
Discrete Comput Geom 7:329-346 (1992) Discrete & Computational

Geo etry
K) 1992 Spnnger-Verlag New York lnc

Polygon Triangulation in O(n log log n) Time with
Simple Data Structures*

David G. Kirkpatrick, ~ Maria M. Klawe, 1 and Robert E. Tarjan 2

1 Department of Computer Science, University of British Columbia,
Vancouver, British Columbia, Canada V6T 1Z2

2 Department of Computer Science, Princeton University,
Princeton, NJ 08540, USA, and
NEC Research Institute

Abstract. We give a new O(n log log n)-time deterministic algorithm for triangula-
ting simple n-vertex polygons, which avoids the use of complicated data structures.
In addition, for polygons whose vertices have integer coordinates of polynomially
bounded size, the algorithm can be modified to run in O(n log* n) time. The major
new techniques employed are the efficient location of horizontal visibility edges that
partition the interior of the polygon into regions of approximately equal size, and a
linear-time algorithm for obtaining the horizontal visibility partition of a subchain
of a polygonal chain, from the horizontal visibility partition of the entire chain. The
latter technique has other interesting applications, including a linear-time algorithm
to convert a Steiner triangulation of a polygon into a true triangulation.

1. Introduction

Let P be a simple po lygon with n vertices. The diagonals of P are the open line
segments whose endpoints are vertices of the polygon and that lie entirely in the
interior of P. A triangulation of P is a part i t ion of its interior into n - 2 triangles
by adding n - 3 nonintersecting diagonals. The problem of tr iangulating a simple
polygon, that is, determining the set of nonintersecting diagonals, has at t racted
considerable at tention in computa t iona l geometry literature and elsewhere.

* This research was partially supported by the following grants: NSERC 583584, NSERC 580485,
ONR-N00014-87-0467, and by DIMACS, an NSF Science and Technology Center (NSF-STC88-
09648).

330 D.G. Kirkpatrick, M. M. Klawe, and R. E. Tarjan

The practical motivation for developing efficient triangulation algorithms is
based on the widespread applications of this problem in related disciplines such
as computer graphics [FM], [FFR], [L], pattern recognition IT1], and computa-
tional morphology IT2], IT4] as well as its role as a fundamental building block
in the solution of a variety of (superficially) more complex problems in computa-
tional geometry such as geometric decomposition [FM], [LTL], visibility [C1],
[GHL +], shortest path [GHL +], separability [BT], and subdivision precondition-
ing lEGS], [K] problems.

An O(n tog n) upper bound on the complexity of triangulating arbitrary simple
polygons was first established by Garey et al. [GJPT]. Their algorithm is based
on a linear-time method for triangulating monotone polygons. Like the subsequent
triangulation algorithm of Chazelle [C1], it involves an explicit sorting step. The
first improvements on the O(n log n) bound came by expressing the complexity in
terms of structural characteristics of the input polygon (such as the number of
reflex angles [HM], [FM] or its sinuosity [CI]) or the output IT3]. A separation
between the worst-case complexities of polygon triangulation and sorting was not
established, however, until Tarjan and Van Wyk [TV] presented an O(n log log n)
algorithm for the former. Subsequently, Clarkson et al. [CTV] described a
randomized algorithm that gives an O(n log* n) upper bound on the expected time
complexity of the problem.

Other notable developments expanded the class of families of simple polygons
for which linear-time algorithms were known [TA], established a family of
problems which are linear-time equivalent to polygon triangulation [-FM], and
specified some fundamental primitives out of which efficient triangulation algo-
rithms could be constructed [C1], [CI], [HMRT], [FNTV].

Very recently [C2], Chazelle has given an O(n) deterministic algorithm, thus
finally settling the question of the asymptotic complexity of polygon triangulation.
Chazelle's result is very beautiful and unquestionably will stand as one of the
landmarks of computational geometry for many years to come. Although the
underlying ideas in ChazeUe's algorithm are both simple and elegant, at least in
its current state, the algorithm uses some fairly substantial machinery, making an
intuitive understanding of its correctness a fair challenge for the nonexpert.

Our contributions in this paper are best appreciated in conjunction with these
related results. We present a new O(n log log n)-time algorithm for triangulating
simple polygons that uses only elementary data structures and is formulated in
terms of three basic geometric subproblems (two of which, including planar
subdivision search, have been identified and studied previously), each of which is
of interest in its own right.

Like all of the recent approaches to triangulation [CI], [FM], [TV], [CTV],
[C2] ours focuses on the problem of constructing the horizontal visibility partition
(HVP) of the edges of a given polygonal chain, i.e., the partition of the plane
obtained by adding horizontal edges connecting each vertex to the closest point
on the chain on each side if such a point exists, and to a point at infinity otherwise.
This problem is well known to be linear-time equivalent to the problem of
triangulating a simple polygon [FM], [CI]. Two natural operations on HVPs
form the building blocks of our algorithm. First we need to be able to construct

Polygon Triangulation in O(n log log n) Time with Simple Data Structures 331

the HVP of a polygonal chain P given the HVP of some prefix subchain P1 of P
together with the HVP of the remainder P\P1. We refer to this as a merging of
HVPs. Chazelle and Incerpi [CI] show that merging of HVPs can be done in time
linear in the size of the input partitions. They use this as the merge step in a
natural divide-and-conquer algorithm for building the HVP of an arbitrary chain.
We use merging in a fundamentally different way. Our algorithm uses a balanced
divide-and-conquer approach somewhat like that of [TV], but our splitting is
achieved without Jordan sorting and without the use of finger search trees, which
are (both conceptually and practically) the most demanding components of the
earlier algorithm.

In addition to the merge operation of HVPs we also need to perform its inverse,
which we call a splitting operation. Specifically, given an HVP for P we need to
construct the HVP for P1, a prefix of P. We show that this can also be done in
linear time.

The splitting operation can be viewed as the problem of updating an HVP
upon the removal of certain of its nonhorizontal edges. Exploiting the linear-time
equivalence between polygon triangulation and HVP construction, our splitting
algorithm has the following interesting implication for the dynamic maintenance
of arbitrary point-set triangulations: given a triangulation T of a point set S and
a subset D _ S such that the connected components of the set formed by taking
the union of the triangles (including their interiors) adjacent to the vertices in D
are simply connected, it is possible to update T to a triangulation of S\D in time
O(degr(D)) where degr(D) denotes the sum, over all vertices v in D, of the degree
of v in T. This immediately implies that the problem of triangulating a simple
polygon allowing Steiner points is linear-time equivalent to the (Steiner-point-free)
polygon triangulation problem.

The remainder of the paper is organized as follows. Section 2 gives the
O(n log log n)-time algorithm for computing the HVP of a simple polygon with n
vertices. Section 3 describes the linear-time HVP splitting algorithm. In Section 4
we show how the algorithm can be modified to run in O(n log* n) time for polygons
whose vertices have integer coordinates of polynomially bounded size.

2. The HVP Algorithm

In this section we give our O(n log log n) algorithm for computing the HVP of a
simple polygon with n vertices. We work with a variant of HVP called the
wrap-around partition, and we compute the wrap-around partitions of directed
polygonal chains as ,veil as polygons. Moreover, we assume that the chains and
polygons have no self-crossings, and are nondegenerate in the sense that two
distinct vertices cannot have the same vertical coordinate. None of these modifica-
tions alters the asymptotic complexity of the problem.

If e is a directed edge, the positive side of e is its right-hand side with respect
to its direction. The positive side of a directed chain is defined analogously. The
horizontal line through a vertex on a directed chain C may intersect C on its
positive sides at that vertex from zero, one, or two directions (see Fig. 1).

332 D.G. Kirkpatrick, M. M. Klawe, and R. E. Tarjan

Fig. 1

Wrap-around partitions regard chains and polygons as being embedded on an
infinite vertical cylinder, in which horizontal lines going off to infinity wrap-around
and reappear on the other side. The one-sided wrap-around partition of a directed
polygonal chain C is the partition of the cylinder obtained by adding, for each
vertex v of C, each horizontal line (if any) which starts at v and continues on a
positive side of C at v, until it intersects C again. Note that horizontal lines will
extend out on both sides of v if both sides of v are on the positive side of C as in
the case of the vertex labeled 2 in Fig. 1, and we also adopt the convention that
lines go out from both sides when v is an endpoint of the chain C. If C is a polygon
directed so its positive side is the polygon's interior side, then the one-sided
wrap-around partition is the usual HVP of the polygon. The doubling of a directed
chain is the simple polygon obtained by taking the concatenation of C with a
slight perturbation of its reversal, with the perturbation chosen so that the
doubling satisfies the nondegencracy condition and so that the perturbed reversal
lies on the negative side of C. Note that with the exception of the arbitrarily narrow
region trapped between C and its perturbed reversal, the interior of the doubling
of C is everything outside C. The two-sided wrap-around partition adds both sets
of horizontal edges from the one-sided partitions of C and its (unperturbed)
reversal. Although our construction could be modified to deal only with one-sided
wrap-around partitions, a number of the steps seem both simpler and more
intuitive in the context of two-sided partitions. For this reason we use the
"doubling" trick to move between one-sided and two-sided partitions. For any
point x on a chain C, its horizontal neighbors are the points on the intersection
of C with the horizontal line through'x which are closest to x on each side. The
interior horizontal neighbors of a point on a polygon arc defined analogously.
These definitions are illustrated in Fig. 2. For convenience, we abbreviate wrap-
around partition by WP.

Doubling One-sided wrap-around Two-sided wrap-around

Fig. 2

Horizontal neighbom's

Polygon Triangulation in O(n log log n) Time with Simple Data Structures 333

We use the term length of a chain or polygon to mean the number of its edges.
A k-uniform partition of a chain or polygon is a partition (with all divisions
occurring at vertices) into segments of length between k/2 and k inclusive, such
that we know the two-sided WP of each segment in the partition. Note that we
use the term segment to mean a subchain of a chain rather than, as is often the
case, as an abbreviation for line segment. The number of segments in a k-uniform
partition of an r-vertex chain or polygon is between r/k and 2r/k. The main
component of our algorithm is the following theorem.

Theorem 2.1. Suppose k >_ (r/2) 2/3. Given a k-uniform partition of an r-vertex
nondegenerate polygon P, we can compute the WP of the interior of P in O(r) time.

Given Theorem 2.1, it is easy to give an O(n log log n)-time algorithm for
computing the two-sided WP of an n-vertex nondegenerate chain. We partition C
into segments of length between nZ/3/2 and n 2/3, and use our algorithm recursively
to compute the two-sided WP of each of the segments. Next, by Theorem 2.1,
regarding the doubling of C as a 2n-vertex polygon, P, in O(n) time we compute
the WP of the interior of P, from which we can easily obtain the two-sided WP
of C in O(n) time by correcting the perturbations made in forming the doubling
of C. (Recall that the interior of the doubling of C is essentially everything outside
C and hence the WP of P is, modulo the perturbations, the two-sided WP of C.)
The time, T(n), required by this algorithm satisfies the recurrence T(n)=
O(n) q- ~_,i T(ni) where ~ i ni = n and ni <_ n 2/3, which implies T(n) = O(n log log n).

In the assumption k >_ (r/2) 2/3 in the statement of Theorem 2.1, the use of r/2
instead of r is a technicality caused by the fact that the theorem is applied to the
doubling which has twice as many vertices as the original chain. The choice of
two-thirds as the exponent is arbitrary, and could have been any constant strictly
between one-half and one. The need to use an exponent less than one in order to
achieve the bound T(n)= O(n log log n) is obvious. The requirement that the
exponent be greater than one-half will become clear later, namely in the proof of
Lemma 2.2.

Proof of Theorem 2.1. The overall idea is as follows. The theorem is proved by
induction on r. We fix a constant ro, specified in Lemma 2.6, and for r < r o
compute the WP of P by merging together all the WPs of the segments in the
uniform partition. Thus we assume r >_ r o. We wish to partition the interior of P
into regions by adding horizontal edges joining some of the vertices on P to their
interior horizontal neighbors. We call these regions chunks, and compute the WP
of P by computing the WP of each chunk separately. To achieve the O(r) running
time, we want the partition into chunks to have the property that at least a fixed
fraction of the vertices of P will lie on regions whose WP we can compute easily
from the WP information about the segments. To do this we introduce the notion
of special point. A point x is a special point of a segment in a k-uniform partition
of P if it has the following two properties:

(i) x has an interior horizontal neighbor h(x) in P such that if P is cut at x
and h(x), both the resulting subpaths will contain at least k/36 of the vertices

334 D G. Kirkpatrick, M. M. Klawe, and R. E. Tarjan

Fig. 3

I segment endpoint
• special point

horizontal neighbour of
O special point

~ ,~ chunk

of P. We call h(x) the special horizontal neighbor of x (note that x might
have more than one horizontal neighbor).

(ii) If the segment is cut at x both the resulting subsegments will contain
(counting x if x is a vertex) at least k/36 of the vertices of the segment.

The complete proof of the theorem depends on several straightforward facts
about special points, k-uniform partitions, and chunks, which we prove later in
this section. In particular, by proving that each segment contains a special point
(Lemma 2.5), that we can identify a special point in a segment in O(k) time (Lemma
2.5), and that we can find the special horizontal neighbors in P of all the special
points in O(r) total time (Lemma 2.2), we see that in O(r) time we can partition
the interior of P into chunks by adding the horizontal edges joining each special
point to its special horizontal neighbor. Figure 3 illustrates the segments, special
points, and chunks as they are used in the algorithm.

The boundary of a chunk alternates between horizontal edges and pieces of P,
where each such piece is the concatenation of at most two subsegments of the
segments in the uniform partition. We call the number of horizontal edges on the
boundary the degree of a chunk. We call a chunk 9ood if it has degree at most 2,
and bad otherwise. Using the linear-time splitting and merging algorithms, we can
compute the WP of a good chunk in O(k) time, and hence we compute the WPs
of all the good chunks in O(r) time, Using the linear-time splitting and merging
algorithms, we show that in O(r) time we can obtain a k-uniform partition of the
boundary of each bad chunk. The bad chunks are degenerate since any pair of
vertices forming the endpoints of an added horizontal edge obviously have the
same vertical coordinate, but the bad chunks can easily be made nondegenerate
by slightly perturbing one endpoint of each horizontal edge. After doing this, we
then complete the computation of the WP of P by applying Theorem 2.t
inductively to each bad chunk.

Finally, in order to prove that the total running time used in the computation
of WP of P is O(r), it suffices to show that the total number of vertices lying on
the boundaries of bad chunks is less than cr for some fixed constant c < 1, which
we do in Lemma 2.6. []

We now prove the lemmas needed for Theorem 2.1.

L e m m a 2.2. Given any set of O(r/k) points x 1 x~ on P we can find their interior
horizontal neiohbors in O(r) time.

Polygon Triangulation in O(n log log n) Time with Simple Data Structures 335

Proof. Let Si be the segments in the uniform partition, and let WP(S3 denote the
WP of S~. By using planar point location lEGS], in O(r) time we create a data
structure for each WP(S3, so that, for any point x and each i, in O(loglSil) time
we can locate the region of WP(S3 containing x. We next find, in

O((r/k) 2 log k) = O(r)

time (since k > (r/2)2/3), the interior horizontal neighbors in P of each x~ as follows.
For each x~ and each Sj we find the region in WP(Sj) containing x~ and the two
edges, L~(x~) and Rj(x3, which xi sees to its left and right, respectively, in the region.
Using the planar point location data structures this can be done in O((r/k) 2 log k)
time in total. Now for each x~, depending on where the interior of P is with respect
to x~, we examine one or both of the two sets of edges {L~(xi)} and {Rj(x3} to find
the edge(s) which x~ sees in the interior of P. This requires at most O((r/k) 2) = O(r)
time. []

Lemma 2.3. I f a polygon C is partitioned into t segments of length at most k whose
two-sided WPs we know, then in O(tk) time we can produce a k-uniform partition of C.

Proof. Let xl x s be vertices in clockwise order on C that partition C so that
all segments have length between k/2 and k. We call these the uniform segments.
Note that s/2 < t. We show that we can find the two-sided WPs of the uniform
segments in O(tk) time. We first split into subsegments the original segments whose
two-sided WPs we know, by splitting at each x~ and computing the WP of each
of these subsegments using the linear-time splitting algorithm. Since each segment
that gets split has length at most k and s splits are performed, the time used in
splitting is O(sk) = O(tk). We compute the WP of each uniform segment by merging
the WPs of its subsegments. Since each merge involves chains of length at most
k and at most t merges are performed, the total time used is O(tk). []

Lemma 2.4. The total time needed to produce a k-uniform partition of the
boundary of every chunk is O(r).

Proof. Since the chunks are formed by adding at most 2r/k horizontal edges, in
O(r) time we can split each segment in the k-uniform partition of P at the endpoints
of the added horizontal edges and compute the WPs of these subsegments. Note
that the total number of subsegments is still O(r/k) and that every subsegment is
of length at most k. Now, using Lemma 2.3, the total time to produce a k-uniform
partition of the boundary of every chunk is O(r). []

Before proving the remaining facts about special points and chunks we need
to discuss the dual graphs associated with visibility partitions. Given a WP of a
chain (either one-sided or two-sided) we define the dual graph of the partition to
be the graph whose vertices are the connected components of the partition of the
cylinder induced by the WP, such that two vertices are adjacent if their components
share a horizontal edge of the partition. Figure 4 shows examples. The main reason
we use WPs is the easily proved fact that the dual of an (either one-sided or

336 D.G. Kirkpatrick, M. M. Klawe, and R. E. Tarjan

One-sided wrap-around
dual-graph

Two-sided wrap-around
dual-graph

Fig. 4

Dual-graph of chunk partition

two-sided) WP of a chain is always a tree. In addition, the nondegeneracy condition
implies that the tree has maximum degree at most 4. The dual graph of a one-sided
WP of a polygon is defined similarly except that the vertices are restricted to the
connected components lying in the interior of polygon, and again the dual graph
is always a tree of maximum degree at most 4.

More generally, the dual graphs of partitions obtained by adding any set of
edges joining points to their (wrap-around) horizontal neighbors are trees, though
not necessarily of maximum degree 4. Note that the degree of a chunk is simply
the degree of the corresponding vertex in the dual graph of the chunk partition.

Lemma 2.5. I f N is a segment in a k-uniform partition of a polygon P, then N has
a special point, and we can identify it in O(k) time.

Proof Let Q be the middle subsegment of N obtained by chopping off Lk/36]
edges at each end of N. The length of Q is at least F4k/9q since the length of N
is at least k/2. It is easy to see that every point of Q satisfies special point property
(ii), so it sutfices to show that some point of Q satisfies special point property (i)
and that given the WP of N we can identify such a point in O(k) time.

Let T be the set of edges in the dual graph of the WP of the interior of P whose
corresponding horizontal edges have at least one endpoint lying on Q. Since Q is
a connected portion of P, T is connected and hence is a tree of degree at most 4.
It is not hard to prove that every pair of consecutive edges of Q must contain an
endpoint of a horizontal edge of the WP of P and hence there are at least F2k/9]
edges in T. Now, since the maximum degree of Tis 4, it is easy to prove that there
is some edge e in T such that both connected components in T - e have at least
k/18 - 1 edges. Moreover, given T we can find e in time linear in the size of T.
Let T l, T 2 be the two connected components of T - e, let x be an endpoint of the
horizontal edge corresponding to e which lies on Q, and let h(x) be the other
endpoint. If we cut P at x and h(x), then the resulting subpaths of P correspond
in an obvious way to T 1 and T:. The number of vertices on a subpath is at least
the number of vertices which are an endpoint of a horizontal edge corresponding
to an edge in {e} w T i, where T~ is the appropriate connected component of T - e.
Since each vertex is the endpoint of at most two horizontal edges corresponding

Polygon Triangulation in O(n log log n) Time with Simple Data Structures 337

to edges in T, we see that each subpath has at least k/36 vertices, and hence x
satisfies property (i).

Finally, we must show that we can identify x in O(k) time. Let P' be the polygon
obtained by doubling N. Applying exactly the same argument regarding Q as a
subsegment of P' shows that in O(k) time we can find a point x on Q with an
interior horizontal neighbor h'(x) on P' such that cutting P' at x and h'(x) yields
two subpaths with at least k/36 vertices on each subpath. We claim that x is a
special point of N. As before, since x is on Q it suffices to show x satisfies property
(i). Let h(x) be the interior horizontal neighbor of x on P in the same direction as
h'(x). If h(x) = h'(x) we are done. If not, then h(x) is not on N. Now since x is at
least kk/36J edges away from both ends of N, it is clear that cutting P at both x
and h(x) results in subpaths of P with at least k/36 vertices. []

Lemma 2.6. There are constants c < 1 and r o such that if r > ro. then at most cr
vertices lie on the boundaries of bad chunks.

Proof. The total number of vertices lying on all chunks is at most r + 8r/k since
at most 2r/k edges are added and each horizontal edge adds at most four vertices
to the total. Since r _> r o and k > (r/2) 2/3 we have k >_ (ro/2) 2/3 and hence r/k <
r/(ro/2) 2/3. Given this bound on r/k, it suffices to show that there is a positive
constant ~ such that at least c~r vertices lie on the boundaries of good chunks. As
noted before, the dual graph of the chunks is a tree with at least r/k vertices. By
the definition of special point, the chunks of degree 1 have at least k/36 vertices
on their boundary. In addition, it is straightforward to check that, for any m > 2,
the total number of vertices on the boundaries of a set of m chunks of degree 2
that form a path is at least ink~36. Putting these facts together with the easily
proved lemma that, for any p-vertex tree T, the number of leaves in T plus the
number of degree 2 vertices in T that are adjacent to a vertex of degree 2 is at
least p/4 + 1, we see that at least (r/4k)(k/36) = r/144 vertices lie on the boundaries
of good chunks. []

3. The Splitting Algorithm

In this section we use the standard definition of HVP, which is trivially translatable
to and from the two-sided wrap-around version in linear time. If E is a collection
of edges that are disjoint except possibly at their endpoints, the HVP is the
partition obtained by adding horizontal edges as follows. For each endpoint z of
an edge e in E, we add a horizontal line segment through z that extends in both
directions until it intersects another edge of E on each side. We also add two
dummy vertical edges at x = - ~ and x = + oo, so that each region (except for
the top and bottom) in the HVP is a trapezoid. An example is shown in Fig. 5.
We refer to the two nonhorizontal edges of a trapezoid as the sides of the trapezoid,
and use the term slice an edge to mean dividing an edge into two edges by inserting
a new vertex on the edge.

For the HVP algorithm in the preceding section, we need an algorithm that,

338 D.G. Kirkpatrick, M. M. Klawe, and R. E. Tarjan

Fig. 5.

i
A horizontal visibility partition,

given the HVP of a polygonal chain C, and a subchain C1, computes the HVP
of C~ in time linear in the length of C. Let us call this the chain-splitting problem.
Our splitting algorithm actually works, and seems much easier to prove correct,
in a more general context. To give this context, we must introduce the concept of
hole-free. We say that a set of edges A trap an edge e in the HVP of E if there is
a simple polygon P containing e in its interior, where each edge in P is either
horizontal and lies in the interior of a trapezoid of the HVP of E with both sides
in A or is a subsegment of an edge in A. An example is shown in Fig. 6. We say
A is hole-free with respect to E if no edge of E\A is trapped by A. It is
straightforward to check that modifying the set E (and possibly A) by either
removing an edge of A or slicing an edge in two does not affect the condition that
A is hole-free with respect to E. An edge e of E and a trapezoid are said to be
adjacent if part of e forms one of the sides of the trapezoid, and two edges e and
e' share a trapezoid if it is adjacent to both of them. We define the degree of the
edge e, denoted by d(e), to be the number of trapezoids adjacent to it, and set
D(A) = ~e~A d(e).

Suppose E = E1 u EE is a collection of edges that are disjoint except possibly
at their endpoints, such that E 2 is hole-free with respect to E. Our splitting
algorithm solves the following problem which we call hole-free edge removal. Given
the HVP of E, compute the HVP of E1 in O(D(E2)) time.

It is worth observing that some restriction such as the hole-free condition must
be made on the set of edges E2 to allow their removal in linear time, since it is
easy to give an f2(n log n) lower bound for the general problem of removing n/2
edges from an HVP of n edges by a reduction from sorting. Figure 7 illustrates
the idea underlying the reduction, i.e., the HVP of the vertical edges is trivial to
compute, but once the long vertical edges are removed, the sorted order of the
vertical coordinates of the short vertical edges can be computed from their HVP.

We begin by showing that chain splitting is reducible to hole-free edge removal.

m

f edge e

, ~ , ~ . . _ ~ polygon P
i

!

Fig. 6. The edge e is trapped by A.

Polygon Triangulation in O(n tog log n) Time with Simple Data Structures 339

l

I

I

. - - r - - -

1

I

!

1

Fig. 7. The f~(n tog n) lower bound for the general splitting problem.

Let C be a polygonal chain such that we know its HVP, and let C~ be a subchain
of C. Let E 1 be the set of edges in C1 together with an infinite vertical edge L
through the leftmost vertex on C1, let E 2 be the set of edges of C which are not
on C1, with each edge split into two edges if it intersects L, and let E = E1 w E 2.
It is easy to see that we can obtain the HVP of E from the HVP of C, and the
HVP of C1 from the HVP of El, in linear time. Moreover, because of the addition
of L and the fact that C~ w L is connected, it is easy to see that no edge in El is
trapped by E 2.

We now describe the hole-free edge removal algorithm. We use a simple
data-structure to represent the HVP of E with the property that any edge can be
removed in time proportional to its degree. Specifically, we represent each
trapezoid, T, in the HVP by the list of its corner points in clockwise order, plus
pointers to the edges to which it is adjacent. In addition, we add four pointers,
left-up, left-down, right-up, and right-down. If e is the left side edge of T, the
pointer left-up points to the trapezoid, if any, which also has e as its left side edge
and is immediately above T in the HVP. The other pointers are defined analog-
ously. Finally, for each edge e we provide pointers to its top and bottom trapezoids
on both sides. Thus, in effect we have, for each edge e in E, two doubly linked
lists of the trapezoids on its left and right sides, ordered according to their order
along e. To remove an edge, e, we simultaneously walk along its two lists of
adjacent trapezoids, extending each horizontal edge which ended at the interior
of e through the trapezoid on the other side, splitting and merging the trapezoids
from the two lists as necessary (see Fig. 8). Since a bounded amount of work is
needed for each horizontal edge with an endpoint on e, the total time to remove
e is clearly O(d(e)). As a consequence of this data structure, we may assume that
all the edges in E2 have degree at least 25, by pulling out small degree edges one
at a time until no more remain.

I I I I

Fig. 8. The process of removing an edge.

340 D.G. Kirkpatrick, M. M. Klawe, and R. E. Tarjan

The strategy underlying the algorithm is to reduce, in O(D(E2)) time, the
problem of computing E~ to a problem which is smaller by a constant fraction,
namely to computing the HVP of E'I from the HVP of E'l u E~ where D(E'2) <_
24D(E2)/25. Moreover, we must ensure that E~ is hole-free with respect to E'~ u E~.
By applying our algorithm recursively to the smaller problem, we thus obtain an
algorithm whose running time is bounded by O(D(E2)). To perform the reduction,
we identify the subset E~ of edges (or actually pieces of edges) in g 2 such that
D(E'2) is small and such that after removing E2 the set, F, of remaining (pieces of)
edges in E 2 will be easy to remove. Before defining E~ and F, we prove a lemma
giving the basic method we use to remove the edges in F. This lemma is based on
the observation that although removing an edge e from an HVP may increase the
degree of remaining edges, it can only increase the degrees of edges e' such that e
and e' shared a trapezoid in the HVP, and the sum of the increases is at most d(e).

Lemma "3.1. Suppose that E 1 and F are disjoint sets of edges such that in the
HVP of E 1 u F each edge o f F has at most one side on which it shares trapezoids
with other edges in F. Then the HVP of E 1 can be computed from the HVP of
E 1 u F in O(D(F)) time.

Proof Let F L ----- {e ~ F: e has a trapezoid on its left side that it shares with another
edge of F} and let F R = F \ F L. Note that no pair of edges in F L (FR) share a
trapezoid. Let fL, fR be the number of trapezoids adjacent to edges in F L, F R,
respectively in the HVP of E x w F. We first pull out the edges in FL one by one.
Removing an edge in F L can only increase degrees of edges in E 1 u F R, so the
total time for removing the edges in F L is O(fL), and the total increase of the degrees
of edges in F R is also O(fL). Now removing any edge in F a only increases the
degrees of edges in E~, so the total time for removing the edges in FL is
O(f L -F- TR) = O(D(F)). []

Given this lemma, our goal is to slice up the edges in E 2 to obtain a set
E s = F u E~ such that E~ is hole-free with respect to E1 u E a and D(E'2)<_
24D(E2)/25. In addition, we want to choose the slices so that in O(D(E2)) time we
can both compute the HVP of E 1 u E 3 from the HVP of E and, via Lemma 3.1,
obtain the HVP of E~ from the HVP of E1 u F. In order to describe how the
slicing of edges in E 2 is done, we first color the trapezoids in the HVP of E. A
trapezoid is white if it is adjacent to an edge in E 1 and gray otherwise (i.e., if both
its side edges are subsegments of edges in E2). See Fig. 9(a) for an illustration. For
each edge in E2 , w e slice it at each of its adjacent horizontal edges which border
both gray and white trapezoids, to obtain the set of edges E 3 , and compute the
new HVP of E' = E 1 u E a (see Fig. 9(b)). Our data-structure supports doing this
in time proportional to the degree of the edge in the current HVP, and it is not
hard to check that the total amount of time used is proportional to D(E2). Let F
be the set of edges in E a which share a trapezoid of the HVP of E' with an edge
in El, and let E~ = Es\F. By our previous observations on the preservation of
the hole-free property under edge removal and slicing, and because every edge in
F shares a trapezoid with an edge in El, it is not hard to prove that E~ is hole-free

Polygon Triangulation in O(n log log n) Time with Simple Data Structures 341

i

i

i /
i (a)

edgesin E

edges in E 2

(b)

~ s l i c e d edges

, f

(c)

edges in F

Fig. 9. Slicing the edges.

with respect to E'. The remainder of this section consists of a series of lemmas
which establish that F and E~ have the other properties we need in order to justify
our claim that the algorithm runs in O(D(E2)) time.

Lemma 3.2. l f A is hole-free with respect to E, and if d(e) > 9for each e in A, then
every pair of edges in A form the sides of at most one trapezoid in the HVP of E.

Proof Suppose e, e' are edges in A and h, h' are horizontal edges in the HVP of
E such that both h and h' join e to e' with h the highest such horizontal edge and
h' the lowest such horizontal edge. Let T be the trapezoid formed by h, h' and the
appropriate subsegments of e and e'. It suffices to show that no edges of the HVP
of E lie inside the interior of T. Since A is hole-free with respect to E, no edges
of E\A lie inside T. Let m be the number of edges of A lying inside T. We will
show that m = 0. It is easy to see that the number of trapezoids of the H V P of E
which lie inside T is at most 4m + 1 because the m edges of E lying inside T
generate at most 4m horizontal edges. This implies that if m > 0, then some edge
inside T has degree at most 8, but this contradicts the assumption that every edge
in A has degree at least 9. []

Lemma 3.3. Given the HVP of E 1 u F we can obtain the HVP of E1 in O(D(E2))
time.

Proof It follows immediately from the construction of E 3 that IFI < [E3I =
O(D(E2)). Thus we may assume that d(e) > 9 for each edge e in F, since otherwise
we can remove edges of F from the HVP one at a time until this is satisfied. Let
Z be the set of trapezoids in the HVP of E 1 u F which are adjacent to edges in
F, and let Z 1 be the trapezoids adjacent to an edge of F on one side and an edge
of E 1 on the other. We now show that [ZI = O(D(Ei)). We have IZlt = O(D(E2))
since each trapezoid in Z 1 is a trapezoid in the H V P of El u E 3 and D(E3) =
O(D(E2)). Thus it suffices to show that I Z \ Z l l = O(D(E2)). From the observations

342 D.G. Kirkpatrick, M. M. Klawe, and R. E. Tarjan

on the preservation of the hole-free property under edge removal and slicing, we
see that F is hole-free with respect to E 1 w F. Thus Lemma 3.2 implies that IZ\ZI[
is bounded by the number of trapezoids in the HVP ofF , i.e., by O(IFI) = O(D(EE)).
Finally we observe that in the HVP of E 1 u F, each edge in F has at least one
side on which all the trapezoids are shared with edges in El. This is because the
slicing used to form E 3 guarantees that the edges in F have this property in the
HVP of El u E 3, and since E~ and E~ are disjoint, removing the edges in E~
cannot affect this property. Thus by Lemma 3.1 we can obtain the HVP of El in
O(IZl) = O(D(E2)) time. []

The final lemma proves the desired bound on D(E~), thus completing the proof
that the algorithm runs in O(D(E2)) time.

Lemma 3.4. We have D(E'2) < 24D(E2)/25.

Proof We color a trapezoid in the HVP of E' black if it is adjacent to an edge
in E~, and let r (r') be the number of gray (black) trapezoids in the HVP of E (E').

, < Since D(E2) _ 2r', it will suffice to show that r' < 3r and r < 4D(E2)/25.
We first show that r' < 3r. We define the function q from the black trapezoids

in the HVP of E' to the gray trapezoids in the HVP of E as follows. Let U be a
black trapezoid. If U is also a gray trapezoid, then we set q(U) = U. If not, then
at least one of the horizontal edges of U must be the extension of a horizontal
edge h of the HVP of E that bordered both gray and white trapezoids, and we
set q(U) to be the gray trapezoid bordered by h. For any gray trapezoid T, there
are at most three black trapezoids that q maps to T. Specifically, for each horizontal
edge h of T there is at most one black trapezoid with a horizontal edge formed
by extending h, and adding the possibility that q also maps T to itself yields a
maximum of three.

We now show r < 4D(E2)/25. By Lemma 3.2, the number of gray trapezoids is
at most the number of trapezoids in the HVP of E2, which is at most 41E21.
Finally, since each edge in E 2 had degree at least 25 we have D(Ez) > 251Ez[. []

4. An O(n log* n)-Time Algorithm for Rasterized Polygons

We call an n-vertex chain or polygon rasterized if the coordinates of its vertices
are integers whose size is bounded by a fixed polynomial p(n). In this section we
show how our algorithm can be modified to compute the HVP of an n-vertex
rasterized polygonal chain in O(n log* n) time, where the constant depends on the
polynomial p(n).

The bottleneck of the algorithm given in Section 2 is the finding of the
horizontal neighbors of the special points (Lemma 2.2). More precisely, this is the
only place where we are forced to have the length of segments, to which we apply
the algorithm recursively, be large, in order to have sufficiently few special points
so that we can find their horizontal neighbors in linear time. The key to obtaining

Polygon Triangulation in uin log log n) Time with Simple Data Structures 343

an O(n log* n)-time algorithm for rasterized polygons is that given any n-vertex
rasterized chain we can construct a data-structure in linear time such that the
horizontal neighbors of any point can be found in O(log 2 n) time. This wilt allow
us to make the length of the segments log 2 n instead of n 2/3, and still find the
horizontal neighbors of the 2n/log 2 n special points in O(n) time.

We say that a rational number is p(n)-bounded if the absolute values of its
numerator and denominator are both bounded by p(n). The key property of a
rasterized chain or polygon is that the x-coordinate of the intersection of any edge
with the horizontal line y = Yo where Yo is a p(n)-bounded integer, will be a
(p(n))2-bounded rational. Constructing our data-structure for finding horizontal
neighbors in rasterized chains relies on the fact that we can sort n (p(n))2-bounded
rationals in O(n) time (see Lemma 3.2 in [KK] for example). One slight complica-
tion that arises is that as we recursively apply our algorithm, after the first
recursion we are no longer working with rasterized chains since the vertex
coordinates are not polynomially bounded by the length of the chains. We sidestep
this difficulty by batching together the creation of the data-structures at the
beginning of the algorithm (Lemma 4.3).

We say that a set of edges is inner-disjoint if they are disjoint except possibly
at their endpoints. We use the term fence for a set ot tuner-disjoint edges {el ek}
and a horizontal line L that intersects all the ev We refer to the line L as the wire
of the fence, and the x-coordinate of the intersection of an edge of the fence with
the wire as its wire-coordinate. We say the fence is ordered if we know both the
sorted order of the vertical coordinates of the endpoints of the e~, and the left to
right order of the wire coordinates of the ev

Lemma 4.1. I f F = ({e 1 ek}, L) is an ordered fence, then in O(k) time we can
construct a data structure such that for any point z we can find its horizontal
neighbors in F in O(log k) time.

Proof. It suffices to show how to obtain the HVP of F in O(k) time since given
the HVP we can use planar point location [EGSI to construct a data-structure
to answer queries in the HVP of F in O(log k) time. By symmetry it suffices to
find the horizontal neighbors of the top endpoints of the edges in F. Since we
know both orders, in O(k) time we can create a data-structure with a doubly linked
list joining the edges in left to right order according to their wire-coordinates, and
a linked list connecting the edges according to increasing vertical coordinate of
their top endpoint. We now obtain the left and right neighbors of each top
endpoint in increasing order of vertical coordinate, by assigning the current lowest
top endpoint its left and right neighbors in the doubly linked list as its horizon-
tal neighbors, and then deleting that endpoint's edge from the data-structure.
Since this can be done in constant time for each endpoint the total time used
is O(k). []

It is possible to prove the preceding lemma, without the assumption that we
know the sorted order of the vertical endpoints, by reducing finding the HVP of
F to finding the HVP of a monotone polygon. However, since we can easily obtain

344 D.G. Kirkpatrick, M. M. Klawe, and R. E. Tarjan

the sorted order of the vertical coordinates we use this version since the proof is
so easy and direct.

Lemma 4.2. Suppose E is a set o f inner-disjoint edges such that we know the sorted
order o f the vertical coordinates o f the endpoints o f the edges. Then in 0(t E I) time
we can partition E into a family of fences, F i'j, such that for any point z there are
O(logl El)fences in the fami ly which can contain the horizontal neighbors o f z, and
those fences can be determined in O(log[El) time.

Proof Let m = [El and let y~ Y2ra be the vertical coordinates of the endpoints
of the edges of E in (increasing) sorted order. We can assume we know the rank
of each vertical coordinate, since otherwise we can compute this is O(IE]) time
from the sorted order. For each edge e let l(e) = e 2 - e 1, where Ye, and Ye2 are the
vertical coordinates of the two endpoints, with y~, < Y~2. We define

F i'j = {e: 2 i < l(e) < 2i+1,j2 i <_ e2 < (j + 1)21}.

It is easy to see that each nonempty F i'j is a fence since every edge intersects the
line y = Yi2,- For each edge in E we can clearly determine to which F i'j it belongs
in constant time, and hence we can obtain the partition into fences in O(I El) time.
Finally, for any point z let zy be the vertical coordinate of z. By binary search we
can determine the index p such that yp < zy < Yp+l in O(logtEI) time. Now for
each i there are at most two values o f j such that U 'j can contain a horizontal
neighbor of z, and these can be clearly determined in constant time once we
know p. []

The construction used to separate the edges into fences in the preceding proof
is essentially equivalent to (static) interval trees, which were introduced by
Edelsbrunner [E].

Lemma 4.3. Suppose E is a set o f iffner-disjoint rasterized edges, and that we are
given a partition o r e into disjoint sets, E = E1 w . . . ~) E r Spec!fically, for each edge
e in E we are given the index i o f the set Ei containing e. Then in O(IEI) time we
can construct data structures D 1 D t such that for any point z we can f ind its
horizontal neighbors in E~ in O((loglE~l) 2) time.

Proo f First note that in O(]E]) total time we can obtain, for each El, the order
of the vertical coordinates of its edges, by performing a double radix sort. Next,
using the technique described in Lemma 4.2, we partition the edges in each Ei
into the 'appropriate fences. Now for each edge in E we compute its wire-
coordinate with respect to its fence. Again by performing a double radix sort, in
O(]EI) time we compute the sorted order of wire-coordinates and the sorted order
of the vertical coordinates of the endpoints of the edges in each fence. Next, by
Lemma 4.1, in O(IEI) total time, we construct a data structure for each fence such
that for any point we can find its horizontal neighbors in the fence in time
logarithmic in the number of edges in the fence. Now for any point z and any i,

Polygon Triangulation in O(n log log n) Time with Simple Data Structures 345

we can find the horizontal neighbors of z in Ei as follows. In O(loglEil) time we
identify the O(loglEil) fences of edges in E i which could possibly contain the
horizontal neighbors of z. Now, for each of these fences, in O(loglEi[) time we
locate the horizontal neighbors of z in the fence. This takes a total of O((loglE~l) 2)
time. Finally we compare the horizontal neighbors found in each of these fences
to find the true horizontal neighbors of z in E i. []

Given Lemma 4.3, it is fairly straightforward to modify the algorithm in Section
2 to run in O(n log* n) time on rasterized chains. The overall structure of the
algorithm is that we partition the chain into subchains of length log 2 n, apply the
algorithm recursively to compute the WP of each subchain, and then compute
the WP of the entire chain using a modification of Theorem 2.1, which we state
below.

Theorem 2.1 (Rasterized Version). Suppose k >_ logZ(r/2). Given a k-uniform parti-
tion of an r-vertex nondegenerate polygon P and a data structure so that for any
point z we can find the interior horizontal neighbors of z in P in O(k) time, we can
compute the WP of the interior of P in O(r) time.

The proof of this version of Theorem 2.1 is identical to the proof of the previous
one except for two points. First, the assumption about the data structure eliminates
the need for Lemma 2.2, and, second, we need to have data structures for the bad
chunks in order to apply the theorem recursively. However, this is trivial since
the data structure for P works for all the chunks as well. Thus, the only remaining
issue is now to ensure that the necessary data structure is available every time
Theorem 2.1 is applied at a " top" level. We do this in O(n log* n) time by log* n
applications of Lemma 4.3 right at the beginning of the overall algorithm, so that
all the necessary data structures are computed before doing anything else. More
precisely, we first let E be the set of edges in the doubling of the original chain
and apply Lemma 4.3 to the trivial partition E = E~. This provides the data
structure that will be needed when Theorem 2.1 is applied to the doubling of the
original chain.

We next partition the chain into subchains of length logZn and let E =
E1 w -'" w Et where Ei is the set of edges in the doubling of the ith subchain.
Applying Lemma 4.3 provides the necessary data structures for the applications
of Theorem 2.1 where the polygon is the doubling of one of these subchains. We
repeat this process with partitions of the original chain into subchains of length
logZ(log 2 n), then log2(log2(log 2 n)), etc., corresponding to the recursive structure of
the overall algorithm. Since each application of Lemma 4.3 requires O(n) time, the
total time needed is O(n log* n).

References

[BT] Bhattacharya, B. K., and Toussaint, G. T., A linear algorithm for determining the translation
separability of two simple polygons, Report SOCS-86.1, School Comput. Sci., McGill
University, Montreal, 1986.

346 D.G. Kirkpatrick, M. M. Klawe, and R. E. Tarjan

[c1]

[c2]

[cI]

[CTV]

[E]

[EGS]

[FFR]

[FM]

[FNTV]

[GJPT]

[GHL +]

[HM]

[HMRT]

[KK]

[K]

ILl

[LTL]

[TV]

[Tl]

[T2]

[T3]

IT4]
[TA]

Chazelle, B., A theorem on polygon cutting with applications, Proc. 23rd Annual Syrup. on
Foundations of Computer Science, 1982, pp. 339-349.
Chazelle, B, Triangulating a simple polygon in linear time, Princeton Tech. Report
CS-TR-264-90, 1990.
Chazelle, B., and Incerpi, J., Triangulation and shape complexity, ACM Trans. Graphics 3
(1984), 135-152.
Clarkson, K., Tarjan, R., and Van Wyk, C., A fast Las Vegas algorithm for triangulating
a simple polygon, Proc. 4th ACM Symp. on Computational Geometry, 1988, pp. 18-22
(Princeton Tech. Report CS-TR-157-88, 1988).
H. Edelsbrunner, Dynamic data structures for orthogonal intersection queries, Report f59,
Techn. Univ. Graz, Instit. Informationsverarb., Graz, 1980.
Edelsbrunner, H., Guibas, L. J., and Stolfi, J., Optimal point location in a monotone
subdivision, SIAM J. Comput. 15 (1986), 317-340.
Fiume, E., Fournier, A., and Rudolph, L, A parallel scan conversion algorithm with
anti-aliasing for a general-purpose ultra-computer, ACM Trans. Comput. Graphics 17(3)
(1983), 141-150.
Fournier, A., and Montuno, D. Y., Triangulating simple polygons and equivalent problems,
ACM Trans. Graphics 3 (1984), 153-174.
Fung, K. Y., Nicholl, T. M., Tarjan, R. E., and Van Wyk, C. J., Simplified linear-time Jordan
sorting and polygon clipping, Princeton Tech. Report CS-TR-189-88, 1988.
Garey, M. R. Johnson, D. S., Preparata, F. P., and Tarjan, R. E., Triangulating a simple
polygon, Inform. Process. Lett. 7 (1978), 175-180.
Guibas, L., Hershberger, J., Leven, D., Sharir, M., and Tarjan, R. E., Linear-time algorithms
for visibility and shortest path problems inside triangulated simple polygons, Aloorithmica
2 (1987), 209-233.
Hertel, S., and Mehlhorn, K., Fast triangulation of a simple polygon, Proc. Conf. on
Foundations of Computer Theory, Lecture Notes on Computer Science, Vol. 158, Springer-
Verlag, Berlin, 1983, pp. 207-218.
Hoffman, K., Mehlhorn, K., Rosenstiehl P., and Tarjan R., Sorting Jordan sequences in
linear time using level-linked search trees, Inform. and Control 68 (1986), 170-t84.
Keil, J. M., and Kirkpatrick, D. G., Computational geometry on integer grids Proc. 19th
Annual Allerton Conference on Communication Control and Computing, 1981, pp. 41-50.
Kirkpatrick, D. G., Optimal search in planar subdivisions, SIAM J. Comput. 12(1) (1983),
28-35.
Lee, D. T., Shading of regions on vector display devices, ACM Trans. Comput. Graphics
15(3) (1981), 34-44.
Liou, W. T., Tan, J. J. M., and Lee, R. C. T., Minimum partitioning simple rectilinear
polygons in O(n log log n) time, Proc. 5th ACM Syrup. on Computational Geometry, 1989,
pp. 344-353.
Tarjan, R. E., and Van Wyk, C. J, An O(n log log n)-time algorithm for triangulating a
simple polygon, SlAM J. Comput. 17(1) (1988), 143-178.
Toussaint, G., Pattern recognition and geometrical complexity, Proc. 5th Intern. Conf. on
Pattern Recognition, 1980, pp. 1324-t347.
Toussaint, G., Computational geometry and morphology, Teeh. Report SOCS-86.3, McGitl
University, Montreal, 1986.
Toussaint, G., An output-complexity-sensitive polygon triangulation algorithm, Tech.
Report SOCS-88.11, McGill University, Montreal, 1988.
Toussaint, G. (ed.), Computational Morphology, North-Holland, Amsterdam, 1988.
Toussaint, G., and Avis, D., On a convex hull algorithm for polygons and its application
to triangulation problems, Pattern Recognition 15(1) (1982), 23-29.

Received May 29, 1990, and in revised form January 25, 1991.

