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Simplicity and Hardness of the Maximum Traveling Salesman Problem 
under Geometric Distances* 

S&ndor P. Feketet 

Abstract 

Recently, Barvinok, Johnson, Woeginger, and Wood- 
roofe have shown that the Maximum TSP, i. e., the 
problem of finding a traveling salesman tour of maxi- 
mum length, can be solved in polynomial time, provided 
that distances are computed according to a polyhedral 
norm in lRd, for some fixed d. The most natural case of 
this class of problems arises for rectilinear distances in 
the plane lR2, where the unit ball is a square. With the 
help of some additional improvements by Tamir, the 
method by Barvinok et al. yields an O(n2 log TZ) algo- 
rithm for this case by making elegant use of geometry, 
graph theory, and optimization, including some rather 
powerful tools. 

In this paper, we present a simple algorithm with 
O(n) running time for computing the length of a longest 
tour for a set of points in the plane with rectilinear 
distances. The algorithm does not use any indirect 
addressing, so its running time remains valid even 
in comparison based models in which sorting requires 
Q(n log rz) time, which implies the same lower bound 
on verifying a Hamiltonian cycle. In addition, our 
approach gives a simple characterization of all optimal 
solutions. These results give a good idea what makes 
the (polyhedral) max TSP so much easier than its 
minimization counterpart. 

Resolving the complexity status of the max TSP 
for Euclidean distances in spaces of fixed dimension 
has been stated by Barvinok et al. as a main open 
problem. In this paper, the results on simplicity are 
complemented by a proofthat the Maximum TSP under 
Euclidean distances in IRd for any fixed d 1 3 is NP- 
hard, shedding new light on the well-studied difficulties 
of Euclidean distances. In addition, our result implies 
NP-hardness of the Maximum TSP under polyhedral 
norms if the number k of facets of the unit ball is 
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not fixed. As a corollary, we get NP-hardness of the 
Maximum Scatter TSP for geometric instances, where 
the objective is to find a tour that maximizes the 
shortest edge. This resolves a conjecture by Arkin, 
Chiang, Mitchell, Skiena, and Yang in the affirmative. 

1 Introduction 

The Traveling Salesman Problem (TSP) is one of the 
classical problems of combinatorial optimization: Given 
a set {vi,212,... , v,} of vertices together with the dis- 
tance d (vi, vj) between every pair of distinct vertices vi, 
vj , the goal is to find a permutation x of the vertices ( a 
“tour”) that minimizes (Minimum TSP) or maximizes 
(Maximum TSP) the total tour length 

Geometric instances of the TSP have always been 
of particular interest: vertices vi correspond to points 
Pi = (Zl,..., zd) in space md, and distances d(vi, vj) 
are given by some geometric norm [Ipi - pj 11. The most 
common norms considered include the Euclidean norm 
L2 and the Manhattan norm L1, which are both special 
cases of the L, norms. The L1 norm is also an example 
of a polyhedml norm, where the set of points at distance 
1 from the origin is given by a centrally symmetric 
polyhedron with k facets. 

Two key questions regarding the complexity of 
the Minimum TSP on geometric instances have been 
answered. Itai, Papadimitriou, and Swarcflter [ll] 
showed that the Minimum TSP is NP-hard for any fixed 
dimension d > 2 and any L, or polyhedral norm. On 
the other hand, Arora 12, 31 and Mitchell [13] showed 
that all these geometric instances allow a polynomial- 
time approximation scheme (PTAS), i. e., a sequence of 
algorithms A, that compute a solution .within a factor 
of 1 + f of the optimum, in time that is polynomial for 
any fixed s. This highlights the special role of geometry, 
since it is well known that for general Minimum TSP 
instances, no PTAS can exist. (See Trevisan [l?], and 
Papadimitriou and Yannakakis [14] for such results in 
more restricted situations.) 
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A third question that is still unresolved is the issue 
whether the TSP under Euclidean distances is a member 
of the class NP, allowing polynomial time verification of 
a good solution. The difficulty of this question arises 
from the fact that there are no polynomial bounds 
known on the accuracy that is necessary for comparing a 
sum of square roots to a given integer. See the book [12] 
for a discussion. 

The complexity of the Maximum TSP for geometric 
distances has been less clear. Barvinok [S] showed that 
there is a PTAS for the Maximum TSP under all met- 
rics in lBd, for any fixed d. Very surprisingly, Barvinok, 
Johnson, Woeginger, and Woodroofe [S] showed that 
under polyhedral norms with a fixed number k of facets 
on the unit ball, the Maximum TSP is indeed polyno- 
mial. Making elegant use of geometry, graph theory, 
and optimization, including some rather powerful tools, 
their method yields an O(nfe2 log n) algorithm, where 
f is the number of facets of the unit ball defining the 
polyhedral norm. For the natural case of points in the 
plane under rectilinear distances, this yields a running 
time of O(n* logn). 

In this paper, we present a simple algorithm with 
O(n) running time for computing the length of a longest 
tour for a set of points in the plane with rectilinear 
distances. The basic tool of the algorithm is a rectilinear 
“minimum star”, i. e., a connection of all points to one 
center point, such that the total rectilinear distance to 
the center is minimized. A minimum star in IR* can be 
found in O(n) time by two median computations, one 
for each coordinate, using the linear time method by 
Blum, Floyd, Pratt, Rive&, and Tarjan [8]. With the 
help of the star center, it is possible to determine the 
optimal value of an optimal 2-factor in linear time, i. 
e., a set of subtours of minimum total length covering 
the points. More precisely, we can show that all points 
can be covered by at most two subtours, with a total 
length equal to twice the length of a minimumstar. The 
property that makes these subtours optimal is the fact 
that any connection between two points has the same 
length as a connection via the center of the star - in 
other words, the triangle inequality is kept tight. 

Using a subtour constraint of the integer linear 
programming formulation of the TSP, we can give an 
upper bound on the total length of a maximum tour, 
and a simple proof that there are many tours meeting 
this bound. It turns out that any optimal tour arises 
from an optimal P-factor by one cheapest possible 2- 
exchange, i. e., a merging of the two subtours by 
swapping two edges. Using geometry, an optimal 2- 
exchange can be found in linear time. Conversely, it 
follows that any optimal tour can be found in this way. 

Our construction uses properties of socalled stars; 
a star for a given set of vertices V is a minimum 
Steiner tree with precisely one Steiner point (the center) 
that contains all vertices in V as leafs. The total 
length of the vertices in a star is an upper bound 
on any matching in V, since any edge (vi, vj) in the 
matching can be mapped to a pair of edges (vi, c) 
and (c,vJ in the star, and by triangle inequality, 
d(vi, vj) 5 d((vi,c) + d(c,vj). The worst case ratio 
between the total length of a minimum star minS(P) 
and a maximum matching max M (P) has been posed by 
Suri as an open problem [15] for the case of Euclidean 
distances. This ratio plays a crucial role in different 
types of optimization problems. See the paper by 
Fingerhut, Suri, and Turner [lo] for applications in 

This yields a compact characterization of the set of t e h context of broadband communication networks. 

optimal tours, and a proof that the number of optimal 
tours is R ((f!)‘), i. e., exponentially large. The linear 
time algorithm can be generalized to all cases where the 
unit ball is a symmetric quadrangle. 

The method by Barvinok et al. yields a polynomial 
approximation scheme for the Maximum TSP under ar- 
bitrary norms, since any unit ball can be approximated 
sufficiently well by a polyhedron with a bounded num- 
ber of faces. “The complexity of the Maximum TSP 
with Euclidean distances and fixed d remains unsettled, 
however... ” (Barvinok et al.) In the second part of 
this paper, this question is settled with a proof that 
the Maximum TSP with Euclidean distances is NP- 
hard for any fixed d 2 3. One of the consequences 
is NP-hardness of the Maximum TSP for polyhedral 
norms with an unbounded number of facets on the cor- 
responding unit ball. Another consequence concerns the 
so-called Maximum Scatter TSP, where the objective is 
to find a tour that maximizes the shortest edge. The 
Maximum Scatter TSP was first considered by Arkin, 
Chiang, Mitchell, Skiena, and Yang [l], and the com- 
plexity for geometric instances was stated as an open 
problem. Our result implies NP-hardness for Euclidean 
instances in 3-dimensional space. 

The rest of this paper is organized as follows. In 
Section 2, the linear time algorithm for the Maximum 
TSP under rectilinear distances in the plane is de- 
scribed. Section 3 contains the NP-hardness proof for 
the Maximum TSP under Euclidean distances in lB3. 
Section 4 concludes with extensions and open problems. 

2 An O(n) Algorithm 

In this section, we describe a linear time algorithm 
for determining the length of an optimal tour for the 
Maximum TSP under rectilinear distances in the plane. 

2.1 Stars and Matchings 
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Also, Tamir and Mitchell [16] have used the duality 
between minimum stars and maximum matchings for 
showing that the core of certain matching games have 
a nonempty core. A solution to Suri’s problem [15] and 
several extensions can be found in a forthcoming paper 
by Fekete and Meijer [9]. 

For rectilinear distances, determining the length 
minS(P) of a minimum length star (also known as the 
Weber problem) can be determined in linear time. Since 
we will need some basic properties, we give a short proof 
of the following lemma: 

LEMMA 2.1. For a given set of n points P = {pl,. . ., 
zje-,L; iy f~z)lt;z optimal star center c can be 

Proof. For any star center c = (zC, yC), let p,- := 
{Pi E ’ I xi < xC}> P,+ := {pj E P 1 ti > tc}, 
PC ‘= {Pi E p I Yi < YC), Py+ := {Pi E P 1 yi > yC). 
It is easy to se that for an optimal star center, we get 
the local optimality conditions 

(2.2) n+ . z * = IP,fl$ 

(2.3) - . 
nny . = IPJ<; 

(24 
-I-. 

nY . = Ip,CI$. 

This implies that we can compute an optimal star center 
by choosing xc as a median of the xi, and yC as a median 
of the yi. It was shown by Blum, Floyd, Pratt, &vest, 
and Tarjan [S] h ow to compute a median of n numbers 
in O(n) time. The claim follows. 1 

It should be noted that for Euclidean distances, 
the problem of determining minS(P) is considerably 
harder: It was shown by Bajaj [4] that an optimal 
star center for five points in the plane is in general not 
solvable by radicals over the field of rationals. This 
implies that an algorithm for computing minS(P) must 
use stronger tools than provided by constructions by 
straight edge and compass. 

The following argument from the paper [9] leads to 
Theorem 2.1 and is used with friendly permission by 
Henk Meijer. Since some of these basic properties are 
closely connected to the results of this paper, we give a 
brief sketch and introduce some basic notation that will 
also be used later. It should be noted that independent 
from our work, Theorem 2.1 appears in the paper by 
Tamir and Mitchell [16] as Theorem 8. The basic idea is 
that the coordinates of an optimal star center subdivide 
the plane into four quadrants. If ties are broken in the 

Figure 1: The four quadrants and their point sets 

right way, the number of points in opposite quadrants 
is roughly the same. See Figure 1. 

We assume without loss of generality that x, and 
yC are smallest possible, i. e., taken from the set of 
coordinates zi and yi. Let nz := lPf I := I{zi I ti = 
ze}i, and r$ := JP,OI := I{yi I yi = y,}l. By picking 
any subset of P,” of size [$I - n, and joining it with 

P;, we get a set PL” of size [$I; the remaining [fJ 

points form the set Pz’+. Similarly, we get the partition 
into Pilo of size [ ;I, and Pi’+ of size [?JJ. Define 

the following quadrant sets: P-- := PF” n Pi”, 
P’+ := p;l” n pi’+, P+- := PY’+ n p;“, and 
p++ := pw+ * pw+ z Y . The sets P-- and P++ are 
opposite quadmnt sets, as are P-f and P+-. Two 
quadrant sets that are not opposite are called adjacent. 

Now let n’- := IP--1, etc. We get the following 
conditions: 

LEMMA 2.2. If n is even, then opposite quadrant sets 
contain the same number of points, i. e., 

(2.5) 
-- n = n++ 

(2-6) n-+ = n+- 

If n is odd, the numbers of points must satisfy 

(2.7) 
-- n = n++ + 1 

(2.8) n-+ = n+- 

Proof. From the definition of the quadrant sets, it 
follows that 

(2-9) -- + n-+ = n+- + n++ 

(2.10) >- +n+- = n’+ +n++. 

if n is even. From this the claim follows easily. 
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For the odd case, the definition of the quadrant sets 
yields the conditions 

LEMMA 2.4. Suppose n is odd and lPz U P,jl = 1, or 
n is even. Zf n++, n-+ > 1, then there is u tour 

(2.11) R-- + n-+ = n+- +n++ + 1 
T--j++ of the points in P-.-UP++, and a tourT-+I+- 
of the points in P-+ U Pi--, such that e(T--I++) + 

(2.12) n-- + n+- = n-+ +n++ + 1. L’(T-+/+-) = 2minS(P). 

(2.13) Proof. If n is even, we can argue like in the proof of 

This implies the claimed conditions. 1 
Lemma 2.3: There must be two subtours, one covering 
each pair of opposite quadrant sets. 

If n is odd and there is only one point p* in P,” U Pi> 

When matching points in P-- with points in P++, the case reduces to n even, since p, = (cz, cy) E P‘- , 

and points in P-+ with points in P+-, we get the and p, can be inserted into any tour of P-- \ {p.) and 

property P++ while still guaranteeing (2.14) for any tour edge. 1 

(2.14) Ll(Vi,Vj) = Ll(Vi,C) + Ll(C,Vj) In the following subsection, we will use this lemma 
to get the optimal tour value. If n is odd and there is 

for any edge (r~ -i, ZJ~) in the matching. Thus, it follows more than one point sitting on the median axes, then 
that we already have the optimal tour value: 

THEOREM 2.1. If n is even, then for rectilinear dis- 
tances in the plane, we have maxM(P) = minS(P). 

This can be used for obtaining an O(n) algorithm 
for computing maxM(P) for rectilinear distances in the 
plane: any matching connecting only vertices that lie in 
diagonally opposite quadrants is optimal. (This is also 
noted in the paper [9].) 

2.2 Subtours 
A P-factor for a set of vertices is a set of edges that 
covers each vertex exactly twice. Since any tour is a 
S-factor, a maximal length P-factor is an upper bound 
for the length of a tour. Using triangle inequality, it 
is straightforward to see that twice the length of a star 
is an upper bound for the length of any 2-factor (i. e., 
a set of edges that covers each vertex exactly twice). 
Achieving tightness for this bound is the main stepping 
stone for our algorithm. Following the arguments of the 
preceding section, we prove the following three lemmas. 
We start with the easiest case: 

LEMMA 2.3. Suppose n is even and two of the quadmnt 
sets are empty. Then there is a feasible tour of length 
2 min S(P), which is optimal. 

Proof Any edge (vi, vj) between opposite quadrant sets 
satisfies property (2.14). If the number of points in two 
opposite quadrant sets is the same, we can get a tour by 
jumping back and forth while there are unvisited points 
in these quadrant sets. 1 

LEMMA 2.5. Suppose n is odd and IP$UP,Oj > 1. Then 
there is a feasible tOUT of length 2minS(P), which is 
optimal. 

Proof. By conditions 2.1 and 2.3 and because tc and 
yC are smallest possible, we know that Pi n PF” and 
PyO n P;l” each must contain a point. Therefore, 

consider two points pa E P,” fl PF”, pb E Pi 17 Py”“, 
with a # b. We distinguish the following cases - see 
Figure 2: 

(a> Pa,Pb E I-+-: 
By connecting p, with a point in P-+, and pb with 

a point in P+- , and otherwise jumping back and forth 
between opposite quadrant sets, we get a tour that 
satisfies (2.14) for any edge. 

@I) Pa 4 p--, Pb E P--: 
In this case, pa E P-+ . By changing the member- 

ship of pb from P’- to P-+ , we get jP-‘j = IP++I 
and IP’+I = IP+- ] + 1. Then a tour for the modified 
P-+ and P+- can be obtained like in case (a). 

(b2) pa E P--,pb g p--: 

This is treated in the same way as case (bl). 

(c) $‘a,pb fi? p--: 

In this case, p, E P-’ and pb E P+-. By 
changing the membership of p, from P-+ to P++ 
and the membership of pb from P+- to P++, we get 
IP--1-t 1 = lP++l and lP-+\ = IP+-1, so we can get 
tours like in case (a). m 

2.3 Computing optimal tours 
For a less trivial case, we can get two subtours Because of Lemma 2.4, we have a valid upper bound 

meeting our upper bound: on the length of P-factor, and a pair of subtours that 
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Figure 2: Getting optimal S-factors 

meet this bound, as long as all quadrant sets have a 
nontrivial number of points. Now we are left to argue 
how the upper bound has to be adjusted for connected 
tours, and how the adjusted bound can be met. Our 
discussion covers the case where there are two or more 
quadrant sets containing only one point. 

We will argue that in any optimal tour, there must 
be a pair of edges ei = (vi, ~2) and e2 = (~3, Q), with 
vl E Pm-, v2 E P-+, v3 E P+-, v4 E P++, or with 
29 E P-- , 212 E P+-, 213 E P-+, 214 E P++. See 
Figure 3. Such a pair of edges will be called a quadrant 
matching. 

LEMMA 2.6. Any tour of P contains a quadrant match- 
ing, or an edge connecting adjacent quadmnt sets and 
an edge that stays within a third quadrant set. 

Proof. Any tour of P must contain at least two different 
edges ei and e2 that connect adjacent quadrant sets, i. 
e., that connect Si = (P-- u P++) to s2 = (P-+ u 
P+-) = P \ Sl. If er = (vi, 7~2) and e2 = (vs, v4) share 
a vertex v E Si, there must be other edges connecting 
Si \ {v} to P \ (Si U {v}). Therefore, consider without 
loss of generality edges that do not share a vertex. This 
yields the following cases - see Figure 3: 

(a) (VI, 02), (Q, 214) form a quadrant match- 
ing: 

In this case, there is nothing to prove. 

(b) 01, VQ E P--, v2,v4 E P+- : 
Since two edges adjacent to vertices in P+’ are 

already given, there can be at most 2n+- -2 = 2n-+ -2 
edges between P+’ and P-+, so there must be an 
edge connecting two vertices in P-+ (and we are done), 
or there must be two edges between P-+ and an 
adjacent quadrant set, reducing this case without loss 
of generality to case (c) below. 

(c) VI, v3 E P--, 772 E P+-, vq E P-+ : 
Since two edges adjacent to vertices in P-- are 

already given, there can be at most 272-- -2 2 2n++ - 1 
edges between P-- and P++, so there must be an edge 
connecting two vertices in P++, or an edge connecting 
P++ to an adjacent quadrant set. In either case, the 
claim follows. I 

Now we can give an upper bound for an optimal 
tour with a given pair of edges. 

LEMMA 2.7. Let el = (~1 ,p2) be an edge connecting 
P -- and P+-. Let e2 = (p3,p4) be an edge forming a 
quadmnt matching with el, or an edge within a third 
quadmnt Ps. Let pi = (zi, yi), and define z1 := 
min{(z,-zi), (zC--t2)}, 22 := min{(ts-z,), (24-tc)}. 

Then any tour containing el and e2 has length at 
most 2minS(P) - 221 - 222. 
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Proof. Since &(P~,Pz) = L,t(pl,c)+Ll(c,p2)-221, and 
Ll(p3,pq) = L1(p3,c)+Ll(c,p4)-2.q, theclaimfollows. 
I 

By considering all pairs of edges, we get an adjusted 
upper bound of the tour length. For this purpose, let 
21 = 0, if either P-- = 0 or Pf’ = 0; otherwise, 
let Zi = min((z, - 2-j) 1 pi E P-- U P+-). Let 
z2 = 0, if either P-+ = 0 or P++ = 0; otherwise, let 
Z2 = min((ti - 2,) ) pi E Pm+ U P++}. Similarly, let 
z3 = 0, if either P-- = 0 or P-+ = 0; otherwise, 
let Z3 = min{(y, - yj) 1 pj E P-- U P-+}. Let 
z4 = 0, if either P+- = 0 or P++ = 0; otherwise, 
let 24 = min{ (yj - yc) ) pi E P+- U P++}. Finally, let 
Z* = min{Zr + Z2,Z3 + 24). 

LEMMA 2.8. Any tour of P has a length of at most 
min S(P) - 22,, and this bound can be computed in 
linear time. 

Proof The claim follows immediately from Lemmas 2.6, 
2.7, and the definition of 2,. 1 

Now we can state the final claim: 

LEMMA 2.9. For any point set P, there is a tour of 
Eength min S(P) - 22,. 

Proof The claim is certainly true if either Lemma 2.3 
or Lemma 2.5 provides the existence of a tour of length 
min S(P). Otherwise, consider a pair of vertices where 
the value 2. is met. Without loss of generality, let this 
be for pi E P-- and pa E P++. Connect pr to any 
vertex in P+-, and p2 to any vertex in P’+. Now it 
is easy to see that using only edges connecting opposite 
quadrant sets, we can get a tour. See Figure 4. m 

Summarizing, we state: 

THEOREM 2.2. The length of an optimal tour for the 
Mzimum TSP under rectilinear distances in the plane 
can be computed in linear time. 

It is easy to conclude the following, which gives a 
first indication of the fundamental difference between 
rectilinear distances and Euclidean distances: 

COROLLARY 2.1. For any set of n points in the plane, 
there are St ((%!)‘) many tours which are optimal for the 
max TSP under rectilinear distances. If the distances 
are Euclidean, there may only be one optimal tour. 

Figure 3: (a) A quadrant matching; (b+c) edges con- 
necting adjacent quadrant sets Proof. Any tour that can be constructed as in Lemma 

2.9 is optimal, so we can choose an arbitrary permuta- 
tion for each quadrant set. This yields the above lower 
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Figure 4: Getting an optimal tour 

bound on the number of optimal tours. To see that 
there may only be one optimal tour for Euclidean dis- 
tances, consider a set of n = 2k + 1 points that are 
evenly distributed around a unit circle. m 

Conversely, we see that any optimal tour can be 
constructed as described in Lemma 2.9. 

We conclude this section by noting an observation 
by David Johnson: 

PROPOSITION 2.1. The above method, when augmented 
by a suitable linear transformation of the plane, works 
for all planar norms that have a symmetric quadrangle 
as the unit ball. 

3 An NP-Hardness Result 

In this section, we establish the NP-hardness of the 
Maximum TSP under Euclidean distances in IRd. The 
proof gives a reduction of the well-known problem 
Hamilton Cycle in Grid Gmphs, which was shown to 
be NP-complete by Itai, Papadimitriou, and Swarc- 
fiter [ll]. A grid graph G is given by a finite set 
of vertices V = {vr 212, . . . , v,,}, with each vertex vi 
represented by a grid point (zi, yi) E 2’. Without 
loss of generality, we may assume that G is connected, 
(xi, yi) E Q-4.. . , n- l)‘, and that n is sufficiently large; 
for easier notation, we write vi = (zi, yi). Two vertices 
vi and vj in G are adjacent if and only if they are at 
distance 1, i.e., if (zi - zj)’ + (yi - yj)’ = 1. Note that 
any grid graph is bipartite: vertices vi with xi + yi even 
can only be adjacent to vertices vj with xj + yj odd, 
and vice versa. In the following, we will denote this 
partition by V = V,tiV,, where Ve is the set of “even” 
vertices, while V, is the set of “odd” vertices. 

The basic idea of the proof is to embed any grid 
graph G into the surface of a sphere in lR3, such 
that edges in the grid graph correspond to longest 
distances within the point set. This can be achieved 
by representing the vertices in V, by points that are 
relatively close to each other around a position (a, b, c) 
on the sphere, and the vertices in V, are represented by 
points close to each other at a position on the sphere 
that is roughly opposite (i.e., antipodal) to (a, b, c); for 
simplicity of description by spherical coordinates, we 
will use positions that are close to the equator. Locally, 
the mapping of the two point sets onto the sphere is 
an approximation of the relative position of vertices 
in the grid graph. Since adjacent vertices in a grid 
graph have different parity, unit edges in the grid graph 
representation correspond to edges connecting points 
that are almost at opposite positions on the sphere, and 
vice versa. 

In the following, the technical details are described. 
For simplicity, we use spherical coordinates and multi- 
ples of n. However, it will become clear from our dis- 
cussion that we only require computations of bounded 
accuracy. It is straightforward to use only Cartesian 
coordinates that can be obtained by polynomial time 
approximation within the desired overall error bound of 
0 (n-‘) for the length of an edge. 

Represent each vertex vi by a point S(vi) on the 
unit sphere, described by spherical coordinates (r, d,0), 
which translate into Cartesian coordinates by x = 
rcos4cos8, y = rsin4cos0, z = rsin0. Note that, 
as in standard geographic coordinates, the “equator” of 
the sphere is given by B = 0; the angle 0 describes the 
“latitude” of a point, while 4 describes the “longitude”. 
Since we will only consider points with r = 1, we will 
simply write (4,e) in spheric coordinates, but (x, y, z) 
in Cartesian coordinates. Let $ = 3. Now any vertex 
vi E V, is represented by a point S(vi) = (xi+, y&). 
Any vertex vi E V, is represented by a point S(vi) = 
(r + xi?h, -Yi?h). 

LEMMA 3.1. There is a small constant E,, = 0 (nB4), 
which can be computed in polynomial time, such 
that for the three-dimensional Euclidean distance 
La (S(vi),S(vj)) between two points S(Q) and S(vj), 
the relation Lz (S(vi), S(vj)) 2 2 - $ - en holds if and 
only if vi and vj are adjacent in G. 

Proof. Since the diameter of the grid graph cannot 
exceed n, it is easy to see that L2 (S(vi),S(vj)) 5 
n+ = 0 (ne2) whenever vi and vj have the same parity. 
Therefore, consider vi E V, and vj E V,. Then 

[LZ (S(Vi),S(Vj))]2 = 
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= Lb ( (COS(Xi$) COS(Yi7c1), 
sin(+) cos(yi+), 

sin(yi+) 1, 
(COS(K + Xj@) cos(-l/j@), 

sin(7r + xj$) cos(-yj$), 

s+yj+) ) ) I2 
= [cos(xi+) COS(Yiti) + COS(Xj~) cos(yj$)]2 

+ [sin(xiti) COS(yi+) + sin(tj$) cos(yj$)]2 
+ [sin(y&) + sin(yj$)]’ 

= [ (1 - q + 0 ((Zi$)4)) * 

. (1 - * + 0 ((y&)4)) 

+ (1- w +o ((z&)4)) . 

. (1 - q + 0 ((yj!b)4))]2 

+ [ (zilcl- 0 ((Wb)“)) . 

. (1 - w + 0 ((Yi$)4)) 

+ (q+ - 0 ((Xjti,,“)) . 

. (1 - w + 0 ((yji)4))]2 

+ [YilcI - 0 ((Yi+13) + Yj$ - 0 ((Yj+)3)]2 
= 

[ 
2 (zit)’ (Yif)’ 

-k+- kig+qn-8)]2 

+ Xill) + Xj$ + 0 (n-")I' 
+ (Yilc1)2 + (Yjti)2 + 2YiYj+2 + 0 (n-“)I 1 

= 4 - (Xi - Xj)21j2 - (pi - yj)2$2 + 0 (ne8) . 

Since vi and vj have different parity, we have 
(x~-z~)~$~+(Y~-Y~)~$J~ = $2, if vi and vj are adjacent 
in G, and (ti - Xj)2$2 + (yi - yj)2+2 2 5$‘, if V; and 
Vj are not adjacent in G, so the claim follows. 1 

From Lemma 3.1, it is straightforward to conclude 
that there is a tour of length at least 2n - nf - nsn, if 
and only if the grid graph G is Hamiltonian. 

We summarize: 

THEOREM 3.1. Maximum TSP under Euclidean dis- 
tances in IRd is an NP-hard problem if d 2 3. 

There are several implications of this result. It 
was pointed out by Joe Mitchell that there is a close 
connection to the Maximum TSP under polyhedral 
norms, where the number of facets k is not fixed: 
Since we only need to consider the 0 (n’) directions 
for connections between points, we can replace the 
Euclidean distances L:! by a polyhedral norm with 
0 (n2) facets. 

COROLLARY 3.1. The Maximum TSP under a polyhe- 
dral norm having a unit ball with k facets in lRd is an 
NP-hard problem, if d 2 3 and k is part of the input. 

Another easy consequence concerns the Maximum 
Scatter TSP, which was first considered by Arkin, Chi- 
ang, Mitchell, Skiena, and ‘Yang [l]. In this problem, the 
objective is to find a tour that maximizes the length of 
the shortest edge. Arkin et al. gave an NP-hardness 
proof for the general case and a 2-approximation that 
uses only triangle inequality. The complexity for geo- 
metric instances was left as an open problem. Using the 
above construction and Lemma 3.1, we get: 

COROLLARY 3.2. The Maximum Scatter TSP under 
Euclidean distances in lRd is an NP-hard problem if 
d 2 3. 

Finally, it is straightforward with the above con- 
struction to show the following: 

COROLLARY 3.3. The Maximum TSP and the Maxi- 
mum Scatter TSP on the (d - l)-dimensional surface 
of the d-dimensional unit sphere SdB1 under geodesic 
distances are NP-hard for d > 3. 

It was noted by Joe Mitchell that another corollary 
can be derived by using an approximation with 0 (n2) 
facets: 

COROLLARY 3.4. The Maximum TSP and the Maxi- 
mum Scatter TSP on the (d - l)-dimensional surface 
of a d-dimensional convex polytope with an unbounded 
number of facets under geodesic distances are NP-hard 
ford> 3. 

4 Conclusion 

We have given a linear time algorithm for the Maximum 
TSP under rectilinear distances in R2, improving the 
running time of O(n2 logn) by Barvinok, Johnson, 
Tamir, Woeginger, and Woodroofe [6], and beating 
the lower bound of Q(n logn) under the decision tree 
model for verifying a Hamiltonian cycle. This result has 
no easy generalization to higher dimensions, since the 
partition into orthants by an optimal star center may 
not induce a “balanced” partition of the point set, such 
that we have subsets of equal size in opposite orthants. 

Example. Consider P with 9 points in each of the 
orthants {q = (I, y,z) [ I > 0, y > 0,x > 0), 
{4=(x,Y,z)lx~o,Y~o,z~o~,~q=(x,Y,~)lx~ 
0,Y > o,z < 01, {P = (X,Y,Z) I x > 0,Y < o,z < 01, 
plus the point (O,O, 0). It is easy to see that (O,O, 0) is 
the unique optimal star center. No connection of points 
in different orthants keeps the triangle inequality tight. 

However, it should be possible to improve on the 
complexity by Barvinok et al. for L1 distances in IR3 
by using some of our ideas. (Since the unit ball for 
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L1 distances in IR3 is an octahedron, the resulting 
complexity is 0 ( n6 log n) .) 

We have also shown that the Maximum TSP under 
Euclidean norm in IRd is NP-hard for any fixed d 2 3. 
This shows that the complexity of an optimization 
problem is not just a consequence of its combinatorial 
structure or its geometry, but may be ruled by the 
structure of the particular distance function that is used. 
The result has similar implications for closely related 
problems. 

The case d = 2 remains open; in the light of 
our results, it seems more likely that this problem is 
NP-hard, even though its counterpart with rectilinear 
distances turned out to be extremely simple. However, 
it is much harder to use strictly local arguments for 
geometric maximization problems, so a proof of NP- 
hardness may have to use a more involved construction. 

CONJECTURE 4.1. The Maximum TSP for Euclidean 
distances in the plane is an NP-hard problem. 
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