the other ends of these two vertical edges (i.e.,
a horizontal edge at distance 2 fromH ).
None of the ten nodes that we charge will ever be charged again.

(c) H consists of only doubleton columns.In this case we waste two edges, but have at least 10 nodes
to charge. Again, it follows from our partition that none of the ten nodes that we charge will ever be
charged again.

(d) H has one or more doubleton columns, and exactly one singleton column.In this case we waste one
edge, but have at least 10 nodes to charge. None of the ten nodes that we charge will ever be charged
again.
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Fig. 16. A tight class of examples.

(e) H has one or more doubleton columns, and exactly two singleton columns, whose corresponding
nodes lie in the same row.In this case we waste two edges, but have at least 10 nodes to charge.
None of the ten nodes that we charge will ever be charged again.

(f) H has one or more doubleton columns, and exactly two singleton columns, whose corresponding
nodes lie in different rows.In this case we waste two edges, but have at least 10 nodes to charge.
None of the ten nodes that we charge will ever be charged again.

There is another technical detail needed in order to apply Lemma 5: We must argue that we can leave
4 vertices uncharged, after applying all of the above charging scheme, so that we get a bound of6N−4

5 .
Since we are free to choose the parity of our subdivision into doublerows (i.e., have them at coordinates
2i − 1 and 2i, or at 2i and 2i + 1), we can make this choice in a way that leaves a “bottommost” or a
“topmost” part ofC ′ (i.e., the set of boundary vertices that havey-coordinate smaller or larger than any
interior vertex) out of any doublerow. Clearly, any such piece will contain at least three vertices. If the
bottommost part has only three vertices, a doublerow containing it can only have one interior vertex – as
in case (a) above. Therefore we can either leave a part with more than three vertices uncharged, or leave
three vertices uncharged on one side, plus another vertex as described in case (a) above. In either case,
we are done.

Finally, we remark that the running time of the algorithm to produce the claimed approximate tour
can be bounded by O(n), the time needed to partitionR into horizontal trapezoids. Within each such
trapezoid we can perform the free modifications, in block, in O(1) time, after which we are left with only
O(n) doublerows to which we apply the above case analysis.2

It should be noted that the 6/5 bound is asymptotically tight – consider the class of examples shown
in Fig. 16.

A direct corollary of Theorem 5 is a65-approximation bound for milling rectilinear simple polygons
having integer coordinates.

Corollary 3. The milling problem for a unit square cutter, rectilinear motion and a simple rectilinear
polygon regionR having integer coordinates can be approximated within a factor of6

5, in timeO(N),
whereN is the number of pixels contained withinR. If the simple polygonal region hasn edges, it is
straightforward to show that we can find such a tour in timeO(n).
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A further corollary is a 11
5 -approximation bound for milling rectilinear simple polygons having

arbitrary coordinates.

Corollary 4. The milling problem for a unit square cutter, rectilinear motion and a simple rectilinear
polygon regionR can be approximated within a factor of11

5 , in timeO(n).

Proof. First, one can decide in time O(n) if R has a feasible milling tour, by doing an offset (e.g., using
recent linear-time algorithms for computing the medial axis of simple polygons [9]). This tells us if the
contour is feasible. Consider the unionRN of all integer pixels. By the above method, we can find a
tour ofRN that is within 6LOPT−4

5 of the lengthLOPT of an optimum milling tour forR. Combining this
with a tour that follows the contourδB of R and has lengthLδB 6 LOPT, we get a tour no longer than
11
5 LOPT+ 6

5. 2

7. TSP on grid graphs with holes

We can extend the results of the previous section to grid graphs with holes that satisfy an additional
condition on the local structure.

Definition 6. We say that a vertexv in a grid graphG is alocal cut vertex, if the removal ofv disconnects
G or reduces the number of holes.

We show that all grid graphs without local cut vertices (but possibly with holes) allow a tour of short
length; our bound is better than the previously best known estimate of4

3N for simple grid graphs without
cut vertices [21].

Theorem 7. LetG be a connected grid graph, havingN nodes at the centerpoints,V , of pixels within a
(multiply connected) rectilinear polygon,R, havingn (integer-coordinate) sides. Assume thatG has no
local cut vertices. Then, in timeO(n), one can find a representation of a tour,T , that visits allN nodes
ofG, of length at most1.325N .

Proof. Applying the method in the proof of the previous section, we can link internal grid vertices to
a boundary contour, at a cost of only roughly(1/5)N extra edges. But, if there areh holes in the grid
graph, then this linking process may result inh+ 1 independent subtours that do not interconnect. We
build “bridges” between these subtours in order to link them into a single tour. First, we perform “free”
bridges, by identifying pairs of facing edges, from two distinct subtours, that bound a common pixel and
can therefore lead to a “swap” that interconnects the respective subtours. We are now left withh′ 6 h+1
subtoursSi . One of them (say,S0) contains the outside contour, each of the others is surrounded byS0

while surrounding at least one holeHi.
Consider a subtourSi (i 6= 0) with the smallest number of vertices (see Fig. 17). Letxa, xz, ya, zz

be the smallest and largestx- andy-coordinates of vertices inSi , and letxb, xw, yb, yw be the smallest
and largestx- andy-coordinates of vertices inHi . Clearly,xa < xb 6 xw < xz andya < yb 6 yw < yz.
Furthermore, any coordinate in the interval[xb, xw] must contain at least two vertices ofSi and each of
the coordinatesxb − 1, xw + 1 must contain at least three vertices ofSi . This implies that the rectangle
[xb − 1, xw + 1] × [yb − 1, yw + 1] contains at least eight vertices ofSi.
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Fig. 17. A smallest subtour must contain 16 vertices.

Consider the case(xa = xb − 1) or (xz = xw +1) or (ya = yb −1) or (yz = yw + 1), so without loss of
generality(xa = xb − 1). There must be three verticesv1= (xa, y1), v2= (xa, y1+ 1), v3= (xa, y1+ 2),
such thatv1 andv3 are neighbors ofv2 in Si. Now consider theu1= (xa − 1, y1), u2= (xa − 1, y1+ 1),
u3 = (xa + 1, y1 + 2). SinceSi is surrounded byS0, u2 must be contained in some subtourSj 6= Si .
u2 cannot be adjacent to eitheru1 or u3 in Sj , since this would allow a free bridge betweenSi andSj .
Therefore,Sj must enter and leaveu2 from the vertext2= (xa − 2, y1+ 1). Without any additional cost,
we can replace the two unit edges betweent2 andu2 by two unit edges betweenu1 andu2. This allows a
free bridge between the (modified) subtour containingu1 and the subtourSi , since(u1, u2) and(v1, v2)

are parallel edges bounding a common pixel.
Now assume(xa < xb − 1), (xz > xw + 1), (ya < yb − 1) and (yz > yw + 1), and consider the set

U = {xw + 2} × [yb − 1, yw + 1] ∩ Si (see Fig. 17). As in the previous paragraph, it is straightforward to
argue that we can create a free bridge and linkSi to another subtour if|U |< 2. Therefore we may assume
|U |> 2. Similarly, the (disjoint) sets{xb−2}× [yb−1, yw+1]∩Si , {yb−2}× [xb−1, xw+1]∩Si and
{yw+2}× [xb−1, xw+1] ∩Si can all be assumed to contain at least two points. With the eight points in
the rectangle[xb − 1, xw + 1] × [yb − 1, yb + 1], this implies thatSi contains at least 16 vertices; hence,
h′ 6N/16.

At a cost of at most 2 links per bridge, we can now construct (non-free) bridges to link up the remaining
subtours, resulting in a total tour length of not more than(6/5)N+2(N/16)= (53/40)N = 1.325N . 2

8. Conclusion

In this paper, we have given a variety of algorithmic results on the most basic forms of “lawn mowing”
and “milling” problems. We have shown that many forms of the problems are NP-hard, and we have
given constant-factor approximation algorithms for most of these instances. There are several ways in
which the problems can be generalized:
(1) We may consider a combination of the lawn mowing problem and the milling problem in which the

complement of the regionR (the “grass”) is partitioned into two kinds of regions – a setX of points
over which the cutter may pass freely (e.g., the “sidewalk” and the “driveway”), and a setY of points
over which the cutter is not allowed to pass (e.g., the “flowerbeds” and the “house”). The milling
problem is that in whichY =R2 \R, while the lawn mowing problem is that in whichX =R2 \R.
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(2) When milling a pocket in practice, it is important to trynot to allow the cutter to pass over a portion
of the regionR that has already been milled, as such “over-milling” may lead to imperfections in the
smoothness of the cut on the bottom of the pocket. (See Held [13] for a more extensive discussion.)
Thus, one often wants to plan a cutter path that picks up the cutter (“retracts” it) and moves it to
a new position, in order to avoid passing back over a portion that has been milled already. In such
plans, however, one wants to minimize the number of retractions. For the special case of “zig-zag”
pocket machining, Arkin et al. [4] have recently obtained approximation algorithms for the problem
of minimizing the number of retractions. Ideally, one could combine our version of the “milling
problem” with more realistic models of how machining is actually done, and study problems that
include both the cutter path lengthand the number of retractions in the objective function.

(3) We may also want to consider the issue of “over-milling” from a different point of view. In
applications to spray painting and material deposition, the goal may be to cover every point at least
kmin times (to guarantee good coverage) and at mostkmax times (to prevent overcoating, which may
lead to “runs”), for a fixed speed of moving the tool. (Alternatively, one may wish to control the
speed of tool motion or the flow rate of material through the nozzle.) In such problems, the goal may
be to minimize wasted (over-sprayed) material and/or maximize the uniformity of coverage.

(4) Another important consideration from a practical point of view is the “shape” of a cutter path/tour. If
a path/tour has many sharp turns, it may require a slower processing speed, thus spoiling the benefits
of having a “short” path/tour. Thus, we may be motivated to study the problems of minimizing “link
distance”, possibly in conjunction with Euclidean length and “total turn” (the integral of the absolute
value of all changes in direction of motion). For “bicriteria” shortest path problems among obstacles
in the plane, see Arkin et al. [5] and Mitchell et al. [20], who consider combinations of link distance,
total turn and Euclidean length. Held [13] has considered the issue of bounding the angles at turns in
cutter path planning. For a finite set of points in the plane, the existence of “angle-restricted tours”
has been studied by Fekete and Woeginger [11].
As this paper was going to press, a new set of results was announced by Arkin et al. [1], who obtain
approximation algorithms for milling in the case that turns influence the cost.

(5) We may consider the case in which the cutter may move at different speeds through different portions
of the material (e.g., “grass” of different heights) or at different orientations with respect to the
material (e.g., “grain” effects in using a router in wood).

(6) We may consider other allowed motions for cutters and other shapes of cutters.
(7) We may consider the option to select different cutter sizes. For example, a large cutter may be used

to “rough out” the pocket (or a large tractor may be used to mow the open field), while a smaller
cutter is used to do fine details near the boundary ofR.

(8) We may consider the need to stop the cutting periodically, possibly several times during a single
job, in order to re-sharpen the tool or perform some other function (e.g., empty the bag of grass
clippings), which possibly involves sending the cutter to a particular location (depot). When mowing
a lawn, one often tries to schedule the cutting route so that one is close to the compost pile when the
bag that catches clippings becomes full.
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