
JoCG 9(1), 1–26, 2018 1

Journal of Computational Geometry jocg.org
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Abstract. In 1991, Edelsbrunner and Tan gave an O(n2) algorithm for finding the MinMax
Edge Length Triangulation of a set of points in the plane, but stated the complexity of finding
a MaxMin Edge Length Triangulation (MELT) as a natural open problem. We resolve this
long-standing problem by showing that computing a MELT is NP-complete. Moreover, we
prove that (unless P=NP), there is no polynomial-time approximation algorithm that can
approximate MELT within any polynomial factor.

While this may be taken as conclusive evidence from a theoretical point of view that
the problem is hopelessly intractable, it still makes sense to consider powerful optimization
methods, such as integer programming (IP), in order to obtain provably optimal solutions
for intances of non-trivial size. A straightforward IP based on pairwise disjointness of the
Θ(n2) segments between the n points has Θ(n4) constraints, making this IP hopelessly
intractable from a practical point of view, even for relatively small n. The main algorithm
engineering twist of this paper is to demonstrate how the combination of geometric insights
with refined methods of combinatorial optimization can still help to put together an exact
method capable of computing optimal MELT solutions for planar point sets up to n = 200.
Our key idea is to exploit specific geometric properties in combination with more compact
IP formulations, such that we are able to drastically reduce the number of constraints. On
the practical side, we combine two of the most powerful software packages for the individual
components: CGAL for carrying out the geometric computations, and CPLEX for solving
the IPs. In addition, we discuss specific analytic aspects of the speedup for random point
sets.

1 Introduction

Triangulating a set of points is one of the basic problems of Computational Geometry: given
a set P of n points in the plane, connect them by a maximal set of non-crossing line segments.
This implies that all bounded faces of the resulting planar arrangement are triangles, while
the exterior face is the complement of the convex hull of P .

Triangulations are computed and used in a large variety of contexts, e.g., in mesh
generation, but also as a stepping stone for other tasks. While it is not hard to compute
some triangulation, most of these tasks require triangulations with special properties that

∗A preliminary extended abstract appears in the Proccedings of ALENEX 2015 [16].
†Department of Computer Science, TU Braunschweig, 38106 Braunschweig, Germany. {s.fekete,

w.hellmann, m.hemmer, arne.schmidt, j.troegel}@tu-bs.de.

http://jocg.org/


JoCG 9(1), 1–26, 2018 2

Journal of Computational Geometry jocg.org

should be optimized. Examples include maximizing the minimum angle, and minimizing
the total edge weight or the longest edge length.

In this paper we consider the task of computing a triangulation whose shortest edge
is as long as possible. We show that this problem is NP-complete, resolving an open problem
stated by Edelsbrunner and Tan in 1991 [13]. As a corollary, it follows that (unless P=NP)
there cannot be any polynomial-time approximation that gets with a polynomial factor of
the optimum value. On the positive side, we develop, refine, and apply a framework that is
able to compute provably optimal solutions for point sets of size up to n = 200 and beyond.

Related Work. For a broad survey of triangulations in a variety of settings,
see the book [11] by De Loeara, Rambau, and Santos. Maximizing the minimum angle
in a triangulation is achieved by the Delaunay triangulation [12]; making use of Fortune’s
sweepline algorithm [19], it can be computed in O(n log n) time. Minimizing the maximum
edge can be computed in quadratic time, as shown by Edelsbrunner and Tan [13, 14]. One
of the most notorious problems regarding triangulations was finally resolved by Mulzer
and Rote [23], who proved that finding a triangulation of minimum total edge length (a
minimum-weight triangulation) is an NP-hard problem. As shown by Remy and Steger [27],
there is a QPTAS for this problem. The maximum-weight triangulation problem has also
been considered by Qian and Wang [25], who gave a linear-time approximation scheme for
the case of a point set in convex position, and by Chin, Qian, and Wang [6], who gave a
4.238-approximation algorithm. Computing a MaxMin Edge Length Triangulation has been
considered by Hu [20], who gave a linear-time algorithm for a convex polygon (and thus for a
sorted set of points in convex position), and proved that the graph version of the problem is
NP-hard. Schmidt [29] showed that finding a geometric MaxMin Edge Length Triangulation
is NP-complete in the presence of obstacles, such as inside of a polygon with holes; she also
showed that computing a MaxMin Edge Length Triangulation for a simple polygon can be
solved in polynomial time by making use of dynamic programming.

There are a number of other geometric optimization problems for which practical
solution methods based on integer programming have been developed. These include a va-
riety of different approaches for computing optimal solutions for different versions of Art
Gallery Problems [3–5, 8, 9, 15, 30], an exact approach for solving Chromatic Art Gallery
Problems [32], an exact method for solving NP-hard stabbing problems [24], where the
objective is to determine a matching, a spanning tree or a triangulation with a small stab-
bing or crossing number (see [17,18]), and an approach for computing optimal solutions for
wireless localization methods [10], which aims at computing location and angle for a small
number of wireless transmitters in a polygonal environment, such that the resulting inter-
section of communication regions allows distinguishing inside and outside of a building. All
papers combine geometric modelling with methods from combinatorial optimization that
allow non-trivial reductions to integer programs, which are then further refined and tuned.

Our Results. This paper presents the following results.

• We establish that MELT is NP-complete, even to approximate, resolving the long-
standing open problem by Edelsbrunner and Tan.
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• We show that a naive IP formulation based on finding a maximum independent set of
line segments has Θ(n2) variables and Θ(n4) constraints, for any set of n points in the
plane.

• We develop an alternative IP formulation based on identifying an independent hitting
set that yields IPs that are much smaller.

• We give a further reduction on IP size, based on using appropriate linear combinations
of valid constraints.

• We discuss a number of approaches for solving the resulting IPs, combining different
heuristic bounds and enumeration techniques.

• We show and discuss experimental results. These include optimal solutions for bench-
mark instances up to n = 200 based on random points in a unit square, as well as all
real-world geometric instances up to n = 200 in the well-known TSPLIB. Also included
is an experimental evaluation of different heuristics for upper and lower bounds, as
well as various implementation details.

• We discuss further extensions, implications, and analytic questions.

2 Preliminaries

We are given a set P of n points in the plane. We denote by E the set of all Θ(n2) line
segments (or edges) e connecting two points in P ; furthermore, X is the set of all pairs
ei, ej ∈ E that cross, i.e., share a point that is relatively interior to at least one of them.
For an edge e, `(e) is the Euclidean length of e.

Throughout this paper (in particular in Section 4) we assume without loss of gener-
ality that edges are presorted by length, i.e., for ei, ej ∈ E with i ≤ j, we have `(ei) ≤ `(ej).
Of particular interest for our problems are sets of edges that are shorter or longer than a
given threshold L; with presorted edges, this is described as follows. For an index threshold
b, the set E<b is the set of all edges ei with i < b, so `(ei) ≤ `(eb) for all i < b. Similarly,
E≥b is the set of all edges ei with i ≥ b. Finally, E[a,c[ is the set of all edges ei ∈ E with
i ∈ [a, c[.

We are also interested in specific sets of edges that cross. More specifically, an edge
ei separates another edge ej , if ei and ej share a point that is interior for both of them. We
denote by E∗≥b the set of all edges ei ∈ E≥b for which there is an edge ej ∈ E<b that is
separated by ei. As the presence of ei in a triangulation ∆ implies that ej cannot be part
of ∆, we say that ei is a separator of ej . For a threshold index b and an edge e with index
smaller than b, we denote the set of all separators ei with i ≥ b by E∗≥b(e). Furthermore,
the set of all crossing pairs of edges ei, ej ∈ E∗≥b is denoted by X∗≥b and X

∗
≥b(e) contains all

edges e′ with {e, e′} ∈ X∗≥b.
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3 NP-Completeness

3.1 An Auxiliary Problem

We start by showing that the following auxiliary problem is NP-complete.

Problem 3.1 Covering by Disjoint Segments (CDS)

Given: A specified set S of line segments (“stabbers”) in the Euclidean plane, and a
subset T of their intersection points (“targets”).

Wanted: A non-intersecting subset of the stabbers that covers all targets.

This problem is somewhat related to one considered by Megiddo and Tamir [22],
who showed that it is NP-hard to compute the minimum number of straight lines that are
necessary to cover a given set of points in the plane. Note, however, that CDS considers line
segments of finite length and that the solution is required to be a disjoint set of segments
covering the targets.

Lemma 3.2 The problem CDS is NP-complete.

Proof. We give a reduction from Planar 3SAT, which is the subclass of 3-satisfiability
problems for which the variable-clause incidence graph is planar—see Figure 1 (Left). To
this end, we start with an arbitrary planar 3SAT instance I in conjunctive normal form,
and use it to construct a CDS instance (S, T )I that is solvable iff I can be satisfied; see
Figure 1 (Right).

x4

c3 x1

x2 c1

x3c2

x4

c3 x1

x2
c1

x3c2

Figure 1: (Left) A planar straight-line drawing of the variable-clause incidence graph GI of
the Planar 3SAT instance I = (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4). (Right) A
CDS instance for the planar 3SAT instance I. Even variable segments are shown in bold,
odd variable segments are dotted; clause segments are shown in thin solid. Dots indicate
the target points. Labels indicate the original locations of the variable and clause vertices
in the (left) drawing of GI .

As a first step, the variable-clause incidence graph GI is embedded into the plane,
such that all vertices have integer coordinates bounded by O(n) and the resulting edges
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are represented by line segments; this can be achieved in polynomial time by a variety of
graph-drawing algorithms [31]. Let Vvar be the set of vertices that represent variables, let
Vcla be the set of vertices that represent clauses, and let Ecla be the set of line segments
that represent edges in GI . Scaling the resulting graph layout by a factor of Θ(n2) results
in an arrangement in which each pair of vertices are a distance of Ω(n2) apart.

Next we replace each variable vertex vx ∈ Vvar by an even cycle of O(n) intersecting
“variable” line segments surrounding the original vertex at distance Θ(n). Each cycle consists
of deg(v) “even” and deg(v) “odd” variable segments, where deg(v) is the degree of v; their
precise location and parity is chosen such that a segment vxvc in Ecla intersects an odd
segment iff variable x occurs in clause c in an unnegated fashion, and a segment vxvc in Ecla
intersects an even segment iff variable x occurs in clause c in a negated fashion. Let Svar be
the resulting set of variable segments. Moreover, let Scla be the set of line segments obtained
by shifting all segments in Ecla by a distance of Θ(n) towards its clause endpoint, such that
intersection with its corresponding variable segment is maintained. Let S = Svar ∪ Scla.

Now let Tvar be the set of intersection points of variable segments, let Tcla be the
set of intersection points of clause segments, and T = Tvar ∪ Tcla. We claim: There is a
subset C ⊂ S that covers all points in T iff there is a satisfying truth assignment for I.

For the “if” part, consider the truth assignment of a variable x. If x is set to be
true, choose all the odd variable segments for x; if x is set to be false, choose all the even
variable segments for x. In either case, all intersection points of the variable segments for
x are covered. Because every clause c must have a satisfying literal, picking the segment
that connects the clause vertex with the corresponding variable does not intersect one of the
selected variable segments.

For the converse “only if” part, consider a set C ⊂ S of non-crossing segments that
covers all points in T . First it is easy to see by induction that if for some x, C contains
any even segments, it must contain all even segments; otherwise, it must contain all odd
segments. This induces a truth assignment for all variables. Now it is easy to see that a
clause vertex can only be covered by a clause segment that does not cross a variable segment,
which implies a satisfying truth assignment. �

3.2 Hardness of MaxMin Edge Length Triangulations

Before exploiting the construction of Lemma 3.2 for the main result, we note a helpful
lemma; the proof is elementary.

Lemma 3.3 Let P be a set of points in the plane, and let pi, pj ∈ P . A triangulation ∆
contains the edge pipj iff there is no edge in ∆ that separates pi and pj.

Now we proceed to the main theorem.

Theorem 3.1 Given some positive number L, it is NP-hard to decide whether a set P of n
points in the plane has a triangulation with shortest edge of length at least L.
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Proof. We reduce CDS to MELT. Consider the arrangement constructed for the proof of
Lemma 3.2. Let Q be the set of all end points of segments in S, and T be the set of target
points. Note that the total number of points is in Θ(n), because the original planar graph
has Θ(n) edges and vertices. We perturb all points in Q ∪ T by appropriate powers of 1/2,
thereby modifying their coordinates by amounts between 2−cn and 2−(2c)n for a suitable
constant c > 0, such that the only triples of collinear points correspond to segments in
S with their covered points. Note that the resulting point coordinates still have encoding
size polynomial in n. For simplicity, we continue to refer to the resulting sets as T and
S. As a result, we get a set of points and line segments, such that any triangle formed by
three points or a segment and a point not on the segment has smallest height at least some
δ := 2−(2c)n > 0.

Furthermore, the segments covering a target point t ∈ T subdivide its neighborhood
into four (for t on a variable cycle) or six (for t at a clause vertex) sectors. Replace each point
t ∈ T by a pair of points t1, t2 at a small distance ε := 2−(3c)n � 2−(2c)n = δ in opposite
sectors. See Figure 2. (Note that for the purposes of this proof, simply guaranteeing ε� δ
is sufficient; for the following Corollary 3.4, the choice of ε guarantees an appropriate lower
bound on δ/ε.)

}

t2

t1 ε

Figure 2: Replacing the target points of the CDS instance by point pairs at distance ε.

We claim: there is a triangulation with shortest edge of length L greater than ε iff
the corresponding CDS instance can be solved.

For the “if” part, note that by construction, any segment that covers a target point
t must separate the corresponding edge t1t2. As all points in T are covered, all short edges
are separated, and the claim follows from Lemma 3.3.

Conversely, any edge t1t2 at distance ε corresponding to a target point t must be
separated. By construction (and the perturbation argument), an edge e that connects two
points p1 and p2 can only get within distance δ of t if e covers t in the CDS construction.
Thus, by picking all edges that intersect an edge of length ε we get a solution for CDS
covering all targets. �

We note an important implication of our construction.

Corollary 3.4 Let p(x) be some polynomial. Then the existence of a polynomial-time algo-
rithm that yields a p(n)-approximation for MELT implies P=NP.

Proof. In the proof of Theorem 3.1, choose ε as described, implying that δ/ε = 2cn > p(n).
Assume that there is a solution to CDS covering all targets but the approximation yields a
smallest edge in MELT with length ε. An optimal solution requires that the smallest edge
has length at least δ. Then the ratio of optimum and approximation is at least δ/ε, which is
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strictly greater than p(n). Therefore, a p(n)-approximation requires finding a triangulation
in which all ε-edges are separated. �

4 IP Formulations

4.1 Using Independent Sets

In a valid triangulation, edges must not cross, i.e., they may only meet on endpoints. For a
set P of n points in the plane, nc of which are on the convex hull of P , it is a straightforward
consequence of Euler’s formula that the number of edges in a triangulation must be precisely
3n−3−nc. This leads to the following an IP-formulation for MELT, where b is any threshold
index; we only check for feasibility, as the objective value L is captured as `(eb).

Integer Program 4.1

max 0 (1)
s.t. xei + xej ≤ 1 ∀{ei, ej} ∈ X≥b (2)∑

ei∈E≥b

xei = 3n− 3− nc (3)

xe ∈ {0, 1} ∀e ∈ E≥b (4)

Now it is straightforward to establish the following.

Theorem 4.2 We can solve MELT by finding a maximum index b for which IP 4.1 is
feasible.

The number of variables in this IP corresponds to the number of (long) segments,
so it is in Θ(n2). The number of constraints corresponds to the number of segment pairs
that cross, which is the number of convex 4-tuples in P . It is straightforward to see that
this number is sometimes Ω(n4) and never worse than O(n4); it follows from a deep result
of Lovász et al. [21], and earlier by Scheinerman and Wilf [28] that it is never smaller than
Ω(n4), implying Θ(n4) constraints. Also note that the number of IPs to be considered
depends on additional geometric aspects, which are further explored and exploited in the
following.

4.2 Using Independent Hitting Sets

A crucial observation for greatly reducing the size of each IP formulation is based on
Lemma 3.3, which was already used for establishing the NP-completeness of MELT: A
triangulation ∆ contains the edge ej , iff there is no edge ei in ∆ that separates ej . There-
fore, instead of focusing on the long edges and trying to find a non-crossing set of maximum
cardinality, we can focus on the short edges and try to find an independent, non-crossing
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set of long segments that separates all of them. Once such a separating set has been es-
tablished, completing it into any triangulation (a straightforward postprocessing task) will
always yield an optimal MELT solution.

This yields the following type of IP, for any threshold index b, and thus threshold
length L := `(eb). (For an illustrative example for the rest of this subsection, the reader is
referred to Figures 3 and 4.)

Integer Program 4.3

max 0 (5)
s.t. xei + xej ≤ 1 ∀{ei, ej} ∈ X∗≥b (6)∑

ei∈E∗≥b(ej)

xei ≥ 1 ∀ej ∈ E<b (7)

xei ∈ {0, 1} ∀ei ∈ E∗≥b (8)

From the above argument we can conclude the following.

Theorem 4.4 We can solve MELT by finding a maximum value b for which IP 4.3 is
feasible.

Proof. Let b∗ be the index of the smallest edge in an optimal solution of MELT. Then for
each edge ei with i < b∗, there is an edge ej with j ≥ b∗ separating ei. Choosing xej = 1
gives a valid setting fulfilling all constraints in IP 4.3: None of the chosen edges cross each
other (constraint (6)), and for any edge ei we have at least one edge ej with j ≥ b∗ and
xej = 1 (constraint (7)).

For the converse, consider a solution for IP 4.3 for some b. Computing a constrained
Delaunay triangulation with all chosen edges yields a triangulation in which none of the
edges ei with i < b is contained. This can be done for any b for which IP 4.3 has a solution.
�

In practice, IP 4.3 promises to be considerably smaller than IP 4.1: Typically, the
relevant (i.e., small) choices of b make b − 1 = |E<b| relatively small, and the number
m≥b := |E∗≥b| of long edges intersecting these small edges is also small compared to m, i.e.,
the total number of edges. However, we still have O(m2

≥b) constraints of type (6). Using
an IP reformulation and ke(b) := |X∗≥b(e)| for any e ∈ E∗≥b, we can condense families of
constraints into one, leading to a further reduction to O(m≥b) constraints.

http://jocg.org/
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Integer Program 4.5

max 0 (9)

s.t. ke(b) · xe +
∑

ei∈X∗≥b(e)

xei ≤ ke(b) ∀e ∈ E∗≥b (10)

∑
ei∈E∗≥b(e)

xei ≥ 1 ∀e ∈ E<b (11)

xei ∈ {0, 1} ∀ei ∈ E∗≥b (12)

Theorem 4.6 We can solve MELT by finding a maximum index b for which IP 4.5 is
feasible.

Proof. We show that IP 4.5 is equivalent to IP 4.3. This only requires proving that
any solution to IP 4.5 satisfies all constraints (6), and any solution to IP 4.3 satisfies all
constraints (10).

For the first part, assume that some feasible solution of IP 4.5 violates a constraint
of type (6), so there are two intersecting edges e, e′ ∈ X∗≥b with xe = xe′ = 1; however,
this implies that the left-hand side of constraint (10) for e becomes at least ke(b) + 1, as
e′ ∈ X∗≥b(e), a contradiction.

For the converse, consider a feasible solution of IP 4.3 and observe that a constraint
(10) for some edge e ∈ E∗≥b can only be violated if xe = 1 as well as xe′ = 1 for some
e′ ∈ X∗≥b(e); this implies that {e, e′} ∈ X∗≥b, and the corresponding constraint (6) of IP 4.3
is violated, a contradiction.

All previous IPs test whether it is possible to find a triangulation for one specific
threshold index. If we have a whole interval [a, c[ of indices that contains the critical one
(so there is a triangulation for threshold value a, but not for threshold value c), then we can
compute this largest feasible index as follows.

Integer Program 4.7

max b (13)
s.t. xei · i+ (1− xei) · c ≥ b ∀i ∈ [a, c[ (14)

ke(b) · xe +
∑

ei∈X∗≥a(e)

xei ≤ ke(b) ∀e ∈ E∗≥a (15)

xe +
∑

ei∈E∗≥a(e)

xei ≥ 1 ∀e ∈ E[a,c[ (16)

∑
ei∈E∗≥a(e)

xei ≥ 1 ∀e ∈ E<a (17)

xei ∈ {0, 1} ∀ei ∈ E∗≥a (18)
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Thus, b is the largest possible index for which there is a feasible triangulation: it
marks the first index for which xei = 1, i.e., for which using ei cannot be avoided. Con-
straints (14) enforce that this index is indeed met, as it sets a non-critical bound of c for all
unused edges. The additional Constraint (16) ensures that an edge ei with i ∈ [a, c[ is either
picked for the triangulation, or separated by another edge. From this and Theorem 4.6, we
conclude the following.

Theorem 4.8 If we know that the critical index b ∈ [a, c[, we can solve MELT by solving
IP 4.7.

Smaller edges
Edges of MELT
Min edge of MELT

Figure 3: A solution of MELT for an instance with 50 random points in the plane. The
smallest edge of the triangulation has index 24. This smallest edge (orange) has possible
separating edges, but all these edges cross other separators of even smaller edges.

4.3 Finding the Critical Index

Exploiting the above IPs for computing the optimal MELT value hinges on what set of
indices is examined, either because it determines the number of IPs that need to be tested
for feasibility (e.g, when using IP 4.3 or IP 4.5), or because it determines the size of the
IP that needs to be optimized (i.e., when using IP 4.7). To this end, we give a natural
upper bound and an improved one that both decrease the set of indices to be searched.
Furthermore, we describe different alternatives for evaluating the candidate indices.

4.3.1 Heuristic Upper Bounds

All edges on the convex hull of P must be part of any triangulation of P , so the length of a
shortest edge on the convex hull is an upper bound for the optimal value b∗. However, this
hull bound bCH tends to be far from the optimal bound; see Figure 17. By Lemma 3.3, any
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Smaller edges
Edges of MELT
Min edge of MELT

Figure 4: A solution of MELT for an instance with 200 random points. The smallest edge
of the triangulation has index 82 and lies on the convex hull, so it matches the hull bound.

non-separated edge must be contained in any triangulation of P , so the refined non-separated
edge bound b̂ is the index of the smallest such edge.

4.3.2 Search Schemes

We have developed and evaluated a number of different search schemes, described in the
following. We make use of the non-separated edge bound b̂.

Pedestrian Approach. Starting with b = 1, we perform feasibility tests, increas-
ing b by 1 while the test is feasible. (The hope being that the first tests are small and fast
to carry out.)

Normal Approach. We simply use the optimization IP 4.7 with the index interval
[a, c[=: [1, b̂]. Then b∗ is computed in one step, but on a relatively large IP.

Binary Approach. We perform a binary search on the index interval, starting
with [1, b̂]. In each binary step, a feasibility test based on IP 4.5 is used.

Doubling Approach. Starting with index b = 1, a sequence of feasibility tests
with IP 4.5 is carried out. As long as this turns out to be feasible, the index is doubled, but
not beyond b̂; as soon as a test comes back as infeasible, we have an interval containing b∗.
For this interval, b∗ is computed with one optimization IP of type 4.7. If we end up with b̂
being feasible, b∗ = b̂.

Combined Approach. We start as in the doubling approach, until an interval
with b∗ is identified. This is evaluated by a binary search, also based on feasibility tests.
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Smaller edges
Edges of MELT
Min edge of MELT

Figure 5: A solution of MELT for an instance with 200 random points. The smallest edge
of the triangulation has index 66 and lies close to the convex hull, without a crossing edge,
so it matches the non-separated bound.

5 Implementation Framework

In the following, we describe the technical details of our experiments. These can be sub-
divided into (1) the computation of all geometric objects and their relations and (2) the
solution of the integer programs. Component (1) consists of geometric procedures that are
all of polynomial complexity: either as pre-processing steps (such as generating the seg-
ments of the point set, their intersections) or as post-processing (for generating the final
triangulation); on the other hand, component (2) solves the NP-hard class of IP instances.
It is essential to use appropriate tools for both parts.

5.1 Geometric Pre- and Postprocessing

All geometric computations were carried out with CGAL, the Computational Geometry
Algorithms Library [1], a powerful open-source C++ library for computational geometry. One
of its strengths is the ability to generate robust and exact output, even in the presence of
sensitive geometric operations, with the option of providing fast qualitative results if no
precise coordinates are needed.

5.1.1 Kernel

Once the set of input points is given, there are no actual geometric constructions, because
triangles and edges are simply combinatorial objects defined on top of the initial points.

http://jocg.org/
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Therefore, it is sufficient to use the Exact_predicates_inexact_constructions_kernel.
It uses inexact double arithmetic to represent geometric objects (such as points), but guar-
antees correct decisions for all predicates, e.g., whether two segments intersect or not, which
is precisely what we need for our purpose.

5.1.2 Convex Hull

The naive bound is based on computing the shortest edge on the convex hull. Making use
of convex_hull_2, the time for this step is basically negligible.

5.1.3 Intersections

The most critical part of geometric pre-processing is to compute the set of relevant inter-
secting edge-pairs. We made use of do_intersect, which decides whether two segments
intersect. As we only need this Boolean information, using this subroutine is superior to
actually computing the precise intersection point. In addition, we also made use of a more
sophisticated approach based on Axis-Aligned Bounding Box trees (AABB-trees) [2], which
is also available in CGAL.

Definition 5.1 An axis-aligned bounding box is a bounding area. This means, it is a
geometric box B = {pmin, pmax}, with sides parallel to the axes, which contains a set of
geometric objects S. The box B is defined by two points pmin and pmax, which are the lower
left corner and the upper right corner of the box, such that B contains S completely and is
minimal in the area.

This allows us to define bounding boxes of edges and sets of edges.

Definition 5.2 An axis-aligned bounding box B over a set of edges E with vertex set V is

B := {pmin, pmax}, with pmin :=

(
minv∈V x(pv)
minv∈V y(pv)

)
and pmax :=

(
maxv∈V x(pv)
maxv∈V y(pv)

)
.

We arrange these axis-aligned bounding boxes to create a data structure that speeds
up the task of determining intersecting edges.

Definition 5.3 An AABB-tree is a tree structure that stores a set of geometric objects;
these are stored in the leaves. Each inner node is associated with an axis-aligned bounding
box that contains all objects in the corresponding subtree. The AABB-tree of edges is a
hierarchical organization of axis-aligned bounding boxes in which all leaves are edges.

Figure 6 shows an example of an AABB-tree. To compute all intersecting edges of
a given edge q, we start a query comparing q with the data structure. We start at the root
of the tree (an axis-aligned bounding box containing all edges of the graph) and test if q
intersects with any of the children. We recurse on each such child until we reach the leaves.
A final intersection test with all reached leaves gives us a list of edges that intersect with q.
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This implies that axis-aligned bounding boxes that do not intersect q are filtered
out; moreover, the whole subtree of the node containing this axis-aligned bounding box is
not tested for intersections. This reduces the number of intersection tests and thus the time
needed to compute all intersections (see Figure 16).

A

B

C

(a) The given objects

A

B

C

(b) The AABBs of the objects

�

�

�

A

�

C

�

B

(c) The AABB-Tree

Figure 6: An example for an AABB-tree with 3 objects. Template taken from: [7]

5.1.4 Triangulation

After we solve an instance of MELT, we have the indices of a set of (non-crossing) edges,
which separate the smallest segments in the point set. These are completed into a triangu-
lation with the help of Constrained_Delaunay_triangulation_2.

5.1.5 Point Generation

For the random instances, points are generated uniformly at random within a unit square
with the help of the CGAL operation Random_points_in_square_2. The real-world bench-
marks are based on the geometric instances of the TSPLIB benchmark library [26].

5.2 Solving the IPs

The second component was implemented based on CPLEX, which is a powerful commercial
software tool for solving Linear and Integer Programs. We made use of the Concert-API of
CPLEX, which contains all libraries, methods and calls for creating and solving problems
in C++.
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6 Experimental Results

6.1 Setup

Our experiments were carried out on a machine with 64-Bit Ubuntu 16.04 LTS, using 32
GB RAM, and a 3.4 GHz Intel Core i7-4770 CPU, a processor with four physical and four
virtual cores. More than one core was only used for large and complex aspects of solving an
IP.

The program itself was compiled with the GNU GCC 5.4.0 compiler for C++. It uses
the following options: -O3 -frounding-math, used libraries are CGAL 4.8.1 and CPLEX
12.6.2.0. The option -O3 optimized the whole program when possible and the option
-frounding-math is needed for CGAL. Simple-SVG is available in version 1.0.0, but is
not important for finding a MELT-solution.

For each size n ∈ {10, 20, . . . , 200}, we generated 100 instances uniformly at random
within a unit square. Every instance was run for at most 30 minutes; in case of a timeout,
this was recorded. As a consequence, average times for inferior methods (with a larger
number of timeouts) are lower bounds for the actual runtimes, so the superior methods
(with virtually no timeouts) fare even better in comparison.

In addition, we considered non-random, real-world point sets from the TSPLIB [26].
We solved all geometric instances up to n = 200, along with many larger ones. See Figures 8
and 9 for solutions of two instances. As the two examples show, some of the TSPLIB
instances are more uniformly distributed than random point sets (e.g., Figure 8), while
others are more clustered (e.g., Figure 9). In addition, these instances may have some
degeneracies, such as many edges of the same length. Nevertheless, the results are of similar
quality; see Figure 7 for a graphical comparison to the random instances.

6.2 Detailed Comparisons

6.2.1 Comparing IP 4.3 and IP 4.5/4.7

We start by comparing the consequences of using IP 4.3 versus IP 4.5, based on normal
index search. (For this purpose, we turn IP 4.3 into an optimization version analogous
to 4.7.) Figure 10 gives an overview of the time spent by CPLEX, with aborted instances
marked by a 30-minute timestamp. Figure 11 shows the overall average time per instance for
solving the IPs, while Figure 12 compares the number of instances (out of 100) with timeout.
Clearly, IP 4.7 is greatly superior. The fact that the time used by IP 4.5/4.7 is sometimes
worse or almost equal to the time of IP 4.3 is due to the number of aborted instances. With
IP 4.5/4.7 we can solve a larger number of hard instances, which has a negative effect on
the runtime compared to IP 4.3, for which the set of solved instances contains a larger share
of easier ones. As a consequence, only IP 4.5/4.7 is used in further experiments. (Note that
IP 4.1 is quite terrible, so we are not showing its numerical results.)
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Figure 7: Comparison of TSPLIB instances with average times (including time for parsing,
finding intersections, solving IPs, etc.) for random instances using the doubling approach.
(Error bars indicate quartiles.)

Smaller edges
Edges of MELT
Min edge of MELT

Figure 8: A solution of MELT for the rat195 instance with 195 points of the TSPLIB. The
smallest edge of the triangulation has index 15. Also the points of this instance are more
evenly distributed.
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33

Smaller edges
Edges of MELT
Min edge of MELT

Figure 9: A solution of MELT for the d198 instance with 198 points of the TSPLIB. The
smallest edge of the triangulation has index 3 and lies on the convex hull, so it matches the
hull bound. Also this instance has many edges of the same length.

6.2.2 Comparing Index Searches

While the better performance of IP 4.7 was to be expected a priori, the best choice for
determining the optimal index is not clear at all, as it depends on both the typical critical
index, as well as the time spent on an IP feasibility check and on solving an optimization
IP. Clearly, a small index range implies both a small number of possible choices (and thus, a
small set of IPs that need to be checked), as well as relatively small individual IPs. Somewhat
surprisingly, it seems that the doubling approach presents the best compromise between
carrying out many relatively cheap IP feasibility tests and few expensive optimization IPs.
As can be seen from Figure 13, this advantage is significant, but much less pronounced than
between the different IPs. (The simple pedestrian approach was significantly worse than the
others, so it is not shown.)

6.2.3 Comparing Program Components

As discussed in the description of our program components, we used different twists for
improving both the geometric and the optimization components. How much improvement
could be obtained from further tuning, and which components should be targeted? Figure 14
shows how much time on average was spent on each component, “other” summarizes the
time for all other geometric pre- and postprocessing operations (such as reading the input,
creating the graph, sorting the edges by size, computing the hull bound, triangulating the
points, recording the output), and other overhead; in four of the cases shown in Figure 15,
this included non-trivial swap times due to RAM limitations. It can be seen that the time
spent on optimization is not more than 3-4 times bigger than the time spent on mostly
geometric computations. This indicates that for the full range of instance sizes, aiming for
a moderate further speedup should target at the IPs, while significant speedup can only be
achieved by tuning both geometry and optimization.
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Figure 10: Time of running CPLEX for various instance sizes, using the normal approach
for index search. For each size (corresponding to the number of points), 100 instances were
evaluated; these are sorted from 1 to 100 by increasing runtime, with a cutoff at 30 minutes.
The top figure shows the results for IP 4.3, while the bottom visualizes the results for the
improved IP 4.5/4.7; clearly, the latter is significantly better.
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Figure 11: Average time for solved instances spent on running CPLEX with normal ap-
proach.
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Figure 12: Number of aborted instances for both IPs, out of 100 instances.
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Figure 13: Times spent by CPLEX for the different index searches on random instances.
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Figure 14: Average time (for random 100 random instances for each size) of the program
components.
Left bars: Normal approach, based on IP 4.7
Right bars: Doubling approach, with AABB-Tree and IP 4.7
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Figure 15: Graph for the time for all 100 solved random instances with 200 points. For a
better overview, the y-axis is scaled logarithmically.
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Figure 16: Average time for finding intersections in random instances. Bars indicate the
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random instances.
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Figure 18: Average indices (for 100 random instances for each size) of the non-separated
edge bound b̂ for random sets with up to 700 points.
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7 Discussion and Conclusions

We have demonstrated how combining geometric insights with a number of optimization
and implementation ideas can be used for solving non-trivial instances of a natural geomet-
ric optimization problem that is NP-hard, even to approximate. A possible improvement
could arise by using more sophisticated methods for solving the involved IPs, e.g., by iden-
tifying and employing appropriate cutting planes of the LP relaxation. As mentioned in
the comparison of time spent on running different program components, a larger speedup
would require also improving the geometric components; a possible line of attack could be a
combination of column generation using only subsets of geometric constraints. This requires
a more sophisticated interleaving of program components, so it is not clear how much this
would help.

Clearly, one of the critical aspects concerns the typical size of the longest non-
separated edge: if this tends to be relatively small, the overall runtime will also be not
too large, as only a relatively small number of short edges need to be considered. Moreover,
if the gap between this upper bound b̂ and the optimal index b∗ is small, an index search
method such as the doubling approach may usually end up with a relatively small remain-
ing interval for the final IP 4.7, and thus with a small overall runtime. See Figure 17 for
a comparison of bounds and optimal indices. It appears that the expected values both for
b̂ and b∗ grow relatively slowly with n: a linear regression of 70,000 random instances with
up to 700 points yields a growth of close to n/10, out of Θ(n2) total edges; see Figure 18.

Proving analytical results for these expected values is an interesting challenge. Note
that it is an easy exercise (based on standard collision arguments from hashing) to prove
that the expected length for the shortest edge between n points chosen uniformly at random
from a unit square is Θ(1/n). Therefore, establishing the same bound for the shortest non-
separated edge would imply that the expected value of the optimal value b∗ is also Θ(1/n).
We conjecture that this is the case, based on the empirical evidence shown in Figure 18.

Finally, we remark that our techniques for MELT can be used as a first step for
computing other types of triangulation problems in which no edges below a certain bound
must be used. To some extent, this is already present in our completion routine for turning
a set of non-crossing separators into a triangulation, as we obtain a constrained Delaunay
triangulation.
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